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Abstract: Many metabolic processes at the molecular level support both viral attack strategies and 9 

human defenses during Covid-19. This knowledge is of vital importance in the design of antiviral 10 

drugs. In this study, we extracted 18 articles (2021-2023) from PubMed reporting the discovery of 11 

hub-nodes specific for the liver during covid-19, identifying 142 hub-nodes. They are highly con- 12 

nected proteins from which to get deep functional information on viral strategies when used as 13 

functional seeds. Therefore, we evaluated the functional and structural significance of each of them 14 

to endorse their reliable use as seeds. After filtering, the remaining 111 hubs were used to get by 15 

STRING an enriched interactome of 1111 nodes (13,494 interactions). It shows the viral strategy in 16 

the liver is to attack the entire cytoplasmic translational system, including ribosomes, to take con- 17 

trol of protein biosynthesis. We used the SARS2-Human-Proteome Interaction Database (33,791 18 

interactions), designed by us with BioGRID data to implement a reverse-engineering process that 19 

identified human proteins actively interacting with viral proteins. The results show 57% of human 20 

liver proteins directly involved in Covid, a strong impairment of the ribosome and spliceosome, an 21 

antiviral defense mechanism against cellular stress of the p53 system, and, surprisingly, a viral 22 

capacity for multiple protein attacks against single human proteins that reveal underlying evolu- 23 

tionary-topological molecular mechanisms. Viral behavior over time suggests different molecular 24 

strategies for different organs. 25 

Keywords: COVID-19; Covid molecular mechanisms; SARS-CoV-2; Liver interactome; Ribosome; 26 

Liver proteome during COVID-19, viral strategy;  27 

 28 

1. Introduction 29 

COVID-19 exhibits many characteristics of a systemic disease. Despite the limited 30 

understanding of the molecular mechanisms facilitating the virus’s dissemination to 31 

distant tissues and organs, many studies are dedicated to elucidating the potential 32 

pathophysiological mechanisms associated with organ-specific infection. 33 

A recent review [1] describes the pathological effects of the SARS-CoV-2 virus on 34 

the human liver, focusing on hepatic manifestations of COVID-19. The authors also dis- 35 

cuss the potential pathophysiological mechanisms, as well as the diagnosis and man- 36 

agement approaches. They report the effects described as moderate in healthy patients, 37 

describing most hepatic symptoms associated with COVID-19 as mild and self-limiting 38 

and of favourable management. Conversely, the outcomes seen in elderly, obese pa- 39 

tients and those with previous liver disease are serious and not so manageable. What the 40 
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authors complain about is the lack of a single definition of liver damage, and the lack of 41 

studies describing in more detail the cellular damage and the molecular mechanisms that 42 

generate it. According to other authors [2], coronavirus-2 RNA is detectable in liver biop- 43 

sies of patients with severe acute respiratory syndrome. These authors also noted that on 44 

a histological analysis of the liver tissue sections showed many nonspecific and purely 45 

descriptive findings. Whereas viral RNA suggested viral particles that had spread from 46 

other tissues and organs. [3-5]. This type of observations has raised many considerations 47 

about the spread of the virus in organs and tissues, in particular because of complications 48 

of long-COVID-19 [6]. Although researchers have hypothesized [7] and discussed [8] 49 

general mechanisms that could inhibit programmed cell death, the actual molecular 50 

mechanisms adopted by this virus are still unknown, and no liver-specific data is availa- 51 

ble. 52 

The computational approach is one of the most used approaches in these cases. We 53 

can evaluate the changes in gene expression under the effect of COVID-19. We can cal- 54 

culate an enriched metabolic network model in which to identify high ranked genes. 55 

These are genes whose decoded products (proteoforms) show high connections with 56 

network nodes and coordinate many important metabolic processes. Through these 57 

genes, we can describe possible functions making metabolic hypotheses, aided by GO 58 

and KEGG analyses. Many researchers focused on the impact of the disease on evaluat- 59 

ing the regeneration of liver epithelial cells [9, 10], to create a model of acute liver failure 60 

and identify the possible therapeutic effects of inhibitors of some high ranked genes, 61 

such as hub genes [11]. Knowledge of hub genes, therefore, represents an indispensable 62 

crucial point for characterizing the molecular aspects of a disease, such as cellular stress 63 

due to COVID-19 but also for the design of specific drugs. Although hubs play a crucial 64 

role, there is disagreement in identifying, characterizing, and classifying these types of 65 

nodes [12].  66 

Some of our searches on PubMed performed using terms such as “COVID-19 AND 67 

liver hub genes” or similar terms, extracted eighteen studies, of which we selected eleven 68 

(2021-2023) [13-23] because they reported hub genes linked to COVID-19 (see also in the 69 

Results). These studies aim to determine regulatory processes from datasets based on 70 

microarray or transcriptome sequencing technology. These approaches have two signifi- 71 

cant limitations. First, when studying homogenized tissue samples or disaggregated cells, 72 

the researchers lose spatial information on gene expression. And second, most of the re- 73 

sulting models are static and probabilistic, thus lacking any space-time reference. There- 74 

fore, they present a strong limitation in investigating a dynamic process, such as the pro- 75 

gression of COVID-19. We should remember that studying the viral strategy and the 76 

host’s innate response is best done during the initial moments of the disease (the first 3-5 77 

days). Later, the host phenotype displays significant interferences that mask viral action 78 

and occasionally assume dominance. During the enrichment phase, we can also extract 79 

many hub genes that coordinate normal metabolic activities of the cell, regardless of 80 

COVID-19. We should identify and exclude from disease-dependent hubs those genes 81 

focused on managing fundamental cellular activities, necessary for both actors. Without 82 
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delving into the reasons behind their diversity, we have still included these genes in our 83 

analysis to identify and remove them. 84 

A network typically includes many small subgraphs; these subgraphs are under the 85 

control of several hubs, so there is no single place from which one can get a complete 86 

picture of the general and specific biological purposes of the network. Therefore, biolog- 87 

ical network analysis cannot always provide explicit support to get information about the 88 

internal parts of the network from peripheral nodes. Networks are so heterogeneous that 89 

an approach deemed useful in one condition, or in one metabolic context, may not be ef- 90 

fective elsewhere, or at another time [24-26]. We could effectively analyze the topological 91 

differences and congested links in all selected networks from five different perspectives: 92 

data source control, topological analysis, network characteristics, validation, and predic- 93 

tion. But this takes a long time, and the structural/functional validation of the data is of- 94 

ten difficult to verify. Here, we apply a biological reverse engineering protocol that in- 95 

volves deriving a model of the biological relationships established between the nodes 96 

implementing the networks, with no a priori knowledge of their computational protocols 97 

[27, 28]. 98 

Our aim is to identify patterns of non-random connectivity or a viral organizational 99 

strategy that often remains hidden when analyzing the many molecular details of bio- 100 

logical graphs. Many authors, through hubs, attempt to decompose biological networks 101 

into a set of network motifs with characteristic functions, often drawing biased conclu- 102 

sions from low-resolution data [29]. 103 

A major issue for reverse-engineered model training networks is the significant 104 

time and effort required to get and quantify spatial gene expression data [30, 31]. To bet- 105 

ter understand COVID-19, we need a better and more systematic understanding of the 106 

complex regulatory networks that govern disease progression. Knowledge that is still 107 

limited. One crucial point in increasing the reliability of the calculated network models is 108 

the experimental origin of the data. Since these are one-to-one interactions between pro- 109 

teins, on a physical or functional basis, we should have clear experimental confirmation, 110 

without which we do nothing but contribute to increasing the level of uncertainty of our 111 

network models.  112 

This point is significant. In fact, relationships between lower-level processes and 113 

higher-level systems capacities are “degenerate” because of the many-to-many relation- 114 

ships [30, 32]. The concept of degeneracy in biological systems is indeed intricate. When 115 

discussing the relationships between lower-level processes and higher-level system ca- 116 

pacities, degeneracy refers to the situation where distinct processes (or mechanisms) 117 

within a system can perform similar functions or roles. This means that there is not a 118 

one-to-one correspondence between processes and functions; instead, multiple processes 119 

can contribute to or perform the same function, therefore the system is degenerate. In bi- 120 

ological complexity and metabolic systems, this can be challenging. When many ele- 121 

ments can serve the same function, understanding the underlying principles governing 122 

how these components work together becomes complex, especially when these relation- 123 

ships are dynamic and nonlinear. The many-to-many relationships between distinct ele- 124 
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ments and functions make it difficult to pinpoint exact cause-effect relationships or pre- 125 

dict the system’s behaviour solely based on the behaviour of individual elements. Bio- 126 

logical complexities add layers of intricacy to understanding biological systems and their 127 

functions [33, 34]. This also applies to mechanistic explanations, since they involve re- 128 

sorting to operations that are at a lower level to explain phenomena that are at the level 129 

of the whole mechanism [35]. This suggests that, when computing a network, functional 130 

seeds, and enrichment can discover and remove hub nodes that have non-experimental 131 

origins or uncertain functions. We apply reverse engineering based on the direct valida- 132 

tion of biological messages exchanged between two nodes (which we call network infer- 133 

ence). Inference comprises analyzing the experimental source of biological information 134 

by validating it with external tools. Biological networks are a key feature by which sim- 135 

ple interactions can combine to produce complex results. We consider that biological in- 136 

formation is transmitted through the one-to-one interactions between nodes, which are 137 

analytically represented by a network (or graph). It is often overlooked that this aspect 138 

causes the certification of the interaction as certain and reliable (refer to Appendix A for 139 

more information). Therefore, network analysis allows us to build predictive models to 140 

understand how variations in molecular interactions can influence the behaviour of a bi- 141 

ological system. Ultimately, the reverse engineering approach offers an avenue for un- 142 

derstanding the intricate details of COVID-19 in the liver, and may lead to useful results 143 

in understanding the molecular aspects of this disease and designing and developing 144 

therapies.  145 

 146 

2. Materials and Methods 147 

2.1 BioGRID [43] is the source of experimental interactions of SARS-CoV-2 [as of July 148 

2023]. https://thebiogrid.org/search.php?search=SARS-CoV-2*&organism=2697049 149 

BioGRID is a general biological repository for interaction datasets. It is a curated biologi- 150 

cal database of protein-protein interactions, genetic interactions, chemical interactions, 151 

and post-translational modifications. It also collects all the experimentally proven data 152 

on the interactions between the 31 SARS-CoV-2 proteins and the human proteome. The 153 

quantitative SAINT analysis [51] was used to identify SARS-CoV-2 viral-host proximity 154 

interactions in human or model system cells [11-17] and those with a Bayesian FDR =< 155 

0.01 were high confidence. Scores are the sum of peptide counts from four mass spec 156 

runs with a higher score indicating a higher degree of connectivity between proteins. 157 

This statistical model assigns the number of peptide identifications for each interactor to 158 

a probability distribution, which is then used to estimate the likelihood of a true interac- 159 

tion. In this way, the model facilitates the identification of high confidence interactomes.  160 

 161 

2.2 STRING 162 

STRING [44, 45] [https://string-db.org/] is a proteomic database focusing on the networks 163 

and interactions of proteins in an array of species. The curated interactions are direct 164 

