Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Carbon Source Controls the Secretion and Yield of Polysaccharide-Hydrolyzing Enzymes of Basidiomycetes

Version 1 : Received: 17 August 2021 / Approved: 18 August 2021 / Online: 18 August 2021 (07:41:08 CEST)

A peer-reviewed article of this Preprint also exists.

Metreveli, E.; Khardziani, T.; Elisashvili, V. The Carbon Source Controls the Secretion and Yield of Polysaccharide-Hydrolyzing Enzymes of Basidiomycetes. Biomolecules 2021, 11, 1341. Metreveli, E.; Khardziani, T.; Elisashvili, V. The Carbon Source Controls the Secretion and Yield of Polysaccharide-Hydrolyzing Enzymes of Basidiomycetes. Biomolecules 2021, 11, 1341.

Abstract

In the present study, the polysaccharide-hydrolyzing secretomes of Irpex lacteus BCC104, Pycnoporus coccineus BCC310, and Schizophyllum commune BCC632 were analyzed in submerged fermentation conditions to elucidate the effect of chemically and structurally different carbon sources on the expression of cellulases and xylanase. Among polymeric substrates, crystalline cellulose appeared to be the best carbon source providing the highest endoglucanase, total cellulase, and xylanase activities. Mandarin pomace as a growth substrate for S. commune allowed to achieve comparatively high volumetric activities of all target enzymes while wheat straw induced a significant secretion of cellulase and xylanase activities of I. lacteus and P. coccineus. A synergistic effect on the secretion of cellulases and xylanases by the tested fungi was observed when crystalline cellulose was combined with mandarin pomace. In I. lacteus the cellulase and xylanase production is inducible in the presence of cellulose-rich substrates but is suppressed in the presence of an excess of easily metabolizable carbon source. These enzymes are expressed in a coordinated manner under all conditions studied. It was shown that the substitution of glucose in the inoculum medium with Avicel provides accelerated enzyme production by I. lacteus and higher cellulase and xylanase activities of the fungus. These results add new knowledge to the physiology of basidiomycetes to improve cellulase production.

Keywords

wood-rotting basidiomycetes; carbon source; cellulases; regulation of synthesis; saccharification

Subject

Biology and Life Sciences, Immunology and Microbiology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.