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Abstract: There are several challenges on how to attain energy efficiency while maintaining balance 27 
among factors affecting energy consumption such as power rating and temperature setpoints of 28 
cooling units, room temperature and humidity, and indoor air quality (IAQ). A real-time energy 29 
and IAQ monitoring system were installed in an educational building to profile the operational 30 
power consumption of inverter-based air condition unit (ACU) installed in each room. Polynomial 31 
curve and neural fitting regression analysis were applied to the real-time power consumption, in- 32 
door temperature and humidity, and carbon dioxide (CO2) level data. The derived models were able 33 
to provide the stabilizing indoor thermal and air conditions of the room to reach steady state ACU 34 
power consumption.  These collected data and calculated parameters can be used to define rules 35 
in automating control of cooling appliances for an efficient energy utilization. The regression ap- 36 
proaches, using real-time data, have determined the influence of indoor heat conditions and carbon 37 
dioxide levels on ACU power consumption. These parameters were utilized to establish consistent 38 
values for temperature, humidity, and carbon dioxide levels under stable settings of inverter-based 39 
air conditioning units. 40 

Keywords: power modeling; curve fitting; neural network fitting; regression analysis; power stabi- 41 
lization; thermal condition; indoor air quality 42 
 43 

1. Introduction 44 
In the absence of building energy audits, property or building management depends 45 

solely on electric bills and electrical drawings to approximate power use. Electricity audits 46 
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fail to include usage patterns and factors that lead to abnormal increases in consumption. 47 
Comprehending energy consumption patterns based on visual, analytical, and behavioral 48 
observations is challenging due to the large amount of data provided by a real-time en- 49 
ergy monitoring system, the diverse range of equipment and appliances installed, and the 50 
unique preferences of building occupants. This limitation hinders effective decision mak- 51 
ing. The popularity of artificial intelligence (AI) and adaptation of machine learning (ML) 52 
methods has offered tools in energy savings, but no one stands out from these options [1]. 53 
Conversely, input parameters varies depending on the purpose of prediction and forecas- 54 
tiong – primarily driven to save on operational cost. Prophet algorithm [2] for shopping 55 
malls and office buildings was applied on the effects of holidays and weather in power 56 
consumption trend analysis and prediction. Related researches include [3] using dynamic 57 
and static and hybrid data analysis in buildings, Related research such as [4] using K- 58 
means and [5] using k-shape and random forest (KS-RF), to classify users according to 59 
power consumption behavior based on grid demand. A seasonal approach of educational 60 
building consumption from daily usage was limited to descriptive analysis through data 61 
cleaning and visualization [6], while [7] used Independent Component Analysis (ICA) to 62 
determine factors affecting consumption. A comprehensive review of building energy 63 
consumption prediction employing various neural network and regression methods, pub- 64 
lished between 2015 to 2022, was conducted by Borowski and Zwolińska [8]. The research- 65 
ers [8] utilized artificial neural networks (ANN) and support vector machines (SVM) to 66 
forecast the amount of energy used for cooling in a hotel building. This prediction was 67 
based on hourly data of weather conditions and the number of people present in the fa- 68 
cility. The hourly forecast was not suitable for [9], as it necessitated the use of a combined 69 
10-hour interval time series model and neural network to accurately anticipate building 70 
load consumption. Another study of [10], referenced as [10], employed Principal Compo- 71 
nent Analysis (PCA) to preprocess the inputs of a backpropagation neural network. It was 72 
utilized to forecast the cooling demand of ice storage systems.  With the addition of Clas- 73 
sification Regression Tree (CART), a model was derived in [11] to predict the consumption 74 
of air conditioning water system based on load, and water flow temperature and flow 75 
rate. The air conditioning starting time in factory setting was the focus of [12] in their effort 76 
to manage energy from their prediction model based on memory loop neural networks, 77 
with air condition capacity and climate as inputs. The goal of these papers is to achieve 78 
energy savings with ANN and sensor-based data collection system, as common method- 79 
ologies [13]. 80 