(physical) and indirect (functional) associations. The interactions came from 6 different 165 

https://thebiogrid.org/search.php?search=SARS-CoV-2*&organism=2697049
https://string-db.org/
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sources (genomic context, high-throughput experiments, co-expression, previous 166 

knowledge, etc.). In this paper, we established the PPI network according to the Ver- 167 

sion:11.5 of the STRING database. We constructed PPI networks by mapping proteins to 168 

the STRING database with a confidence score of 0.900 with the information of all six 169 

sources (see also note in Supplements).  170 

STRING maps several databases onto its proteins. Therefore, this feature allows to re- 171 

trieve not only the functional enrichment for any set of input proteins but also a series of 172 

specialized information on the interactome characteristics and properties. Through In- 173 

terPro, STRING provides a functional analysis of interactome proteins by classifying 174 

them into families and predicting functional domains, i.e., those structural domains de- 175 

volved into interaction to generate a function. SMART (Simple Modular Architecture 176 

Research Tool) allows the identification and the analysis of genetically mobile domain 177 

architectures. Through Annotated Keyword (UniProt), STRING enables access to more 178 

specific information about proteins of a network, in our case to define several interaction 179 

scenarios from the liver interactome. REACTOME is an open-source, open access, cu- 180 

rated and peer-reviewed pathway database mapped by STRING onto its proteins. Its 181 

goal is to provide intuitive bioinformatics tools for the visualization, interpretation and 182 

analysis of pathway knowledge to support basic and clinical research, genome analysis, 183 

modeling, systems biology and education. The core unit of the Reactome data model is 184 

the reaction. Entities (nucleic acids, proteins, complexes, vaccines, anti-cancer therapeu- 185 

tics and small molecules) participating in reactions form a network of biological interac- 186 

tions and are grouped into pathways. Reactome is designed to give the user a map of 187 

known biological processes and pathways that is at the interface of its network from 188 

which the user can extract detailed information on components and their relations. 189 

Cluster Analysis - STRING also provides the most reliable clusters in terms of compact- 190 

ness, metabolic functionality, and p-value, calculated on the network data (individually 191 

characterized by an acronym, CL.xxx). For the cluster analysis, it is used the K-Means 192 

Clustering method (49). K-Means Clustering is an Unsupervised Learning algorithm 193 

(centroid-based clustering algorithm) used by STRING to group the protein dataset into 194 

different functional clusters. Centroid-based algorithms are efficient, effective, simple 195 

and sensitive to initial conditions and outliers. This makes it useful in handling networks. 196 

 197 

 198 

2.3 Protein enrichment  199 

It is to some extent based on prior knowledge, and the statistical enrichment of the anno- 200 

tated features may not be an intrinsic property of the input. To get an enrichment test 201 

from STRING that is statistically valid, we must insert the entire set of enriched proteins 202 

into STRING ensuring that ‘first shell’ and ‘second shell’ are both set to ‘none’. To con- 203 

firm the procedure’s correctness, we also checked the STRING notes to the network for a 204 

specific notice that disappears when done correctly. By adding new interaction partners 205 

to the network, we can extend the interaction neighborhood according to the required 206 

confidence score. We used 0.9 as a confidence score. 207 
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 208 

2.4 CYTOSCAPE and Network topology analysis 209 

Cytoscape [46, 47] through Network Analyzer was used to analyze the topological pa- 210 

rameters of networks. Using Cytoscape software, we visualized and analyzed PPI net- 211 

works, which offer diverse plugins for multiple analyses. Cytoscape represents PPI net- 212 

works as graphs with nodes illustrating proteins and edges depicting associated interac- 213 

tions. We examined network architecture for topological parameters such as clustering 214 

coefficient, centralization, density, network diameter, and so on. Our analysis included 215 

undirected edges for every network. We termed the number of connected neighbours of 216 

a node in a network as the degree of a node. P(k) is used to describe the distribution of 217 

node degrees, which counts the number of nodes with degree k where k=0, 1, 2, … We 218 

calculated the power law of distribution of node degrees, which is one of the most crucial 219 

network topological characteristics. The coefficient R-Squared value (R2), also known as 220 

the coefficient of determination, gives the proportion of variability in the dataset. We also 221 

examined other network parameters, including the distribution of various topological 222 

features. We did calculation of Hub and Bottleneck nodes based on relevant topological 223 

parameters. By examining the PPI network, we found the top 7 hub nodes. These nodes 224 

had significantly higher degree values than the others and were primarily in two central 225 

modules that were closely connected and compact. 226 

 227 

2.5 CentiScaPe  228 

Centralities for undirected, directed, and weighted networks. CentiScaPe [48] computes 229 

specific centrality parameters describing the network topology. These parameters facili- 230 

tate users in locating the most important nodes within a complex network. The computa- 231 

tion of the plugin produces both numerical and graphical results, facilitating the identi- 232 

fication of key nodes even in extensive networks. Integrating network topological quan- 233 

tification with other numerical node attributes can cause relevant node identification and 234 

functional classification.  235 

 236 

2.6 GO and KEGG pathway analyses. 237 

To better research and show the biological function of interacting proteins, we performed 238 

GO analysis, which included biological process (BP), cellular component (CC), molecular 239 

function (MF) and many other evaluations using the specific tools present in STRING. All 240 

functions shown by STRING are significant, having a p value always of <0.05. 241 

 242 

       2.7. SARS2-Human Proteome Interaction Database (SHPID) 243 

We have collected in a single database all the files made available online by Bi- 244 

oGRID, containing all the curated physical interactions of the 31 SARS-CoV-2 proteins 245 

gained through experiments in human cellular systems with viral baits, followed by pu- 246 

rification and characterization with mass spectrometry. These Data are available as a zip 247 

file containing multiple zip-files (32 zip-files) each comprising Interactions and 248 

Post-Translational Modifications for each single SARS-CoV-2 protein for 33,823 interac- 249 
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tions (as June 2023). The database therefore contains the set of all possible real interac- 250 

tions existing between the SARS-CoV-2 proteome with all the proteins of the human 251 

proteome. We highlight that not all interactions are real, but some could derive from ar- 252 

tifacts of the method, such as non-biological interactions, only because of the random 253 

encounter between proteins in the system used. An encounter that would never have 254 

happened in the reality of an infection. However, the interactions derive from BioGRID 255 

where all, even those with the lowest score, have a significant statistic with an FDR =< 256 

0.01. This allows us to identify as many significant comparisons as possible while main- 257 

taining a low false positive rate, i.e., the probability of a false positive is less than 1%, so 258 

only 338 interactions among all are truly null. 259 

This database is the comprehensive repository of all interactions acknowledged bi- 260 

ologically possible between the virus and its human host. The database also contains in- 261 

teractions between individual viral proteins, where known. As part of database search 262 

actions, you can ask who interacts with whom, with queries that use single human or vi- 263 

ral proteins. The search can include multiple sets of proteins. 264 

 265 

2.8 Comparison between GO pairs in enriched networks. 266 

In modeled networks, STRING uses two parameters to analytically define the en- 267 

riched biological terms. Strength is the measure of how large an enrichment is, expressed 268 

as Log10 [Log10 (observed/expected)], while False Discovery Rate (fdr) is the measure of 269 

the statistical significance of an enrichment given as a p-value after the Benia- 270 

mini-procedure Hochberq. The higher the Strength value, the greater the biological effect 271 

because of genetic enrichment, indicating increased gene expression, which suggests a 272 

higher likelihood of the event occurring. Since STRING characterizes biological functions 273 

as pairs in which strength and fdr often show very different numerical values from each 274 

other, we use the product P [P = strength x -log10 p-value] to get a quantitative evalua- 275 

tion. When "Strength" has a very high value and p has a slight value, this product is en- 276 

hanced (the most favorable situation for evaluating an effect is represented by the ex- 277 

tremes of their numerical values, very high and slight, respectively). This facilitates us to 278 

compare and evaluate different pairs. Two pairs, one characterized by S = 0.35 and fdr = 279 

1.0e-11, and another characterized by S = 1.9 and fdr = 1.0e-6, could lead one to think that 280 

the first is more significant. If we analyze the P value, we have 3.85 and 11.4, respectively. 281 

This tells us that the increase in gene expression in the second case is prevalent. The 282 

higher the value of the product, the more reliable the result of one pair will be over an- 283 

other. We consider that strength = 1 means a 10-fold genetic enrichment. However, it is 284 

important to remember that all fdr values reported by STRING in its biological function- 285 

ality characterizations (GO, KEGG, etc.) are always significant and never greater than 286 

0.05. 287 

 288 

2.9 Highlighting the nodes of a STRING network involved in the same bi- 289 

ological process (GO). 290 
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STRING makes visible all the nodes involved in the same biological process evi- 291 

denced through its mapped databases onto the proteins (GO, KEGG, REACTOME, and 292 

so on) by activating the process itself with a click of the cursor on the process line. Acti- 293 

vation means that all nodes involved in the same metabolic process stain similarly. 294 

Nodes involved in multiple processes are colored multiple times. This tool is very useful 295 

when one wants to analyze the involvement of multiple nodes in many metabolic pro- 296 

cesses visually, distinguishing the effect of different processes between nodes and iden- 297 

tifying which nodes represent the crossing points. If individual nodes do not show any 298 

coloration under the effect of clicking, this identifies certain components of a path, or 299 

group, that a specific activated process does not influence. The relationships that deter- 300 

mine the coloring of the nodes depend on the knowledge base that STRING organizes for 301 

a specific network by extracting data and information from the scientific literature in 302 

PubMed. 303 

 304 

3 Results 305 

3.1 Hub data of human liver during COVID-19 306 

As mentioned in the Introduction, we carefully selected 11 projects [13-23] out of 307 

the 18 projects identified in the scientific literature between 2021 and 2023. These papers 308 

deal with the characterization of hepatic metabolic processes that are viral targets in pa- 309 

tients affected by COVID-19. The distinguishing feature of these projects is the utilization 310 

of different techniques to conduct bioinformatic analyses on profiled patient genes. In 311 

particular, the authors studied the hub genes that coordinated the metabolic activities of 312 

the human liver during COVID-19 infection. They have considered them as potential 313 

drug targets for this liver pathology. Owing to their high significant rank, HUB nodes 314 

can also serve as functional seeds to extract related functions from the human proteome. 315 

By appropriately enriching the nodes that express these functions, it is possible to 316 

broaden the functional spectrum of action of the virus, accessing the mechanisms used by 317 

SARS-CoV-2 to manipulate human proteins and metabolic processes, as well as infor- 318 

mation on the molecular strategy adopted. The surprising discovery is that the hub nodes 319 

highlighted by these projects are too numerous and different from each other (TABLE 1). 320 

Since they concern the same disease and the same virus, we should have a set of similar 321 

hub genes that control the viral strategy by inducing dysregulations in metabolic pro- 322 

cesses, but we could also come across hub nodes that coordinate normal metabolic activi- 323 

ties (housekeeping activities). 324 

     325 

 326 

 327 

 328 

TABLE 1 329 
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HUB genes found in the liver by different scientific projects during COVID-19 (2021-2023) 

Article title HUB GENES 

Demonstration of the impact of COVID-19 on metabolic as-

sociated fatty liver disease by bioinformatics and system bi-

ology approach [2023]. 

SERPINE1, IL1RN, THBS1, TNFAIP6, GADD45B, TNFRSF12A, 

PLA2G7, PTGES, PTX3, and GADD45G. 

Comprehensive DNA methylation profiling of COVID-19 

and hepatocellular carcinoma to identify common pathogen-

esis and potential therapeutic targets [2023]. 

MYLK2, FAM83D, STC2, CCDC112, EPHX4, and MMP1. 

Exploration and verification of COVID-19-related hub genes 

in liver physiological and pathological regeneration. [2023]. 

ASPM, BUB1B, CDC20, CENPF, CEP55, KIF11, KIF4, NCAPG, NUF2, 

NUSAP1, PBK, PTTG1, RRM2, TPX2, UBE2C. 

