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I. Supplementary Text
I.1 Determination of Reference Flux Distributions
To apply MiMBl for determining mutant strain phenotypes, a reference or wildtype flux distribution is crucial. We derived individual reference flux distributions for both the E. coli core and genome-scale model from appropriate intra- and extracellular metabolic flux data by subsequently solving two linear optimization programs. Firstly, we minimized the sum of the absolute difference between simulated and experimentally determined fluxes. Secondly, while fixing the objective function of the former linear program to its optimal value, the sum of all other absolute flux values in the model, excluding those of exchange reactions, was minimized. This method follows the descriptions of Long et al. [1]. We used central carbon metabolism flux data of an aerobic chemostat cultivation at a dilution rate of  taken from Ishii et al. [2].
I.2 A Simplified Calculation of the Growth-Couling Strength
The original representation of the growth-coupling strength (GCS) is based on a quantitative comparison of the production envelope space areas between the mutant and wildtype strain. Since the exact determination of the production envelope areas is computationally expensive, calculation of the GCS had to be simplified for a utilization as an engineering objective for the GA. Therefore, we derived an approximation using only two distinct points on the envelope edge, which are computed by two separate linear programs. These yield the target production rate  at maximal growth rate  and the minimally guaranteed production rate  at . We used the linear extrapolation of both points as an indicator for the growth-coupling characteristics. Therefore, the production rate axis intercept of the extrapolation was determined by Equation 1:
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A  indicates weak growth-coupling and the area below the approximated lower production rate bound  was calculated by 
	
	(2)


If  is positive, the strain design exhibits strong growth-coupling and  is
	
	(3)


To derive the GCS approximation, the area of the wildtype production rate beyond  is added to  or  and the sum is normalized by the total area of the wildtype production envelope , hence
	
	(4)


where  is the theoretical maximal growth rate of the wildtype strain.
I.3 A Databank Model Including Novel Network Edges
The establishment of a databank model comprising novel functionalities or reactions was inspired by the OptStrain [3] and SimOptStrain [4] framework. In this work, however, we focused on novel network edges only, meaning that all metabolites of non-native reactions in the database model had to be present in the wildtype metabolic model. Using the following protocol, we searched or used the MetaNetX [5], BiGG [6] and KEGG [7] databases for reactions that fulfill these constraints. The protocol also includes curation steps to determine reaction directionalities based on thermodynamic data taken from the eQuilibrator database [8], thereby guaranteeing correct reaction mass and charge balances.
1. Load the complete MetaNetX database for biochemical reactions and metabolites and match their identifiers with the BiGG database namespace.
2. Discard reactions with dubious mass balances according to MetaNetX and those already present in the wildtype metabolic model.
3. Discard reactions that act on metabolites not present in the wildtype metabolic model.
4. Determine directionality of reactions according to the standard Gibbs Free Energy of Reaction  at pH 7 and an ionic strength of . If  cannot be provided for a reaction, it is assumed to be reversible and for all other reactions:
a. Extract  and its standard deviation from the eQuilibrator database.
b. Calculate a physiologically relevant Gibbs Free Energy of Reaction  using standard concentrations of  for each participating metabolite. Water and protons do not contribute to . Standard concentrations for oxygen, carbon dioxide and hydrogen are listed in Table S1. For a general reaction of the form  with educts  and , the products  and  as well their respective stoichiometric coefficients ν,  is calculated to:
	
	(1)


where  is the molar concentration of a metabolite specified by the indices and  the universal gas constant. Furthermore, we assume a standard temperature . For , minimal and maximal expected standard concentrations are used for the educt and product metabolites, respectively. This is reversed for the calculation of .
c. Determine the maximal deviation from . Therefore, if , calculate a maximally expected Gibbs Free Energy of Reaction  following the descriptions in b) and Equation 1. In this case, use a maximally expected concentration of  for all products and a minimally expected concentration of  for all educts. Maximal and minimal concentrations of oxygen, carbon dioxide and hydrogen are listed in Table S1. Likewise, if ,  is instead calculated using maximally and minimally expected concentrations for the educts and products.
d. Compare  and . If both  and  have the same sign, the reaction is labelled irreversible in the direction according to the sign. A reaction is also treated as irreversible if  and  exhibit differing signs and the relation  does not exceed a value of 0.4. In all other cases, particularly if , a reaction is reversible.
5. Check mass and charge balances of reactions according to the atomic compositions of educts as well as products and correct for missing protons or water molecules.