According to [14], about 15% to 20% of the nationwide electric power consumption 81 
is attributed to buildings, and that 49% to 51% of energy consumption in educational 82 
buildings is due to air conditioning systems [15,16]. Based on study [17], each degree 83 
setback saves 5-7% and each degree increase in ambient temperature increases 84 
consumption by 11-23%. The need for energy monitoring and a system to model cooling 85 
electrical appliances electricity consumption to determine indoor thermal and air quality 86 
conditions at steady state power condition of air conditioning unit (ACU) are the motiva- 87 
tions in the pursuance of this research. Specifically, this paper aims to: (1) measure and 88 
calculate the real-time electrical power consumption of building room’s air-conditioning 89 
units and indoor dry bulb temperature, relative humidity, and carbon dioxide (CO2) lev- 90 
els, and (2) derive a model to identify significant relationships and patterns among power 91 
and the aforementioned indoor environmental and air quality conditions. Input parame- 92 
ters that could affects power consumption, as discussed in other researches such as, build- 93 
ing materials (e.g. wall, ceiling, floor, door) [18,19], geographical location, geometrical 94 
configuration, other sources and configurations of energies [20] and electrical loads [21], 95 
occupant-related variables (e.g., comfort index, personal preference), and space control 96 
devices (i.e., components and electrical loads accuracy) [22], and other disturbances, such 97 
as outdoor weather [23]– parameters affecting thermal comfort will not be considered in 98 
this paper. Related to this, the characteristics and quality of supplied power of the electric 99 
distributor nor standby generator set, as presented in [24] will not be covered in this paper. 100 
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This research undertaking and direction can help practice and promote energy sustaina- 101 
bility of an organization, specifically its Building Management and Energy Management 102 
Teams implement behavioral change among all building occupants, tenants, and guests, 103 
and objective use of data to practice efficient electricity consumption performance and 104 
improvements.  105 

2. Materials and Methods 106 
Energy consumption studies include two phases: data collection and profiling and 107 

data modeling. Figure 1 shows the beginning phase of creating suitable electrical power, 108 
indoor temperature, and air quality monitoring devices. These systems are essential for 109 
collecting real-time power consumption, indoor temperature and humidity, and CO2 lev- 110 
els. Following parameters will determine the dependent variables for the system model 111 
reflecting their impact on ACU electrical power consumption: In addition to data collec- 112 
tion devices, network setups allow monitoring devices to be connected, data stored, and 113 
accessed as needed.  114 

 115 

 116 
Figure 1. Framework for Power Consumption Analysis Based on Indoor Thermal Condition and 117 
Air Quality. 118 

Phase 2 analyzes data gathered from Phase 1, using energy audit findings to compare with 119 
the model. Electrical schematics, past electricity billings, appliance electrical require- 120 
ments, and external temperature and humidity are examined in audit reports. Phase 1 121 
data will be utilized to assess electrical usage, indoor and outdoor temperature and hu- 122 
midity, humidity and heat indeces, and air quality. Multiple regression modeling, includ- 123 
ing linear (i.e., curve fitting) and non-linear (i.e., neural network fitting) methods will be 124 
used in this investigation. Regression analysis indicates elements that may significantly 125 
increase power usage. 126 

2.1. Electrical Power and Indoor Air Quality Monitoring Monitoring System Network  127 
Building power consumption is measured, recorded, and tracked by an energy con- 128 

sumption monitoring system. Each floor's air conditioning and ventilating electrical dis- 129 
tribution panel connects to its power submetering component. Remote power consump- 130 
tion sub-metering modules employ Arduino Mega 2560 [25] connected to a Raspberry Pi 131 
3B+ over a Local Area Network (LAN). Circuit breaker power consumption, room tem- 132 
perature, humidity, and CO2 gas sensors are measured in real time. Each floor's electrical 133 
distribution panel has a circuit breaker for each network appliance (ACU, outlets, light- 134 
ing). In Indoor Air Quality (IAQ) monitoring modules, Si7021 sensors measure tempera- 135 
ture and humidity while CCS811 sensors measure CO2. IAQ monitors will only be de- 136 
ployed in defined places because outdoor environmental variables (temperature, 137 
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humidity, CO2 levels) vary less than indoor circumstances. Each RPi board has a 5V/2.5A 138 
DC supply. Web development requires installing a LAMP (Linux, Apache, MySQL, and 139 
PHP) server on a Raspberry Pi to monitor and track power use every 5 minutes to preserve 140 
memory. Apache2 is the most used web server software. The server creates .html and .php 141 
documents based on the requested page. PHP is a server-side language for dynamic web 142 
programs. The Raspberry Pi will have Raspbian OS and phpMyAdmin for web-based da- 143 
tabase management. MATLAB is used for data analysis and processing. 144 