Systems biology approach reveals a common molecular basis 

for COVID-19 and non-alcoholic fatty liver disease [NAFLD] 

[2022]. 

IL6, IL1B, PTGS2, JUN, FOS, ATF3, SOCS3, CSF3, NFKB2, and 

HBEGF. 

To investigate the internal association between SARS-CoV-2 

infections and cancer through bioinformatics [2022]. 

MMP9, FOS, COL1A2, COL2A1, DKK3, IHH, CYP3A4, PPARGC1A, 

MMP11, and APOD. 

Target and drug predictions for SARS-CoV-2 infection in 

hepatocellular carcinoma patients [2022]. 

Up regulated, PDGFRB, MMP14, VWF, CD34, NES, MCAM, CSPG4, 

MMP1, SPARCL1, and MMP10. Down-regulated, IL1B, 

S100A12, FCGR3B, CCR1, S100A8, CCL3, CCL2, CCL4, 

CLEC4D, and LILRA1. 

Bioinformatics analysis reveals molecular connections be-

tween non-alcoholic fatty liver disease [NAFLD] and 

COVID-19 [2022]. 

ACE, ADAM17, DPP4, TMPRSS2 and NAFLD-related genes such as 

TNF, AKT1, MAPK14, HIF1A, SP1, IL10. 

Organ-specific or personalized treatment for COVID-19: ra-

tionale, evidence, and potential candidates [2022]. 

CCL2, CCL5, CXCL10, HAO2, BAAT, and SLC27A2. 

 

Differential Co-Expression Network Analysis Reveals Key 

Hub-High Traffic Genes as Potential Therapeutic Targets for 

COVID-19 Pandemic [2021]. 

IL6, IL18, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, 

SUMO1, CASP1, IRAK3, ADRB2, PRF1, GZMB, OASL, CCL5, 

HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A. 

 A systems biology approach for investigating significantly 

expressed genes among COVID-19, hepatocellular carcinoma, 

and chronic hepatitis B [2022]. 

ACTB, ATM, CDC42, DHX15, EPRS, GAPDH, HIF1A, HNRNPA1, 

HRAS, HSP90AB1, HSPA8, IL1B, JUN, POLR2B, PTPRC, RPS27A, 

SFRS1, SMARCA4, SRC, TNF, UBE2I, and VEGFA. 

Identification of Key Pathways and Genes in SARS-CoV-2 

Infecting Human Intestines by Bioinformatics Analysis [2022] 

AKT1, TIMP1, NOTCH, CCNA2, RRM2, TTK, BUB1B, KIF20A, and 

PLK1. 

Note: In bold red, hub genes found in common between different projects. 330 

 331 

From these papers, we have collected 142 hub nodes of the liver cells landscape 332 

found connected to COVID-19, of which 21.12% comprises a group of 30 genes in com- 333 

mon between different projects, while all the others are different. 126 hub genes remain 334 

after removing those in common. Barabasi’s research consistently showed that biological 335 

networks exhibit scale-free properties, with a few genes controlling multiple connections 336 

within different functional modules, while most genes have only a few connections [49, 337 

50]. It is rather suspicious that the same tissue has a metabolic network operated by such 338 

a disproportionate number of hub genes during viral aggression. This suggests hetero- 339 

geneity of networks. The differences in databases used to extract relationships are a 340 

common cause of conflicting results [39, 40]. The relationships between the virus and the 341 

host occur at the molecular level, mainly through protein interactions. These interactions 342 

occur between viral proteins and human proteins and are determined by both human 343 

defensive strategies and viral attack strategies. Therefore, it is likely that hub nodes un- 344 

related to the pathology have also been identified. To understand how and why, we ap- 345 

plied a biological protocol that involves the identification of the real physical relation- 346 

ships established between the nodes that implement the liver network, with no a priori 347 

knowledge of the computational protocols. The fundamental biological events between 348 



Livers 2024, 4, FOR PEER REVIEW 10 
 

 

virus and host drive these interactions, thus necessitating a biological evaluation of each 349 

individual interaction (see Methods for details).  350 

Considering the ongoing SARS-CoV-2 pandemic, BioGRID implemented a project 351 

called the BioGRID COVID-19 Coronavirus Curation Project. BioGRID is a biomedical 352 

interaction repository with experimental data compiled through curation [43]. In these 353 

years, BioGRID has accumulated fundamental experimental data supporting the role of 354 

SARS-CoV-2 in human infection. This Project collected the comprehensive datasets of all 355 

the Known physical interactions between the proteins of the human proteome and those 356 

of SARS-CoV-2. In the purification processes of these proteins, researchers overwhelm- 357 

ingly used physical methods such as Affinity Capture-MS and Proximity Label-MS and 358 

curators of BioGRID have specifically selected and classified both interactors and physi- 359 

cal interactions into various levels of statistical significance. The reason lies because some 360 

interactions may be random because the laboratory method does not reproduce the cel- 361 

lular environment. Indeed, the breaking of cells to favor bait-prey interaction also allows 362 

for random encounters that do not happen.  363 

Today we have a vast number of over 30 thousand interactions (as of July 2023) from the 364 

human proteome when its proteins interact singularly with the 31 viral proteins of 365 

SARS-CoV-2. These interactions are unique in being non-redundant and having high 366 

confidence interactions at high throughput, associated with score values of statistical fil- 367 

tering, as determined by using SAINT (Significance Analysis of INTeractome) express 368 

version 3.6.0. [51].  369 

We have successfully acquired the entire dataset comprising the entire viral ge- 370 

nome (31 proteins) and its interactions with human proteome. With it, we have created a 371 

unique database of the human-virus relationships to search for physical/functional inter- 372 

action between a viral protein and a human protein. Using our proposed conceptual ap- 373 

plication framework, we can gain a large understanding of the molecular mechanism of a 374 

viral infection. A similar approach has already helped researchers recognize targeted vi- 375 

ral complexes of five common human viruses [52]. This recognition is based on biological 376 

information.  377 

Because of its small genome, a virus must get maximum performance in interfering with 378 

the functional processes determined by human cellular proteins aimed at ensuring nor- 379 

mal organic homeostasis. The virus learns over time to implement its attack strategy on 380 

specific animal targets by evolutionary studying the structure of the target proteins. 381 

Many viruses use proteins containing large segments of intrinsic disorder [53] to facilitate 382 

“encounter”, but every single interaction must have specific and well-defined structural 383 

bases to be successful, even if transient. To get this knowledge, the virus employs lengthy 384 

periods of co-evolution, parasitizing humans, or similar species [54]. Therefore, if an in- 385 

teraction is present in this peculiar archive, it means that it has a strategic value of attack 386 

or defense, for the virus and for humans, respectively. The database also searches for 387 

multiple interactions of a human protein with different viral proteins.  388 

Therefore, prioritizing the characterization of the 126 hub genes is an important issue. 389 

They should represent the highest-ranking genes, most affected by the virus, and there- 390 
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fore optimal to use as functional seeds. This should significantly facilitate the identifica- 391 

tion of genes truly associated with the pathology and genes involved in normal metabolic 392 

regulation, but also uncertified genes included in networks with no experimental cer- 393 

tainty. STRING uses many standardized databases [39] as a source of data and infor- 394 

mation for calculating network models. It produces a detailed analysis of all the scientific 395 

articles underlying each single interaction, and corroborating the models calculated also 396 

with biological analyses, such as GO or KEGG, and with structural analyzes using sys- 397 

tems such as UniProt. Using STRING, we can manage 6 data channels that parametrize 398 

the network calculation differently and influenced by various confidence levels. In this 399 

way, we can modulate results with very different parameters of reliability, origin, and 400 

statistical significance. 401 

On STRING, we inputted the 126 hub genes as functional seeds to extract their rela- 402 

tionships from the entire human proteome. We show this gene list in the Supplements as 403 

TABLE 1S. These genes, decoded by STRING, should interact to form a protein-protein 404 

network model showing also compact sub-graphs. Therefore, we left the six channels 405 

open to make the most of all the information from each source, but we set the interaction 406 

score to 0.900. As STRING networks usually have a lot of low-scoring interactions, if we 407 

want to limit their number per protein, we should use a filter. We used the highest con- 408 

fidence score cut-off to limit the number of interactions to those that have the highest 409 

confidence and then are more likely to be true positives. By implementing this strategy, 410 

we can narrow down the information only to our input proteins and their network pat- 411 

tern. 412 

  413 

3.2 Comprehensive Liver interactome during COVID-19. 414 

The graph in Figure 1S of the Supplements shows numerous nodes not connected 415 

(31%). A significant number of the remaining elements do not form a compact and con- 416 

nected graph, with only a portion exhibiting connectivity. This is an indicator of poor 417 

functional connectivity, but it also says that many of these hubs may not possess the ba- 418 

sis of significant experimental certainty. The manipulation of genomic data in the pipe- 419 

line, from input to the extraction of functional properties of the network, suffers from a 420 

lack of accurate data and an indifference for control over know-how. This makes it im- 421 

possible to carry out any robust analysis, because the disconnected nodes make any top- 422 

ological analysis or functional consideration unreliable [55-58]. To overcome these short- 423 

comings, we can extend the interactions by setting an enrichment of our network with 424 

new interaction partners (seeds), always depending on confidence value. This allows us 425 

to know whether the input shows evidence of statistical enrichment for any known bio- 426 

logical function or pathway. The various external databases, including Gene Ontology, 427 

KEGG pathways, UniProt Keywords, PubMed publications, and others, which annotate 428 

the STRING maps, can provide considerable help. The STRING enrichment method re- 429 

trieves functional enrichment for the set of input proteins. This will show which input 430 

protein has enriched terms and the description of each term with all its annotations, 431 

providing only answers with FDR =<0.05. About publications, STRING extracts automat- 432 
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ically all available scientific texts from PubMed to cover the maximum knowledge about 433 

each interaction information, also including full-text articles. Figure 2S shows the net- 434 

work of Figure 1S implemented with 500 first-order (direct) nodes and 500 second-order 435 

(indirect) nodes. Despite its compactness and size, the resulting graph still shows some 436 

unconnected nodes. We removed the 15 unconnected nodes (APOD, BAAT, CCDC112, 437 

CSPG4, CYP3A4, DKK3, EPHX4, HAO2, MMP11, NES, PLA2G7, SLC27A2, SPARCL1, 438 

STC2, and UGT2B7) using an appropriate tool present in STRING to ensure a fully con- 439 

nected network. Pruning has also the aim of minimizing non-informative enrichment. As 440 

a result, we still have 111 residual original hub proteins within the final network, which 441 

clearly suggests that we are in the presence of enrichments consistent with the functional 442 

seeds used. In TABLE 2S, we report the list of the 111 remaining hub nodes. It is also 443 

important to note that STRING in all the calculated networks has always used data and 444 

information extracted from no less than 10,000 scientific articles from PubMed (fully 445 

downloadable), which have generated a specific knowledge base for interactions used in 446 

the calculation. By employing a sequential cleaning approach, we can get a collection of 447 

highly precise information and data, which is ensured by the exceptional dependability 448 

of each individual interaction among nodes, unveiling their authentic biological credibil- 449 

ity. 450 

 451 

 452 

 453 

 454 

 455 

 456 
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 458 

Figure 1 – Comprehensive interactome of liver tissue proteins during COVID-19. STRING calcu- 459 

lated the graph through enrichment, using as seeds the set of 111 hub proteins got after pruning. We 460 

enriched this network with 500 first-order (direct) nodes and 500 second-order (indirect) nodes. 461 