The selected and curated reactions are integrated in a database model and flux bounds are chosen according to the identified reaction directionalities.


II. Supplementary Figures and Tables

Table S1: Minimally and maximally expected as well as standard intracellular concentrations of gaseous metabolites.
	Metabolite
	Minimally expected concentration [m]
	Maximally expected concentration []
	Standard concentration []

	Oxygen
	10-11
	0.055
	0.0275

	Carbon dioxide
	10-11
	1.4
	0.7

	Hydrogen
	10-11
	0.034
	0.017
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Figure S1: Maximal fitness (BPCY) (a, c, e) and Hamming distance (b, d, f) progressions for GA runs applying five, seven and ten maximal allowable reaction deletions as well as an adaptive mutation probability approach with different ranges between the minimal and maximal mutation rate, all centering around a mutation rate of 0.05. The color code denotes the factor between the minimally and maximally allowable mutation probability. The E. coli core model and ethanol BPCY as the engineering objective were employed.
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Figure S2: Total number of fitness function evaluations after 900 generations of GA runs applying population sizes between 10 and 50. Bars are clustered according to the employed selection rate (colored number). Error bars show the standard deviation among five replicates for each population size – selection rate pair. Asterisks denote parameter pairs with which the globally maximal fitness of  was not reached in every replicate GA run after 900 generations. Succinate BPCY was used as the engineering objective. Intervention set size was seven.
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Figure S3: Maximal fitness progressions for GA runs using various numbers of Gene-Flow-Events (GFEs) at a constant total number of 900 generations. The E. coli core model and succinate BPCY as the engineering objective were employed.
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Figure S4: Maximal fitness (BPCY) (a, b, c, d) and Hamming distance (e, f, g, h) progressions for GA runs applying three, five, seven and nine maximal allowable reaction deletions for optimizing overproduction of succinate, ethanol, lactate and glutamate. The E. coli core model and target product BPCY as the engineering objective were employed.
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Figure S5: Maximal fitness (BPCY) (a, b, c, d) and Hamming distance (e, f, g, h) progressions for GA runs applying three, five, seven and nine maximal allowable gene deletions for optimizing overproduction of succinate, ethanol, lactate and glutamate. The E. coli core model and target product BPCY as the engineering objective were employed.
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Figure S6:  Maximal fitness (a) and hamming distance (b) progressions for GA runs using fitness-intervention size relation factors of 0, 0.01, 0.015, 0.025 and 0.04 aiming to minimize the final intervention set size. E. coli core model and ethanol BPCY as the engineering objective, were employed. The maximally allowable intervention set size was set to nine for each simulation.


	[image: C:\Users\altert\Promo\Projekte\GAMO\Paper\Plots\Figures\EX1_HaminDistance_MaxFit.jpg]
Figure S7:  Hamming distance progressions for GA runs applying three, five, seven and nine maximal allowable reaction deletions for optimizing overproduction of succinate (a), ethanol (b), lactate (c) and glutamate (d). The E. coli core model and multiple objective function approach as the engineering objective, including target product BPCY, growth-coupling strength and target production rate at maximal growth, were employed.
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Figure S8:  Maximal fitness and objective fitness (a) as well as hamming distance (b) progressions for GA runs using the E. coli GEM iJO1366 and different numbers of maximally allowable gene deletions and novel reaction insertions. A multiple objective function approach combining the optimization of succinate BPCY, GCS and succinate production rate at maximal growth was employed. Simultaneously, the intervention set size was minimized using a fitness-intervention size factor y of 0.1.
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