Figure 2 illustrates the interconnectedness of the monitoring modules, computer 145 
server, database, remote monitoring devices, and LAMP server via a local area network. 146 
The data obtained from each power sub-metering module will be linked to both the local 147 
server and cloud for the purpose of data modeling, visualization, and analysis.   148 

 149 

 150 
Figure 2. Interconnectivity of Data Monitoring Modules and Devices, and Server. 151 

Figure 3 depicts the positioning of these sensors as an example. Typically, two sets of gas 152 
sensors would be positioned in the central area of each room, which has an average floor 153 
size of 69 m2. This arrangement ensures comprehensive coverage of gas dispersion. Con- 154 
versely, the thermal comfort level sensors, such as those measuring temperature and hu- 155 
midity, will be placed in a location within the room that is not near the ACU vents. Each 156 
instructional room is equipped with two (2) 2.5-horsepower split-type inverter air condi- 157 
tioning units. 158 

 159 

Figure 3. Placement of Indoor Thermal and Air Quality Sensors (Room Size: 76 m2 for laboratory 160 
room, 61m2 for classroom and shared office space, 15m2 for solo office space) 161 
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2.2 Electrical Power Consumption Analysis using Polynomial Curve and Neural Fitting 162 
Techniques 163 

The ACU usage, indoor temperature, humidity, and CO2 levels were recorded and 164 
documented every five (5) minutes over a duration of five (5) weeks, at an average out- 165 
door temperature and relative humidity of 28°C and 67%, respectively [26]. Only data 166 
collected during courses or office operations were used for curve fitting and analysis to 167 
correlate and model power usage with indoor temperature and air quality conditions. Five 168 
rooms with distinct purposes were chosen, including instructional facilities such as a 36- 169 
seater lecture room, a laboratory room, and a computer room, as well as office spaces with 170 
a maximum capacity of fifteen (15) people and a cubicle room designed for solo use. The 171 
operating duration of instructional classrooms normally spans from two (2) to eight (8) 172 
hours per day, whereas office spaces are frequently utilized for a period of eight (8) to ten 173 
(10) hours per day. During the process of data cleaning and normalization, only the nu- 174 
merical values falling within the specified ranges, as outlined in Equations 1, 2, and 3, 175 
were utilized. This was done to reduce the impact of outliers in sensor readings on the 176 
resulting model. 177 

P > 0 (1) 

10°C < T < 40°C (2) 

20% < H < 40°C (3) 

0 < < 4,000ppm (4) 

  where P = power consumed in kWh, T = dry bulb temperature in °C, and H = % relative 178 
humidity, and G = C02 level in parts per million (ppm).  179 

   Two (2) approaches to modeling of data are explored to derive a model that best fits 180 
the ACU power consumption of each room. The curve fitting [27] and neural network 181 
fitting [28] tools of MATLAB were used for this purpose. Curve fitting is a statistical tech- 182 
nique that involves using regression analysis to identify the most appropriate mathemat- 183 
ical function that accurately represents a set of observed data points and the relationship 184 
between two or more variables in a dataset. This approach develops a model that accu- 185 
rately represents the fundamental pattern or trend in the data. The model will enable pre- 186 
dictions and insights that may be utilized to identify measures for operating cooling units 187 
with lower energy consumption. Curve-fitting involves selecting a mathematical function 188 
or model that precisely represents the relationship between the independent variable(s) 189 
(often denoted as x) and the dependent variable(s) (typically denoted as y). Model selec- 190 
tion involves choosing between linear and non-linear fits to determine the appropriate 191 
relationship between power consumption and indoor temperature, humidity, and CO2 192 
levels. Adjustment of the model parameters minimizes the difference between the pre- 193 
dicted values from the model and the actual values in the dataset. Optimization methods 194 
are commonly employed to iteratively augment parameter estimates to define the best fit 195 
with minimal prediction errors. This encompasses various techniques, such as data cen- 196 
tering and scaling, degree modifications, utilization of a robust least-squares fitting ap- 197 
proach, and the selection of algorithms like trust-region or Levenberg-Marquardt. The 198 
goodness-of-fit of a model can be assessed by various methods, such as R-squared, root 199 
mean square error (RMSE), or by visually examining the residuals (the differences be- 200 
tween observed and predicted values). These statistical measurements are model’s para- 201 
metric evaluation values to quantitatively describe the variances in the data. 202 