Settings: interaction score of 0.900 (highest confidence); all six channels open. Network parameters: 462 

number of nodes, 1111; number of edges, 13,494, while its expected statistical number is 8,838; av- 463 

erage node degree, 24.3; avg. local clustering coefficient, 0.623; PPI p-value, <1.0e-16; network di- 464 

ameter, 7; network density, 0.022; network heterogeneity, 1.030; network centralizations, 0.128; 465 

connected components, 1. (Topological parameters calculated by Cytoscape). 466 

 467 

The enrichment produced a network that includes all principal human proteins in liver 468 

tissues during COVID-19. According to STRING, the net shows 7313 functional associa- 469 

tions with biological processes spanning 14 categories. A set of 2344 Biological Processes 470 

(GO), 195 KEGG Pathways, and 960 Reactome Pathways characterizes the breadth of 471 

functional activities. This network appears very well organized and contains all those 472 

functional relationships that also involve the original hub proteins. The compact group- 473 

ings of certain nodes suggest molecular complexes, even very large ones. We can see 474 
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these molecular complexes in the peripheral areas of the network. They operate as meta- 475 

bolic nano-machines that carry out specific molecular processes [59,60]. For example, the 476 

subgraph at the bottom left is rich in proteins of the Splicing Factor 3B complex that, to- 477 

gether with other 17S U2 small nuclear ribonucleoprotein particle (snRNP) components, 478 

may play a role in Spliceosome during the selective processing of microRNAs (miRNAs) 479 

[61]. This sub-graph also collects many of the proteins involved in transforming the mol- 480 

ecules of pre-mRNA (precursor messenger RNA) into mature mRNA. The involvement 481 

of this complex is not random because RNA splicing is among the major down-regulated 482 

proteomic signatures in COVID-19 patients [62]. Certainly, the virus needs to manipulate 483 

the host splicing machinery to its advantage to control the production of its proteome 484 

[63]. In fact, going back along the periphery of the network, we encounter compact sets of 485 

genes involved in all phases of cellular translational processes and the entire ribosomal 486 

complex, just to mention the most important. At least in the liver, these appear to be the 487 

most obvious targets of SARS2. The Excel File 1 reports all the nodes of the interactome 488 

in figure 1 with their degrees. These nodes also include all the remaining original hubs 489 

(111 nodes). In the Excel file 1, we can also note a few dozen high-ranking genes, all spe- 490 

cific for the various phases of the cytoplasmic translation processes. However, before 491 

proceeding with other observations, we have reported in the Excel file 2 all 26,990 inter- 492 

actions relating to the interactome in figure 1. The file also reports the sources of each 493 

single binary interaction and the combined score. The interest in this file released by 494 

STRING lies because it shows (in red) the quantitative impact of the component deriving 495 

from the experimental data alone on the combined value of the score. Thus, this file is 496 

useful as a reference in evaluating each individual interaction for the score of 0.900 497 

(highest confidence) we have always used. As these results show, even for a binary rela- 498 

tionship with a score of 0.900, the experimental certification that makes it certain can 499 

many times be missing, thus introducing serious and not easily visible anomalies into the 500 

graph. We then processed in our SARS2-Human Proteome Interaction Database (SHPID) 501 

each single protein of the entire interactome (1111 nodes) to find out which viral proteins 502 

had interacted with the network proteins, as well as with the remaining original 503 

hub-proteins. Some of these proteins no longer exhibit the high connectivity characteris- 504 

tics that were crucial when they were designated as HUBs in the original papers. For 505 

example, hub nodes like MCAM, LILRA1, GDI2, COL2A1, TNFAIP6 or PTX3 now have 506 

low ranks. What happened reveals that their COVID-19-associated high functional rank 507 

disappear because they are likely proteins very inflated by high studying frequency be- 508 

cause of their relevance in diseases or for their functional importance in the cell or be- 509 

cause they are poorly characterized. A quick check using the Excel file 2 highlighted the 510 

widespread lack of valid biochemical and biophysical experimental data for these pro- 511 

teins, meaning that they did not provide adequate evidence for the functional hypotheses 512 

in which they had been implicated. Although determining the cellular localization of 513 

events through PPI networks is experimentally challenging, in this interactome, we find 514 

proteins localize to a precise range of modules, represented by specific molecular com- 515 

plexes. 516 



Livers 2024, 4, FOR PEER REVIEW 15 
 

 

 517 

3.3 Metabolic Stress Related to COVID-19 in the Liver. 518 

 519 

The Excel file 1 shows the protein RPS27A, with a degree of 161, serves as the pri- 520 

mary hub. The original hub nodes list (refer to TABLE 1) also contained RPS27A. One 521 

alias of RPS27A, Ubiquitin-40S Ribosomal Protein S27a, explicitly suggests its function as 522 

a remarkably conserved protein responsible for directing cellular proteins toward deg- 523 

radation by the 26S proteasome [64]. Thus, its role in the liver holds significance. It as- 524 

sembles into ribosomes, but also functions independently of them. We also know 525 

RPS27A plays a significant role in the progression of various human cancers, including 526 

HCC [65]. Its landscape of action during viral infection of the liver is interesting. Investi- 527 

gations of SARS-CoV-2 infection have shown large-scale chromatin structural changes 528 

because of metabolic stress [66, 67]. In situations of oxidative stress [68], induced by 529 

phases of the viral cycle [69, 70], both oxidizing agents and the need to signal this stress, 530 

as well as variations in sensitivity to oxygen, have highlighted the importance of HIF in 531 

signaling [71]. These effects are a common feature of both tumors and COVID-19 [72, 73]. 532 

In both cases, cells must switch from the TCA cycle to the energetically less efficient gly- 533 

colysis pathway, and so many glycolytic enzymes are up regulated. One of the transcrip- 534 

tional regulators involved in the response to oxidative stress is HIF1A [74], which re- 535 

mains inactive in normoxic conditions because of its interaction with HIF1AN, an oxygen 536 

sensor that hinders interactions with other transcriptional co-activators. SIRT1 serves as 537 

an energetic sensor [75], connecting transcriptional regulation to intracellular energetic 538 

demands, while TP53BP1 acts as a p53 binding protein, participating in the response to 539 

DNA damage.  540 

 541 

Figure 2 – Role of TP53 (p53) and RPS27A in liver infection by SARS-CoV-2. The network is that 542 

of figure 1 and the nodes at the top left have been carefully extrapolated to highlight both the mu- 543 

tual relationships and the abundance of functional connections with the central core of the network. 544 
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The degree for each single node is RPL11, 104; MDM2, 45; TP53, 133; RPS27A, 161; TP53BP1, 23; 545 

SIRT1, 26; HIF1A, 35; HIF1AN, 5. The colours of the individual nodes show the type of metabolic 546 

stress (DNA damage and/or hypoxia) induced by COVID-19 in the liver. The biological stress pro- 547 

cesses (GO) activated are those shown in TABLE 2. 548 

 549 

In tumor progression, the stressful events described affect the p53 protein. The p53 (gene 550 

TP53) role is to inhibit the proliferation of cancer cells through cell cycle arrest [76]. 551 

Therefore, it normally performs a protective cellular action. The main cellular antagonist 552 

of p53 is MDM2, as it triggers the degradation of p53 [77] and effectively supports can- 553 

cerous growth. MDM2 and p53 establish a feedback loop to preserve balance, comple- 554 

mented by the involvement of RPL11, a ribosomal protein that inhibits MDM2 and en- 555 

hances p53 stabilization and activation in normal conditions [78]. Therefore, 556 

RPL11-MDM2-p53 form an axis regulated precisely by RPS27A [78]. When activated by 557 

cellular stress phenomena, RPS27A hinders the interaction between RPL11 and MDM2, 558 

promoting the degradation activity of p53 through the catalytic activity of a free MDM2, 559 

thus starting the oncogenic process. Hence, this system of proteins works as a sensor and 560 

regulator of cellular stress, acting on p53 and RPS27A to regulate their specific activity. 561 

Figure 2 demonstrates the influence of DNA damage and oxidative stress on these same 562 

metabolic players during COVID-19. By highlighting the proteins involved in these pro- 563 

cesses through a tool that colors the nodes specifically involved (refer to Materials and 564 

Methods for further information) we can identify them within the liver protein interac- 565 

tome, also visualizing their role and functional relationships. TABLE 2 shows the acti- 566 

vated biological processes, their statistical value, and the colors of the nodes in the net- 567 

work. 568 

 569 

The analysis of Figure 2 reveals that RPL11 and RPS27A are not implicated in the path- 570 

ways through which cellular stress is detected and transmitted to TP53 and MDM2. 571 

These two proteins are not colored; thus, they do not display any stimulation from their 572 

interconnected nodes. The non-involvement of RPS27A also suggests that RPL11 contin- 573 

ues its activity of blocking the biological function of MDM2 towards TP53. This analysis 574 
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hypothesizes an activity of TP53 in protecting liver cells by interfering in viral action. 575 

Clearly, only data got from laboratory experiments can offer certainties, even though 576 

clinical observations of mild liver damage appear to corroborate this hypothesis. How- 577 

ever, the Excel file 2 shows that the experimental component of all the interactions high- 578 

lighted in Figure 2 and used to evaluate the hypothesis on the functional activity of TP53 579 

during infection is very high for each protein, so the interactions all rely on solid experi- 580 

mental basis, which strongly supports this conclusion. 581 

3.3. The reverse engineering actions. 582 

The Excel file 3 reports all the liver proteins that interact with the viral proteins. 583 

Only 51 proteins (in red) of the original hubs actually interact with the virus. In our ex- 584 

perimental conditions, the human proteins interacting with the 31 viral proteins are only 585 

626 out of 1111 proteins (56%). They originate 2680 interactions with SARS2-host 586 

(roughly 20% of the total) of which only 134 can actually be null. These interactions in- 587 

clude most of the proteins involved in the translational processes that control protein bi- 588 

osynthesis. In particular, the virus massively takes possession of the ribosomal system 589 

and all the supporting protein complexes to control and promote the biosynthesis of its 590 

proteins. This result supports the idea that viruses mostly target high ranked proteins 591 

and proteins crucial in certain biological processes [79]. Several authors have already 592 

noted this remarkable ability of individual SARS-CoV-2 proteins to interact with many 593 

human proteins, drawing therapeutic and pathobiological observations [80-82]. 594 

There is a notable difference in action between DNA and RNA viruses. Scientists 595 

classify viruses according to their DNA or RNA genome. DNA viruses replicate using 596 

DNA-dependent DNA polymerase. RNA viruses exhibit greater heterogeneity, especially 597 

with ssRNA (+) viruses like coronaviruses. The genetic material of these viruses is very 598 

similar to a mRNA. Compared to the genomes of DNA viruses, RNA viruses have 599 

smaller genomes that encode fewer proteins and can undergo rapid and direct transla- 600 

tion within the host cell. The proteins of RNA viruses have developed a strategy by in- 601 

teracting with host proteins through specific protein binding motifs. In fact, RNA viruses 602 

attacking with few proteins need them to have as multifunctional a capacity as possible. 603 

Therefore, we expect RNA virus proteins to possess the capacity to interact with multiple 604 

molecular partners. This ability to multitask implies quite specific evolutionary structural 605 

adjustments. Indeed, RNA viruses encode proteins characterized by many binding inter- 606 

faces, but physically with smaller binding surfaces, to hit a greater number of cellular 607 

targets [83, 84]. Another structural feature to achieve efficient multitasking is to have 608 

various segments of intrinsically-disordered-structure along the protein sequences that 609 

are very suitable for expressing multiple, even uncorrelated, activities [85, 86]. We could 610 

say that the proteins of RNA viruses have had a specialized evolution to develop very 611 

peculiar biophysical characteristics. It is widely acknowledged that viral nonstructural 612 

proteins engage in interactions with host cell proteins, resulting in the formation of rep- 613 

lication complexes [87].  614 
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Asserting that viral proteins attack human proteins needs quantitative validation 615 

and specific information regarding the proteins involved. This question has a particular 616 

meaning. In all protein databases, as we have already pointed out, the spatio-temporal 617 

characteristics of the archived proteins are missing. The presence of multiple participants 618 

hinders the reconstruction of events. While the interaction between many molecules is a 619 

recognized concept, the precise mechanisms, meeting sites, timing, and frequency remain 620 

elusive. We have limited knowledge in providing mechanistic information about the tar- 621 

geted complex.  622 

 623 

3.4. Individual Human proteins interacting with many viral proteins and 624 

their distribution graph. 625 

In the Excel 3 file, we can see that some human liver proteins interact with many viral 626 

proteins. It is a known fact that multiple viral proteins have the ability to target specific 627 

human proteins (90). These interactions described in Excel file 3 could be a resource for 628 

researchers aiming to identify important specific host-virus interactions in the dynamics 629 

of disease transmission [89]. In particular, to describe the viral diversity associated with 630 

different hosts and different tissues, as well as detect shared associations useful for iden- 631 

tifying who, where and how they are shared [88, 89]. However, some authors report that, 632 

in viral infections, the most common ratio of protein-protein interactions between virus 633 

and host is 1:1 [90]. Viral proteins, as well as human proteins, are tightly integrated and 634 

interact in a specific functional context. This explains much of the binding specificity 635 

between proteins. However, even in the best-case scenario, only a handful of viral pro- 636 

teins could interact with a single human protein. This limitation arises from the physical 637 

impossibility of locating suitable binding surfaces on a single molecule and the potential 638 

electrostatic repulsions and structural constraints caused by proximity on a crowded 639 

structure. In the absence of temporal data on the frequency and specificity of these at- 640 

tacks, we can reasonably think that this massive attack is likely directed towards the en- 641 

tire ribosome and its ancillary complexes, of which the targeted protein is a component, 642 

given that the most targeted proteins are the ribosomal ones. But this hypothesis also has 643 

another side. It shows the total lack, even in the best databases, of the spatio-temporal 644 

characteristics relating to individual human proteins. Given the unlikelihood of crowd- 645 

ing on a single protein, the attack is more likely to be sequential, i.e., at different times. A 646 

comprehensive understanding of human biology, and that of other living beings, re- 647 

quires acknowledging the dynamic nature of metabolism.  648 

TABLE 3 shows the human proteins most attacked by viral proteins in the range 12 - 20. 649 

Its main purpose is to showcase the different levels of affected human proteins, both high 650 

and low. The degree of each protein (see Excel file 1) is in the bracket.  The high degree 651 

is justified because the majority are proteins organized into complexes. 652 

 653 

 654 

 655 

 656 



Livers 2024, 4, FOR PEER REVIEW 19 
 

 

TABLE 3 657 

Human Protein Number of Interacting 
Viral Proteins** 

RPL18A*(84) 20 

RPL13(84) 19 

ALDOA(4), CDC42(52), EIF2S1(45)  18 

RRM2B(3) 17 

RPL13A(98), RPL21*(87), RPL30*(85) 16 

PSMC1(30), RPL26*(96), RPL7A(85), RPL(9) 15 

BUB3(19), RPL7(95), RPL8(95), RPS24(90), RPS6(93), RPS9*(102), 

SNRPD1(38), SRC(97), STIP1(12) 
14 

BAG2(7), RAC1(11), RPL12(93), RPL27A(85), RPS27L(82). 13 

EIF6(46), MCM7(20), HYOU1, PTGES3(23), RPL27(84), RPL13(84), 
RPL35A(84), RPS10(87), RPS11*(108), RPSA(99). 

12 

Note: * Proteins marked with an asterisk also interact with ORF1ab. ** For more extensive 658 
details about interactions, see the EXCEL file 3.  659 

 660 

That some human proteins interact with many viral proteins presupposes many shared 661 

structural motifs. But this also suggests that viral motifs in their evolution must gain 662 

host-like mechanisms to be successful in invasion. Consequentially, this supports the ob- 663 

servations that conformational flexibility, spatial diversity, abundance, and slow evolu- 664 

tion are the characteristic features of the human proteins targeted by viral proteins [91]. 665 

Viral proteins mimic host binding surfaces of domains to interact with human proteins, 666 

which occur through domain-motif interactions. In the Excel file 3, we can also observe 667 

the interacting viral proteins are not only NSPs (non-structural proteins), but we have 668 

also a significant presence of accessory proteins. However, viral proteins intervene in 669 

large numbers, targeting mostly the proteins of the ribosomal system. This allows the 670 

virus to take control of protein biosynthesis and redirecting it towards the synthesis of 671 

the viral genome and its own proteins. That many viral proteins attack one host protein 672 

also means that many of them have mimicked the same human motif. In addition, we 673 

must consider an average of around 47% of disordered segments in coronavirus proteins 674 

[92, 93]. This favours attacks on specific cellular targets of the host. An interesting dis- 675 

covery is that among the viral proteins that interact with ribosomal proteins (RPL18A, 676 

RPL21, RPL30, RPL26, RPS9, and RPS11) there is also the long viral polypeptide ORF1ab. 677 

Since ORF1ab is certainly not a target to be blocked but is the viral polypeptide that must 678 

be translated, the asterisked proteins mentioned above could represent points of struc- 679 

tural contact of the viral protein ORF1ab with the human ribosome. In fact, some of them 680 

(RPL18A, RPL21, RPL30, and RPL26) are specific components of the large ribosomal 681 

subunit, the complex responsible for peptide chain elongation and the synthesis of pro- 682 

teins in the cell, while RPS9 and RPS11, are components of the small ribosomal subunit as 683 

part of ribosomal process, which couples processing steps of RNA folding, and RNA 684 

cleavage [94, 95]. Most ribosomes end translation at a stop codon present in the first stem 685 

of the pseudo-knot. While, the coronavirus protein-synthesis employs regulatory mecha- 686 

nisms, such as ribosomal frameshifting, promoted by a conserved stem-loop of RNA that 687 

forms a promoting pseudo-knot structure [96]. Ribosomes stall at the pseudo-knot and 688 

undergo a -1 frameshift at the slippery sequence, leading to the translation of ORF1ab fu- 689 
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sion polypeptide [97, 98]. In coronavirus, this phenomenon allows the virus to encode 690 

multiple types of proteins from a single mRNA, compacting the information. In this way, 691 

virus translation dominates host translation because of high levels of virus transcripts. 692 

In Table 3, we also find the involvement of lower-degree human proteins that are not ri- 693 

bosomal proteins. Some of them are key because involved in crucial metabolic functions 694 

of the liver. We report as examples, ALDOA, RRM2B, BAG2, and HGS. ALDOA is the 695 

tetramer of hepatic-type aldolase B that specifically binds to the hepatic cytoskeleton, 696 

particularly to actin-containing stress fibers. The presence of disordered segments in the 697 

C-terminals favours the possibility of scaffolding and suggests that aldolase can regulate 698 

cell contraction [99, 100]. RRM2B forms a complex with RRM1 where it plays a key cata- 699 

lytic role in repairing damaged DNA together with p53 and provides deoxyribonucleo- 700 

tides in G1/G2-locked cells [101, 102]. While BAG2 is a co-chaperone regulator of the 701 

HSP70 and HSC70 chaperones. It acts as a nucleotide exchange factor by promoting the 702 

release of ADP from HSP70 and HSC70 proteins, triggering the release of the cli- 703 

ent/substrate protein [103, 104]. In the end, HGS, Hepatocyte Growth Factor, is involved 704 

in intracellular signal transduction mediated by cytokines and growth factors. It regu- 705 

lates endosomal sorting and plays a critical role in the recycling and degradation of 706 

membrane receptors [105-107]. The liver serves as the site of localization for many of 707 

these proteins, emphasizing their tissue specificity. 708 

3.5. Distribution of viral proteins interacting with single human proteins. 709 

Instead, figure 3 shows that the distribution graph of the entire set of human liver pro- 710 

teins (626 proteins) interacting with viral proteins (see also Excel file 3). Each point on 711 

the curve reports the set of human proteins that have the same number of interacting vi- 712 

ral proteins. The fit shows that the distribution conforms to a power law, albeit with an 713 

R2 value of 0.5278, suggesting an acceptable fit. This value is at the low limits of reliabil- 714 

ity and may imply the existence of heterogeneities in the distribution, which makes the 715 

results difficult to explain. This should not be surprising because the distribution accu- 716 

rately reflects the overall structural and functional behaviour of the entire set of human 717 

proteins with different roles from each other and subjected to sequential functional stress 718 

by viral proteins in complex and metabolically differentiated cellular environments. 719 

Hundreds of interactions are mainly one-to-one (those on the left side of the curve), 720 

while others involve multiple interactions (multi-to-one), to up to 20 viral proteins per 721 

single human protein (in the tail). The connectivity distribution in Figure 3 is quite con- 722 

sistent with the power law’s prediction of preferential attachment [108]. Thus, our model 723 

should show the emergence of a scale-free topology [109] from interaction results. So, if 724 

the connectivity distribution follows a power law, then new nodes will have a better 725 

chance of connecting to those with already many neighbours because of the preferential 726 

attachment rule. 727 
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 728 

Figure 3 – Distribution of viral proteins interacting with single human proteins. The curve is 729 

the exponential fit (displayed at the top right). Data calculated from the Excel file 3. The fig- 730 

ure also shows, for the experimental points involving the most targeted human proteins 731 

(from 10 onwards), the list of which they are. The asterisked proteins are those that also in- 732 

teract with ORF1ab. 733 

 734 

Comparative and evolutionary genomic analyses support the birth in the cell of complex 735 

structures that make up organized and complicated cellular nano-machines [110]. Ge- 736 

nomics has also shown that parts associate with each other to form integrated systems 737 

with modular and hierarchical structures [111]. This organizational process should also 738 

be intrinsic in the modelling of liver metabolic reactions that arise from protein-protein 739 

interactions. In accordance, complex networks exhibit higher-order organization in con- 740 

nectivity, showing links that can be modulated and modelled using subgraphs of the 741 

network [112]. Some authors have also shown that networks contain within themselves 742 

information about the organization of these compact modules (subgraphs) such as 743 

emergence of the protein complexes [113, 114]. The peculiarity of these models is the 744 

emergence of an important intrinsic structural characteristic of biological networks, 745 

namely hierarchical modularity, i.e., a higher level of organization, the growing mecha- 746 

nisms of which, unfortunately, remain unknown. Researchers have never quantitatively 747 

tested these qualitative and observational relationships in real biological interaction net- 748 

works. Our network model, related to liver tissue, shows human protein complexes 749 

strongly involved in viral infection. We believe that the preferences of viral proteins to- 750 

ward the interior of these complexes should reflect the mechanisms used by viruses to 751 

manipulate host protein complexes. 752 

 753 
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755 

 756 

Figure 4 – Linear distributions of interacting viral proteins with a single hu- 757 

man protein (log-log scales). Upper figure – Distribution graph considered as a 758 

single power law. Fitting: f(x) = 431.26 x-1.66 and R2 is 0.3675. Lower figure - Biphasic 759 

representation of the power law. The graph displays the fitting equations. TD is the 760 
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transition degree, the estimated point (marked by blue star) at which the slope of 761 

the distribution sharply changes. Its value is around 12.  762 

 763 

Based on our collective data, it is evident that the evaluation of virus action should 764 

be conducted within the framework of viral preferential attack strategies on intricate 765 

protein organizations. However, how viruses manipulate sub-graphs of local host net- 766 

works, such as human protein complexes, have never been addressed from a topologi- 767 

cal-computational perspective, preferring to focus on the preferential targeting of viral 768 

proteins with hub or bottleneck nodes, despite that no formal definition exists to separate 769 

hub proteins from non-hub proteins [12, 115]. 770 

A systematic analysis of the protein complexes, identified as direct protein-protein 771 

targets, has been done to discover new drugs (127) or even through bioinformatic ap- 772 

proaches (52), almost never considering a topological point of view. In such type of anal- 773 

ysis, both local topological aspects of the network and evolutionary ones should contrib- 774 

ute, but, to date, discrimination of the topological and functional properties of complex 775 

viral targets during an infection is lacking. Our analysis identified compact sub-networks 776 

of human proteins targeted by multiple viral pathogen proteins. But what is perplexing 777 

is that during the infection, the targeting process of a complex protein system, such as the 778 

ribosome, seems to depend on the connectivity of neighbouring proteins in the network 779 