   The MATLAB Neural Network Toolbox has built-in and intuitive functionalities to 203 
train and simulate artificial neural networks (ANNs) prior to deployment. This requires 204 
data cleaning, annotation, normalization, and segmentation of the derived datasets into 205 
training, validation, and testing sets. Network design is often defined with single layers 206 
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by default, where the number of neurons in each layer, activation functions, and connec- 207 
tion weights are predetermined. Once target performance of the network is met, it under- 208 
goes training using Levenberg-Marquardt algorithm. After completing the training phase, 209 
it is crucial to evaluate the performance of the trained network by using the validation 210 
dataset. This helps prevent overfitting and ensures that the model can generalize well. 211 
Occasionally, it is necessary to make modifications to hyperparameters such as learning 212 
rate, number of epochs, and regularization intensity based on the validation results to 213 
enhance the model's performance. After training and validating the model, its ability to 214 
generalize is assessed by making predictions on new, unseen data and evaluating its per- 215 
formance on the testing dataset. 216 

3. Results 217 

3.1. Polynomial Curve Fitting 218 
Parametric fitting is the process of finding the coefficients, often known as parame- 219 

ters, for models that are used to fit data. The predictor variables utilized to build the power 220 
consumption model were the temperature, humidity, and CO2 levels inside each room, 221 
with coefficients assigned to each variable. Both linear and nonlinear regression models 222 
were examined, and it was found that the polynomial regression model yielded the most 223 
accurate fit to the polynomial function based on the data. Equation 5 demonstrates the 224 
comprehensive correlation between power consumption (Pt) and drive bulb temperature 225 
(T). This correlation is established using the robust least-squares fitting approach and min- 226 
imized least absolute residuals (LAR) at 95% confidence bounds. 227 

Pt = c1T2 + c2T + c3 (5) 

where values of c1, c2, and c3 varies according to room type. Table 1 contains the summary 228 
of these coefficient values of Equation 5.  229 
 230 

Table 1. Coefficients of Polynomial Curve Fit for Power vs Dry Bulb Temperature 231 

Coefficients Classroom 
Computer 

Room 
Laboratory 

Room 
Office 

(shared) 
Office 
(solo) 

Power vs Dry Bulb 
Temperature 

c1 0  0  0  0.0136  0.0120  
c2 -0.0023 -0.0005 -0.0006 -0.0124 -0.0159 
c3 0.0693 0.1731 0.1020 0.0222 0.0261 

 232 
 233 
There are variations in the coefficient values of a first-degree polynomial equation for a 234 
computer room, laboratory room, and classroom. A second-degree polynomial was neces- 235 
sary to provide a suitable fit for power functions in shared office spaces and small enclosed 236 
cubicles with only one occupant. The predictor values for office spaces were normalized 237 
with a mean of 28.19 and a standard deviation of 1.421 for shared space, and with a mean 238 
of 28.07 and a standard deviation of 1.394 for cubicle space.  239 

Equations 6 examined the impact of humidity (H) on power consumption (Ph) in 240 
various types of rooms, except for classrooms. In the case of classrooms, humidity needed 241 
to be normalized using a mean of 55.92 and a standard deviation of 9.765. 242 

Ph = c1H3 + c2H2 + c3H + c4 (6) 