(due to the preferential attachment, which is a topological parameter). Conversely, the 780 

interaction of a viral protein ought to be primarily determined by the likelihood of a 781 

physical encounter associated with the decrease in free energy because of binding, so ex- 782 

ploiting chemical-physical parameters from evolutionary laws.  783 

We can hypothesize, from the analysis presented in Figure 3, that multiple types of 784 

interaction activities could compete concurrently. If this is the case, upon closer analysis, 785 

we should be able to discern more exponential decays that would better characterize the 786 

distribution. In Figure 4 (upper side), we observe that the degree distribution seems to 787 

follow a single power law. But the fit in the log-log scale shows that the single power law 788 

distribution is at the lower limit to significantly meet or explain the data characteristics. 789 

One-to-one and one-to-many interactions behave differently and make the analytical 790 

representation heterogeneous when considered together. The bottom side shows that the 791 

distribution, always in the log–log scale, displays two different slopes, unlike what hap- 792 

pens when fitting with a single power law. In both fits, the values of R2 are very good, 793 

suggesting a combination of two solutions (or two decays) linearly independent. The bi- 794 

phasic distribution opens the hypothesis that there may be at least two dominant classes 795 

of coexisting proteins with differentiated functional responses. One class (in black) 796 

should contain human proteins essential for metabolic adaptations following viral infec- 797 

tion. These proteins can be under-expressed or lost when pathophysiological conditions 798 

induce profound metabolic changes. Proteins belonging to the other class (depicted in 799 

red) are essential for critical physiological processes of viruses and hosts but are also es- 800 

sential for the virus to gain energy. Thus, these human proteins, highly expressed, exhibit 801 

enhanced resistance to pathological processes that induce functional variability. De- 802 
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pending on the characteristics of the local context, it is possible for all proteins to trans- 803 

migrate between both classes. In the lower Figure 4, there is on the x axis the transition 804 

degree, TD. Its value breaks into two parts the distribution and identifies the boundary 805 

between nodes with interaction degree less than 12 (in black, made up of proteins that 806 

are on average poorly connected), and nodes having degree greater than TD (in red, 807 

composed of evolutionarily older proteins that are on average much more connected). In 808 

our analysis, each of these sub-networks follow well a single power-law degree distribu- 809 

tion, while differing in the value of power-law exponents.  810 

This biphasic model suggests all proteins can gain new interactions with rate 811 

(greater slope) and number of interactions (the rich get richer) always increasing, as 812 

happens for older proteins (red ones). Proteins can also lose their interactions, both with 813 

and without the loss of their connecting partners. It is a kinetic model which through the 814 

different slopes reflects the evolutionary behavior of proteins, considering two classes of 815 

proteins, one with a rapid action but also with a fast residence time, the second, with 816 

opposite properties of greater resilience. Both classes adequately describe, both in topo- 817 

logical and evolutionary terms, the nature of the bi-exponential model. The model, in fact, 818 

shows a situation in which the oldest proteins, the most conserved by evolution, increase 819 

their interactions because of the establishment of new and specific kinetic conditions. 820 

Although our results are built on solid foundations of statistics and experimentation, it is 821 

important to interpret them with caution due to all the limitations previously described.  822 

 823 

3.6 Comprehensive analysis of liver metabolic activities during COVID-19 824 

 825 

To support the structural and functional organizational events previously found for 826 

these proteins and the complexes involved, we analyze the data using the many specific 827 

databases that STRING maps onto the protein data of calculated networks. Table 4 re- 828 

ports some analysis of biological processes made by STRING on the interactome data in 829 

Figure 1. The table shows the most statistically reliable results. Although all data used in 830 

this study have a high intrinsic significance, analyzes on extensive sets, where gene ex- 831 

pression variability could also play a fundamental role, must be carefully evaluated. 832 

Therefore, in their evaluation, the value of the intensity of the expression of the genes 833 

that code for the proteins of a process, contained in the Strength parameter (see Methods), 834 

was also considered. The results show that the p-value (fdr) is important, but the level of 835 

gene expression influences its significance. Then, the intensity of the biological action al- 836 

so depends on the intensity of gene expression.  837 

The gene expression depends on cellular signals, but the biological results depend 838 

on the phenotype "interpretation" of that information, which is displayed by the synthe- 839 

sis of proteins (and non-coding RNA). Thus, this parameter allows for the definition of a 840 

similarity metric between gene expressions, which we can use to reposition and compare 841 

biological processes [128, 129]. 842 

 843 

 844 
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                        TABLE 4 845 

1 - NORMAL BIOLOGICAL PROCESSES RELATED TO NODES CERTIFIED BY REVERSE ENGINEERING IN THE 

LIVER INFECTED BY COVID 

GO-term 

Biological Process 

Description P* p-value Strength 

GO:0019221 Cytokine-mediated signaling pathway 47.50 8.51e-57 0.82 

GO:0002181 Cytoplasmic translation 46.53 2.05e-44 1.05 

GO:0071345 Cellular response to cytokine stimulus  42.97 1.59e-63 0.68 

GO:0033044 Regulation of chromosome separation 37.73 9.62e-36 1.02 

GO:0010965 Regulation of mitotic sister chromatid separation 36.30 8.03e-34 1.04 

GO:0033045 Regulation of sister chromatid segregation 36.20 6.46e-34 1.02 

GO:0051983 Regulation of chromosome segregation 34.60 4.60e-35 0.97 

GO:0030071 Regulation of mitotic metaphase/anaphase transition 33.87 3.68e-32 1.04 

GO:0033044 Regulation of chromosome organization 32.37 3.03e-39 0.82 

GO:0007346 Regulation of mitotic cell cycle 32.25 1.18e-46 0.70 

GO:1901987 Regulation of cell cycle phase transition 30.16 2.98e-42 0.71 

GO:0006412 Translation 29.30 4.59e-40 0.72 

GO:1901990 Regulation of mitotic cell cycle phase transition 27.66 2.42e-37 0.74 

GO:1990869 Cellular response to chemokine 23.92 8.36e-24 0.96 

GO:0034243 Regulation of transcript. elongat. from RNA polym. II 17.94 5.25e-19 0.91 

GO:0007088 Regulation of mitotic nuclear division 17.50 3.89e-20 0.85 

     

2 - NEGATIVE REGULATION OF BIOLOGICAL PROCESSES RELATED TO NODES CERTIFIED BY REVERSE EN-

GINEERING IN THE LIVER INFECTED BY COVID 

GO-term 

Biological Process 

Description P p-value Strength 

GO:0043069 Negative regulation of programmed cell death 18.94 2.65e-36 0.52 

GO:0043066 Negative regulation of apoptotic process  18.31 7.95e-35 0.51 

GO:1901988 Negative regulation of cell cycle phase transition 15.97 3.11e-22 0.71 

GO:0045786 Negative regulation of cell cycle 15.25 1.63e-24 0.63 

GO:0010948 Negative regulation of cell cycle process 14.98 1.08e-22 0.68 

GO:0009892 Negative regulation of metabolic process 14.36 3.19e-43 0.33 

GO:0010605 Neg. regulation of macromolecule metabolic process 14.22 6.61e-41 0.34 

GO:1901991 Neg. regulation of mitotic cell cycle phase transition 13.83 8.82e-18 0.73 

GO:0045930 Negative regulation of mitotic cell cycle 13.33 2.12e-19 0.69 

GO:0031324 Negative regulation of cellular metabolic process 12.03 2.37e-34 0.35 

GO:0060548 Negative regulation of cell death 11.95 1.43e-34 0.35 

GO:2000816 Neg. regulation of mitotic sister chromatid separation 11.88 7.56e-11 1.0 

GO:0045841 Neg. regulation mitotic metaphase/anaphase transition 10.46 2.29e-10 1.01 

GO:2001237 Neg. regulation of extrinsic apoptotic signaling pathway 9.67 5.60e-12 0.76 

GO:0051348 Negative regulation of transferase activity 8.90 1.17e-15 0.59 

     

3 - DYSREGULATED BIOLOGICAL PROCESSES RELATED TO NODES CERTIFIED BY REVERSE ENGINEERING 

IN THE LIVER INFECTED BY COVID 

3A -Local network 

clustering 

(STRING)** 

Description P p-value Strength 

CL.152 Viral mRNA Translation 89.03 7.21e-46 1.19 

CL:159 Viral mRNA Translation 55.38 1.06e-45 1.23 

CL:162 Cytoplasmic ribosomal proteins 54.16 1.41e-43 1.23 

CL.143 Viral mRNA Transl. and Sec61 translocon complex 53.10 6.93e-47 1.11 

     

3B - REACTOME 

PATHWAYS 

Description P p-value Strength 

HSA-192823 Viral mRNA Translation 64.09 2.56e-53 1.2 
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HSA-72764 Eukaryotic Translational Termination 61.79 2.32e-52 1.18 

HSA-72689 Formation of a pool of free 40S subunits 58.97 1.91e-51 1.15 

HSA-72737 CAP-dependent Translation Initiation 53.73 1.98e-49 1.09 

HSA-1799339 SRP-dependent cotranslational prot. targeting to membr.  53.17 2.20e-48 1.1 

HSA-9679506 SARS-CoV infections 38.58 5.77e-50 0.76 

HSA-9754678 SARS-CoV-2 modulation of host translational machinery 26.18 2.39e-23 1.12 

HSA-9692914 SARS-CoV-1 host interactions 32.98 1.06e-32 1.03 

HSA-9705683 SARS-CoV-2 host interactions 31.14 1.61e-36 0.86 

HSA-9678108 SARS-CoV-1 infection 30.73 1.12e-33 0.93 

HSA-9735869 SARS-CoV-1 modulates host translational machinery 28.19 1.28e-23 1.22 

HAS-9754678 SARS-CoV-2 modulation of host translational machinery 26.18 2.39e-23 1.12 

HSA-9694516 SARS-CoV-2 infections 25.52 1.07e-34 0.75 

HSA-9705671 SARS-CoV-2 activates/modulates innate/adaptative immune 

responses 

11.06 5.57e-14 0.75 

HSA-597592 Post-translational protein modification 7.95 1.28e-22 0.36 

HSA-9772572 Early SARS-CoV-2 Infection Events 3.68 1.3e-05 0.72 

     

4 - PROTEIN DOMAIN CHARACTERISTICS IN THE LIVER INFECTED BY COVID 

4A – Prot. Domains 

(InterPro) 