The values of c1, c2, c3, and c4 vary based on the room type, as seen in Table 2.  243 

 244 
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Table 2. Coefficients of Polynomial Curve Fit for Power vs Relative Humidity 245 

Coefficients Classroom 
Computer 

Room 
Laboratory 

Room 
Office 

(shared) 
Office 
(solo) 

Power vs 
Humidity 

c1 0.0106 0 0.0066 -0.0026 -0.0023 

c2 -0.0055 0.0022 -0.0104 0.0116 0.0113 

c3 -0.0694 -0.1478 -0.0504 -0.0190 -0.0188 

c4 0.1041 3.2459 0.1266 0.0268 0.0277 
 246 

Additional refinements were made to the process of fitting a power equation to the indoor 247 
CO2 level data, specifically considering the slight fluctuations observed when the ACU is 248 
activated. Therefore, power measurement readings below 0.03Wh for instructional classes 249 
and 0.003Wh for offices were omitted from the analysis to get meaningful coefficients. 250 
However, it was observed that the laboratory room had an unusually high amount of CO2, 251 
namely above 5,000ppm. This aspect was specifically excluded from the research as it per- 252 
tains to exceptional activities (such as soldering and carpentry) that are not seen in the 253 
other rooms included in this study. Specifically, carbon dioxide (CO2) levels were linked 254 
to the quality of ventilation and were not utilized to identify and quantify the existence of 255 
indoor contaminants. Equations 7 examined the impact of indoor CO2 levels (G) on power 256 
consumption (Pc) in various types of rooms. The values of c1 and c2 vary per room type, 257 
as seen in Table 2.  258 

Pc = c1G + c2 (7) 

Table 3. Coefficients of Polynomial Curve Fit for Power vs CO2 Levels 259 

Coefficients Classroom 
Computer 

Room 
Laboratory 

Room 
Office 

(shared) 
Office 
(solo) 

Power vs CO2 
Level 

c1 -0.0125 -0.0007 -0.0018 -0.0015 0.0002 

c2 0.1407 -0.1682 0.1548 -0.0220 -0.0548 
 260 

The measured data displays variances that are regularly present due to several rea- 261 
sons. This includes variations in the occupancy level within the room, adjustments made 262 
to the setpoint or fan settings of the air conditioning units (ACUs), and the duration of 263 
operation. The analysis did not consider the immediate impacts of these factors. The fitted 264 
model may not precisely represent the data due to systematic variability. However, Table 265 
4 provides evidence that the model coefficients have physical significance, as indicated by 266 
the R-square values ranging from 0.9813 to 0.9998 for instructional rooms with different 267 
usage.  268 

 269 

Table 4. Polynomial Fitting Performance using Least Absolute Residuals for Instructional Rooms 270 

Relationship 
Classroom Computer Room Laboratory Room 

Degree 
R-

square RMSE Degree 
R-

square RMSE Degree 
R-

square RMSE 
P vs T 1 0.9983 0.0028 1 0.9998 0.0009 3 0.9866 0.0070 
P vs H 4 0.9881 0.0074 3 0.9991 0.0018 3 0.9813 0.0084 

P vs G 1 0.9870 0.0071 1 0.9967 0.0028 1 0.9860 0.0074 
 271 
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The variance proportions for office spaces with a relatively fixed number of inhabit- 272 
ants were measured and ranged from 0.9899 to 0.9944, as shown in Table 5. These numbers 273 
indicate that the data fitting is satisfactory, as the uncertainties indicated by the Root Mean 274 
Square Error (RMSE) are within an acceptable range. The absence of robustness or the 275 
utilization of Least Absolute Residuals (LAR) in regression modeling resulted in an un- 276 
satisfactory level of uncertainty, as provided in the Supplemental Data (Supplemental Ta- 277 
bles S1 to S6). 278 

Table 5. Polynomial Fitting Performance using Least Absolute Residuals for Office Spaces 279 

Relationship 
Office Space (shared) Office space (solo) 

Degree 
R-

square RMSE Degree 
R-

square RMSE 
P vs T 2 0.9911 0.004 2 0.9904 0.0042 
P vs H 3 0.9920 0.0038 3 0.9899 0.0043 

P vs G 1 0.9957 0.0027 1 0.9944 0.004 

3.2. Neural Network Fitting 280 
The objective of training a neural network on a dataset is to accurately capture the 281 

underlying correlation between the time series input and continuous-valued output vari- 282 
ables. The training method for evaluating the neural fit using ten (10) layers yielded a 283 
moderate linear correlation, as evidenced by six (6) validation checks, between the antici- 284 
pated power (P) and the actual dry bulb temperature (T) in classrooms and laboratory 285 
rooms. There is a higher correlation coefficient that indicates a strong linear association 286 
between these metrics in computer rooms and office areas. The model performance im- 287 
proved when power consumption was adjusted for indoor relative humidity (H) after a 288 
minimum of ten (10) iterations and six (6) validation checks. The correlation coefficients 289 
experienced an increase, reaching a minimum value of 0.5426 on the training set and 290 
0.5395 on the testing set. Summary of the neural network fit results is presented in Table 291 
6. 292 

Table 6. Neural Fit Test Performances of ACU Power vs Indoor Thermal and Carbon Dioxide Levels 293 

Model Parameters Classroom 
Computer 

Room 
Laboratory 

Room 
Office Office 

(shared) (solo) 

P vs T 
Epoch 24 11 9 12 11 
MSE 0.0042 0.0017 0.003 0.0011 0.0011 

R 0.3037 0.7502 0.384 0.5751 0.654 

P vs H 
Epoch 11 10 15 13 11 
MSE 0.0028 0.0015 0.0027 0.0011 0.0013 

R 0.6299 0.7595 0.5395 0.6108 0.5480 

P vs CO2 

Epoch 12 8 12 78 41 

MSE 0.0037 0.0011 0.001 0.0018 0.0018 

R 0.2552 0.837 0.4603 0.196 0.0462 
 294 
The activation of ACUs in offices has a modest impact on the levels of CO2, as indi- 295 

cated by the weak linear connection (R) observed during training and testing (0.0462 to 296 
0.2151). This is ascribed to a finite number of individuals and a restricted range of human 297 
activities within the room, and demonstrated in the context of educational spaces, such as 298 



Buildings 2024, 14, x FOR PEER REVIEW 9 of 15 
 

laboratory and computer rooms. The CO2 levels at a training and testing correlation coef- 299 
ficients ranging from 0.4603 to 0.8370 have been significantly influenced by the presence 300 
of electrical appliances, varying occupancy rate, and human activities. The model perfor- 301 
mances were achieved after eight and ten iterations, respectively, during six validation 302 
checks. Details of the model’s hyperparameter, training, and validation performances are 303 
provided in the Supplemental Data (Supplemental Tables S7 to S9). 304 

 305 

4. Discussion 306 
The positioning of the sensors, both in terms of their distance from the ACU and the 307 

ceiling, influenced the regression analysis values for each parameter in each room. The 308 
generated model was based on the optimal test metrics obtained from both the curve fit- 309 
ting and neural network fitting procedure after numerous adjustments made to the pa- 310 
rameters, datasets, and conditions. These adjustments were made to obtain the most ac- 311 
curate model for describing the relationship between cooling unit power consumption 312 
and indoor temperature, humidity, and CO2 levels. The monitoring devices that yielded 313 
the most accurate model fit for dry bulb temperature were the ones placed near the en- 314 
trance door, at 3m, and farther away from the ACU vent, at 5m. The monitoring sensors 315 
positioned near the cooling vent yielded more accurate results for humidity compared to 316 
those installed further away from the vent. The CO2 levels measured near the door exhib- 317 
ited considerable variations, leading to the development of a model that accurately depicts 318 
the changes in CO2 levels as the room cools down. The monitoring boxes are installed at 319 
50cm below the ceiling. Adopting a more empirical method to determine the effects of 320 
sensor placements can enhance the accuracy of the model and provide valuable insights 321 
into the characteristics of data outliers. In the paper of [29], the test setup includes 147 322 
testing points for the temperature to calculate the thermal comfort level of the room. 323 