Description Count in 

network 

P p-value Strength 

IPR036048 Chemokine interleukin-8-like superfamily  29 of 44 15.03 1.11e-14 1.07 

IPR039809 Chemokine beta/gamma/delta  15 of 26 8.03 8.90e-07 1.01 

IPR033899 CXC Chemokine domain  12 of 14 7.30 1.54e-06 1.18 

IPR011332 Zinc-binding ribosomal protein  9 of 10 7.01 6.92e-05 1.2 

IPR011029 Death-like domain superfamily  29 of 97 6.01 2.23e-08 0.72 

IPR008271 Serine/threonine-protein kinase, active site 52 of 310 4.21 9.00e-08   0.47 

IPR001875 Death effector domain 5 of 7 3.84 3.10e-03 1.1 

IPR0000488 Death domain 11 of 35 2.81 6.3e-03 0.74 

      

4B - Prot. Domains 

(SMART) 

Description Count in 

network 

P p-value Strength 

SM00199 Intercrine alpha family (small cyt/chem CXC) 28 of 42 16.80 5.07e-15 1.07 

SM00252 Src homology 2 domains 22 of 104 3.24 2.5e-05 0.6 

SM00219 Tyrosine kinase, catalytic domain 20 of 88 2.64 2.5e-04 0.6 

      

4C - Annotated 

Keywords (UniProt) 

Description Count in 

network 

P p-value Strength 

KW-0689 Ribosomal protein  90 of 175 44.83 5.05e-46 0.96 

KW-0687 Ribonucleoprotein  112 / 278 42.17 4.14e-49 0.85 

KW-0945 Host-virus interaction  148 / 540 33.03 3.81e-48 0.68 

KW-0747 Spliceosome  50 of 138 16.77 5.14e-20 0.81 

KW-0395 Inflammatory response  56 of 163 16.56 1.73e-21 0.78 

KW-0132 Cell division  88 of 384 14.25 2.31e-23 0.61 

KW-0498 Mitosis  69 of 75 13.43 4.53e-20 0.65 

KW-0131 Cell cycle  137 / 651 13.13 1.09e-23 0.57 

KW-0647 Proteasome  25 of 52 11.57 2.74e-12 0.93 

 846 

The table is split into four sections that show the primary aspects of the metabolic 847 

context encountered by the liver during COVID-19. The data are shown in decreasing 848 

order determined by the P value. As we note, some p-values, despite being remarkably 849 

low, are repositioned due to variability in the intensity of gene expression. In the first 850 

part of the table (Section 1) we can see that cellular activity is mainly involved in pro- 851 

moting cytokine signaling processes, cellular translation, and the cell cycle. In the second 852 
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part (Section 2), we have the negative regulations resulting from the viral attack. Sur- 853 

prisingly, one of the main viral activities is to alter the programmed processes of cell 854 

death, followed by strong interference to alter the processes of the cell cycle in its various 855 

phases. These data suggest a viral activity that aims to implement a systemic spread of 856 

intact but infected cells, very similar in result to the spread of cancerous metastases. If we 857 

observe the interaction data in Excel file 3, we can see that the virus attacks proteins of 858 

the cellular matrix and cytoskeleton, such as ACTB, ACTR3, FN1, CDC42, COL2A1, 859 

COL18A1, ITGA3, ITGA5, ITGAV, FLNA, ACTL6A, ACTR2/3, and others, similar to 860 

what the cancer cell does to spread metastasis. Other researchers have noticed similar 861 

strategies [130], such as extending particular stages of the cell cycle and managing pro- 862 

grammed cell death. Section 3A shows some of clusters calculated by STRING which 863 

show the involvement of the virus in mRNA translation and in ribosomal cytoplasmic 864 

proteins. Local STRING network clusters are pre-computed protein clusters derived by 865 

hierarchically clustering the full STRING network.  866 

The Supplements (under Clustering) provide a comprehensive overview of all four 867 

clusters of the Section 3A, featuring their topological parameters and a GO analysis for 868 

each, to facilitate the identification of the metabolic framework of action. Extremely low 869 

FDR values characterize all these contexts, demonstrating that the cytoplasmic transla- 870 

tional system, including ribosomes, is the most statistically significant virus target. 871 

The Section 3B (Reactome) shows the most reliable metabolic pathways that in- 872 

volve extensive virus-host interactions and identifies sets of proteins that also perform 873 

the same action as SARS-CoV-1. Section 4 highlights the specific human protein domains 874 

targeted by viruses. One interesting aspect is that they have quantized the presence and 875 

incidence (count in the net) of these proteins. Many of these domains (Sections 4A and 876 

4B) are involved in the molecular mechanisms of chemokine/cytokine signaling, and in 877 

the reprogramming processes of programmed cell death. The last section, 4C, shows in 878 

which downregulated biological processes we find these domains and in what abun- 879 

dance, including spliceosome-mediated RNA processing. The set of this information is in 880 

excellent agreement with that discussed earlier and also opens up to other observations. 881 

Although our results are built on solid foundations of statistics and experimentation, it is 882 

important to interpret them with caution due to all the limitations previously described. 883 

In this study, we did not discuss one-to-one interactions of the proteins of this viral 884 

pathogen with other human proteins. The most surprising of these observations (see the 885 

Excel file 3), is the large number of one-to-one interactions, that, for instance, characterize 886 

the S1 viral protein (Spike), which interacts with many individual human proteins in- 887 

volved in different metabolic processes (manuscript in preparation). 888 

4. Discussion 889 

COVID-19 involves many cellular biochemical adaptations affecting specific bio- 890 

chemical and physiological pathways that generate profound systemic alterations which 891 

are reflected in specific organ adaptations. This justifies a specific study of the alterations 892 

generated in the liver by SARS-CoV-2. The study shows the interactions between viral 893 

and human proteins involved in molecular and/or biological processes and their conse- 894 
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quences because of the infection. To the best of our knowledge, we have presented here 895 

the most comprehensive and in-depth analysis of SARS-CoV-2-Human PPIs within the 896 

liver infection by COVID-19. 897 

Our analysis revealed that viral targets are enriched in human protein complexes, such as 898 

ribosome or proteasome, and results confirm that viral infection affects large protein 899 

complexes involved in the human translational system. During the attack, we observed a 900 

significant presence of scaffolding and housekeeping proteins among the viral targets. In 901 

this way, the virus takes possession of and controls the entire apparatus that manages 902 

mRNA translation, blocking similar activities of the host. The strategy is to encourage 903 

viral replication. Therefore, understanding the host molecular mechanisms involved in 904 

protein-protein interactions (PPIs) controlled by SARS-CoV-2 is crucial for the design of 905 

new antiviral strategies, also because there are human proteins that could be better tar- 906 

gets than viral ones. However, the results show the interactions are crucial factors for 907 

regulating cellular metabolism and survival during stressing times, which have relevance 908 

in viral infections for disease progression.  909 

Many pathological features of SARS-CoV-2 in the liver have remained unclear be- 910 

cause the underlying molecular mechanisms are unknown (1). Although many host pro- 911 

teins can interact with viral proteins, only some of them are essential for a full infection 912 

in a virus-specific manner. The results also show that the biological control exerted by the 913 

various human HUBs, as reported in the literature, was not always confirmed, nor was it 914 

showed which of them physically interacted with viral proteins. The results presented in 915 

our reverse engineering approach are all experimentally based because the proteins in- 916 

volved and their specific interactions come from BioGRID. Through a comprehensive 917 

collection of all BioGRID one-to-one interaction data, we could filter these proteins, re- 918 

vealing the functional characteristics of those involved in virus-host interactions. Alt- 919 

hough many host proteins can interact with multiple viral proteins, only part of them 920 

was crucial for infection in a virus-specific manner, after filtering out the less significant 921 

ones to reduce noise.  922 

The limit of this approach does not lie in the methods used, but in the acquisition 923 

and representation of tissue information on a spatial and temporal scale, which remains a 924 

limit to be overcome technologically. This is the real challenge. Considering the intricacy 925 

in representing the spatiotemporal organization of cells and tissues as metabolic scenari- 926 

os, our aim has been to choose specific biological processes applicable in real-world sce- 927 

narios. We extracted from the literature an extensive set of heterogeneous hub data of the 928 

liver of infected patients by comparing them with the biological data set of our database 929 

and pruning those of low significance. We have showed the accuracy and biological ro- 930 

bustness of our conclusions. Next, we evaluated these liver datasets and showed they 931 

could detect metabolic patterns of hepatic tissues within COVID-19. Our data showed 932 

that inverse engineering can map and reconstruct the metabolic distribution of various 933 

biomolecules, providing valuable multimodal insights into coronavirus disease.  934 

From the distribution analysis of the human proteins, used as targets by the viral 935 

proteins, we have highlighted that the best fit of the data is the one that provides a bi- 936 
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phasic power law. This allowed us to highlight at least two classes of proteins related to 937 

two different distributions that consider two operational kinetics of the two classes. Evo- 938 

lutionarily consolidated proteins are mainly connected to one class, which is rather resil- 939 

ient from a functional point of view, increasing their connectivity more quickly. The oth- 940 

er class includes proteins that are already weakly connected, essentially more focused on 941 

pathological aspects and which respond with a slower growth in connectivity. Thus, the 942 

forces driving this protein behavior are both evolutionary and topological, albeit to var- 943 

ying degrees. 944 

A set of over 33 thousand experimental human-virus interactions curated by Bi- 945 

oGRID provided the biological basis for motivating each individual interaction. Added 946 

to this is that for every single interaction to model the STRING network, we used a score 947 

of 0.900. In evaluating key interactions, we have considered the quantitative incidence of 948 

the experimental contribution on the value of the combined score using the parametric 949 

data reported in the Excel file 2. It is worth considering that only a solid experimental 950 

basis can make a protein-protein interaction certain and reliable in the real metabolic 951 

world. Recent results show that biases of the experimental procedures used to infer net- 952 

works can strongly affect the resulting topology [116]. We can also expect that study bias 953 

can affect the sensitivity of experiments, given that over-studied proteins are tested more 954 

frequently than others [117].  955 

Today, a network can capture functional modules and cellular connectivity pro- 956 

cesses because proteomic data contains a relational and informational component con- 957 

nected to protein-protein interactions. But the biological events that distinguish a cell, 958 

whether normal or infected, represent how the genetic code is executed that triggers one 959 

of the many metabolic processes of which a hub node is part of or can manage. Therefore, 960 

it is practically very difficult, if not impossible, to distinguish when, how, and with 961 

whom a hub node is involved in an altered or normal process. As mentioned previously, 962 

the actual activity of a node does not derive from understanding the human metabolic 963 

activities in which it seems involved, but from a knowledge of the specific spa- 964 

tio-temporal events that involve it. Simply because a key node, both a hub, or bottleneck, 965 

is a crossroads through which many and different pieces of information can pass, but we 966 

do not know which ones and in what order. This constraint currently limits human 967 

knowledge, but we will overcome it to enable drawing real conclusions. 968 

This study analyzes in depth some protein-protein interactions between virus and 969 

host involving molecular complexes in the cellular system represented by liver tissue 970 

during COVID-19. The results allow us to provide an account, albeit approximate, of the 971 

mapping of these interactions. SARS-CoV-2 has identified multi-protein complexes with 972 

which high biological functions are associated as optimal targets for attack. An ad- 973 

vantage for this virus is that, being a ssRNA (+) virus, it has a very rapid cytoplasmic 974 

production of viral proteins. The affected multi-protein complexes are RNA splicing, 975 

transcription, and translation machineries, but also cell signaling proteins, which func- 976 

tion as part of complexes on the order of mega-Daltons and made of dozens of proteins 977 

[116]. With ribosomes and spliceosome, these complexes reach an even greater molecular 978 
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weight, because, on average, they comprise 100-300 different proteins, including struc- 979 

tural and regulatory RNAs [117]. We should also consider that these complexes, which 980 

function as scaffolds for viral proteins, are also subject to regulation of their function 981 

through the mediation of post-translational modifications. As already noted, we have lit- 982 

tle knowledge of dynamics about the information flows that drive events that give rise to 983 

molecular phenomena, such as signaling or translation. Similarly, we do not know PTMs 984 

of subunits and information about the structure/function relationships to organize the 985 

architecture of these complexes. All this makes any proposal of a dynamic hypothesis on 986 

viral strategy murky. However, although we still have a static understanding of meta- 987 

bolic actions, knowing the details involving some key human proteins in these complexes 988 

could open a new era in antiviral pharmacology. 989 

One last observation deserves to be noted to conclude this discussion. We found a 990 

smaller quantity of important ribosomal interactions associated with RPLs and RPSs, as 991 

opposed to the information documented in the BioGRID file concerning the ORF1ab 992 

protein. This result, together with the fact that of the 1111 human proteins of the interac- 993 

tome, only 626 interact with viral proteins, opens considerations on the systemic activity 994 

of the virus in various human organs. These results suggest a different viral strategy in 995 

different tissues/organs. Many researchers speak of a process of evolutionary adaptation 996 

of the virus to humans, favoured by its successful propensity to mutate quickly. The mu- 997 

tation rate of the virus genome has been estimated of 1 × 10−3 substitutions per base (30 998 

nucleotides/genome) per year under neutral genetic drift conditions or of 1 × 10−5 – 1 × 999 

10−4 substitutions per base in each transmission event [118], but, tracking a systematic 1000 

gene-by-gene comparison analysis with a reference genome (i.e., the first sequence data 1001 

of a patient from Wuhan in the National Center for Biotechnology Information (NCBI) 1002 

annotation NC_045512.2), only six of mutations had over 50% frequency in global 1003 

SARS-CoV-2 up to 2023 (NSP12, S, NSP4, N, ORF9b, and NSP3) [118]. 1004 

The viral evolution occurs on time scales comparable to virus transmission events 1005 

and to dynamics that involve many factors [119]. These factors encompass the fluctuation 1006 

of infected individuals over time, the varying percentages of immune profiles in popula- 1007 

tions, human mobility, the effectiveness of transmission between individuals, as well as 1008 

the interplay between viral strains and lineage extinction [119]. The complexity of all this 1009 

makes it extremely challenging, if not outright impossible, to establish global evolution- 1010 

ary theories through experimental evidence, although it is still workable to have coherent 1011 

discussions about individual factors of variability. Consequently, numerous hypotheses 1012 

have emerged regarding the evolution of SARS-CoV-2, including the notion that the vi- 1013 

rus gradually becomes less virulent. Without going into the merits of these observations 1014 

and the many existing hypotheses, we note that the sampling of data we collected covers 1015 

patients scattered around the world who became infected between 2021 and 2023. The 1016 

genomic profiling focuses solely on the liver. Thus, our data cover a wide window of the 1017 

evolution of SARS-CoV-2 in relation to liver tissue and regarding high-ranking proteins 1018 

(hubs), known to be the preferential target of the virus. Although 22% of them did not 1019 

meet the necessary experimental requirements to be considered reliable, we discovered 1020 
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that only 51 of these proteins (refer to Excel file 3) ultimately played a role in the infection, 1021 

although many had reduced connectivity. They, through functional enrichment, showed 1022 

us how remarkable the viral activity was against specific proteins of the entire hepatic 1023 

cellular translation system. This strategy never changed over 3 years. Checking BioGRID, 1024 

the interaction data shows that ORF1ab also interacts with many other proteins of the 1025 

human translational system, but not in the liver. This suggests a unique and specific viral 1026 

behaviour, i.e., over time, viral methods, and proteins attacking the liver showed no sig- 1027 

nificant changes in strategy. This allows us to hypothesize that it may be reasonable to 1028 

think of a different strategy regarding the protein-protein interactions of SARS-CoV-2 in 1029 

the different human tissues/organs. The complexity arises when attempting to illustrate 1030 

this hypothesis, as the data used is consistently sourced from deceased patients, render- 1031 

ing it impossible to distinguish between the systemic response of the patient’s phenotype 1032 

and the effects specifically tied to the organ being examined. We could also find this in- 1033 

formation exactly in those poorly interacting hub nodes that often we discard, which 1034 

could represent unstable ongoing variations of molecular strategy, but not yet consoli- 1035 

dated. So, although this result may already exist in another context, where different de- 1036 

sign objectives obscure it, in this investigation, we present precise molecular data that 1037 

supports a different way to approach the distribution of nodes in an interactome, open- 1038 

ing new design hypotheses. The scientific community should verify these data. 1039 

Supplementary Materials: The following supporting information can be downloaded at: 1040 
www.mdpi.com/xxx/s1, Figure S1: title; Table S1: title; Video S1: title. 1041 
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 1055 

Appendix A 1056 

An appendix is necessary to frame the reason for a reverse engineering approach 1057 

and explain why everything must be based on reliable data. When we think of a biologi- 1058 

cal network, we think it comprises a one-to-one set of interactions of its nodes. What the 1059 

nodes exchange is functional information, therefore, a biological network is an infor- 1060 

mation system that manages the metabolic information of the cell and the entire organ- 1061 

ism. The more precise the metabolic information, the greater the homeostatic capacity of 1062 

the entire organism. Therefore, when we refer to two nodes that exchange functional re- 1063 

https://downloads.thebiogrid.org/File/BioGRID/Latest-Release/BIOGRID-PROJECT-covid19_coronavirus_project-LATEST.zip
https://downloads.thebiogrid.org/File/BioGRID/Latest-Release/BIOGRID-PROJECT-covid19_coronavirus_project-LATEST.zip
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lationships, i.e., information, we must be very sure that the interaction exists. We can on- 1064 

ly get high certainty experimentally, for example, through the methods of biochemistry 1065 

and biophysics. The mutual information between two variables, i.e., the nodes, measures 1066 

the amount of information that one variable contains about another. The more certain 1067 

and higher the certainty, the greater the reduction of the functional uncertainty of one 1068 

variable following the knowledge of another. Mutual information between two variables 1069 

is a fundamental concept of information theory as defined by Shannon [36]. To apply this 1070 

concept to one-to-one biological interactions, we should define it in terms of entropy, as 1071 

an uncertainty of the information that is transmitted [37]. 1072 

Reciprocal information is a measure of dependencies between variables, which can 1073 

analyze interaction networks: if two components have strong interactions, their recipro- 1074 

cal information will be high, increasing the certainty of the event. The intrinsic infor- 1075 

mation of an event, also called self-information, is the amount of intrinsic uncertainty 1076 

associated with it. The more certain the event, the lower the amount of uncertainty asso- 1077 

ciated with it. From which the more certain the information one possesses, knowing that 1078 

the event has occurred, the lower the associated uncertainty will be, but the lower the 1079 

self-information or intrinsic information, i.e. its total entropy, will also be. 1080 

In entropic terms: 1081 

  I(X, Y) = H(X) – H(X/Y)                            1] 1082 

Where, I(X, Y) is the uncertainty existing on the relationship between the two nodes X 1083 

and Y and depends on the level of informational uncertainty relating to each variable. 1084 

H(X) is the entropy of the information system, or self-information or intrinsic information, 1085 

which is the amount of uncertainty associated with the interaction between the two 1086 

nodes. H(X/Y) is the conditional entropy, i.e., the entropy of a variable Y conditioned 1087 

from the knowledge we have of the other variable, the higher the knowledge, the lower 1088 

the associated uncertainty. 1089 

Relation 1] tells us that the uncertainty between two metabolic nodes, which ex- 1090 

change a physical and/or functional relationship [I(X, Y)], depends on the intrinsic un- 1091 

certainty [H(X)] associated with the relationship itself. We can reduce this uncertainty by 1092 

increasing our knowledge of the metabolic behaviour of the interacting nodes [H(X/Y)]. 1093 

However, it definitively states that by confirming a metabolic event between two nodes 1094 

through experimentation, we get secure and get certain information, thus eliminating the 1095 

conditional uncertainty and reducing the self-information, intrinsic information, or en- 1096 

tropy of my system. 1097 

It is crucial to acknowledge that information fully controls biological networks. The 1098 

greater the certainty of the information we possess about the physical/functional rela- 1099 

tionships existing in the network, the more certain and real the metabolic or pathological 1100 

previsions of our computational model are. Therefore, since the relationships between 1101 

two metabolic nodes are physical/functional, we gain the greatest certainty of all only 1102 

through conducting experiments, with the methods of biophysics, with which we meas- 1103 

ure the type and strength of the interaction, and of biochemistry, with which we measure 1104 

the levels of function. So, the relationships between computational models and experi- 1105 
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mental data are one cornerstone of systems biology. Reverse engineering aims to under- 1106 

stand which functional processes are real and which are dysregulated through external 1107 

control of the certainty of the biological event of virus-host interaction. The goal is the ul- 1108 

timate biological determination of existing interactions, not the detailed characterization 1109 

of these interactions, knowing that difficulties increase because we deal with nonlinear 1110 

interactions.  1111 

The presence of many errors undermines these principles very often because un- 1112 

certainty is intrinsic in the multiple contexts that provide data and information relating to 1113 

the biomolecules necessary to calculate biological networks. Although next-generation 1114 

sequencing studies provide extensive sequence information, the precise knowledge of 1115 

virus-host one-to-one protein interactions and potential targets for antiviral therapies 1116 

remains limited, partial, and incomplete. Typically, metadata for PPIs [38] should include 1117 

experimental details of tens of thousands of virus-human interactions. Some databases, 1118 

such as BioGRID, STRING, or INTACT, have used standardized procedures, but many 1119 

others, generalists, have collected virus-host interactions in different ways and contexts 1120 

[39] and do not have a standard format. 1121 

These platforms are online and useful for checking results. The fundamental reason 1122 

lies in the distinction between reproducibility (repeating an experiment to get the same 1123 

result) and replicability (interpreting the same data in different contexts) is crucial. It is 1124 

important to recognize that interpretations of data may vary depending on context, data 1125 

quality, or analysis method. Standardization of data and protocols is necessary to get a 1126 

univocal understanding and interpretation of research results. The vast differences be- 1127 

tween databases make it extremely challenging to compare their data, particularly when 1128 

the lack of experimental details obscures the nature of an interaction. What we often ob- 1129 

serve in the interactomics papers is an abnormal bloom of hub genes/proteins far beyond 1130 

the needs of any biological network [40]. Therefore, the use of STRING, a platform that 1131 

for each calculated interaction in a graph creates a specific knowledge base by querying 1132 

thousands of scientific articles on PubMed, and BioGRID, a platform that archives only 1133 

curated experimental data of the one-to-one interactions of SARS-CoV-2 proteins with 1134 

the human proteome, are two indispensable tools to guarantee the best possible certainty 1135 

of the data under analysis. The liver is a very complex organ with a highly dynamic me- 1136 

tabolism, where the sequential regulation of cellular processes plays a crucial role [41]. 1137 

Therefore, studying its metabolic behavior during COVID-19 requires knowledge of the 1138 

control systems and areas [42], which is not always found out in liver diseases [40]. 1139 
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