Excluding the controllable parameters that influence data quality, the derived mod- 324 
els were utilized to calculate the steady-state power consumption of each room under sta- 325 
ble conditions (namely, dry bulb temperature, relative humidity, and CO2 levels). This 326 
employs calculation of the average and standard deviation of predictor values (tempera- 327 
ture, humidity, and CO2 levels) and power data over a moving time window using statis- 328 
tical analysis. The MATLAB script systematically processes data points to calculate the 329 
average predictor values throughout a window size. Each window checks if the power 330 
data standard deviation, normalized by its mean, is below the stability threshold, as de- 331 
scribed in Equation 7 and Equation 8. When these ratio of standard deviation and mean 332 
is below the stabilization threshold, stabilization values of power and temperature (or hu- 333 
midity) are met, as defined in Equation 9 and Equation 10, respectively. 334 

 335 
𝜎!
𝜇!

< 𝜏 (7) 

σ",$
µ",$

< 	𝜏 (8) 

𝑆! 	= 	
1

𝑖 − max(1, 𝑖 −𝑊 + 1) + 1 5 𝑃(𝑗)
%

&'(),*+,-))

		8

𝜎!
𝜇!

< 𝜏, 𝑊! 	⊆ 	P		
𝜎",$
𝜇",$

< 𝜏, 𝑊",$ 	⊆ 	H, T		
		

	 	 	 	 	
(9)	

𝑆$," 	= 	 µ$,"	 (10)	 	

 336 
where 𝜎! = standard deviation of power data, 𝜇! = mean of power data, ,	 𝜎",$ = stand- 337 
ard deviation of humidity or temperature, 𝜇",$ =  mean of humidity or temperature, 𝜏 = 338 
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stability threshold, SP = steady-state values of power, ST,H = settling values of temperature 339 
or humidity, i = iteration index, W = window size, P = set of power readings, H, set of 340 
humidity readings, and T = set of temperature readings. 341 
The application calculates temperature data normalized standard deviation from the 342 
mean. After stabilizing within thresholds, the settling temperature (ST) and power (SP) are 343 
stored as the window's mean temperature and power. A percentage threshold is used to 344 
evaluate power stability. Consistent power ensures temperature stability. The loop ends at 345 
a stable place. Duration of operation time of ACU, number of occupants, and variety of 346 
physical activities effect data collection and stable point calculation.  347 

The parametric conditions specified in Equations 2 to 4 were still considered, with 348 
measurements taken only when the power reached a minimum of 10Wh. This is to guar- 349 
antee that the steady state situation is considered when the ACU condensing units are 350 
turned on. In addition to this, the presented resulting values on Table 7 are products of 351 
simulation results and their corresponding bias factors. Bias factors are computed based 352 
on deviation between the real-time sensor’s measurement values and ACU setpoint and 353 
were compared to calibrated measuring test instruments. 354 

Table 7. Steady state power conditions at Stable Thermal and CO2 Levels 355 

Room 
ACU 

Setpoint 
(°C) 

Average 
Power 
(kWh) 

Dry bulb 
temperature 

(°C) 

Relative 
Humidity 

(%) 

CO2 Level 
(ppm) 

Classroom 23 1,745.40 25.39 56.91 1,335  
Computer Room 23 1,720.80 24.17 50.05 400 
Laboratory Room 21 2,030.40 22.44 37.87 1,562 

Office (shared) 25 1,030.80 25.20 34.96 400 
Office (solo) 25 1,030.80  25.39 50.32 426 

 356 
It is important to mention that the levels of CO2 in classroom and laboratory rooms 357 

exceed the typical levels found in indoor settings, indicating high levels of activity in these 358 
spaces [30]. In the paper of [31], a presentation was given on the worldwide requirements 359 
for sufficient indoor air quality, while [32] defined conditions for indoor thermal comfort. 360 
Thermal comfort is person’s satisfaction and mind acceptability of warmness or coldness 361 
affecting productivity, health, and well-being [33]. A control system to achieve this for a 362 
laboratory was developed by [34] emphasizing on ANN-based demand prediction of fan- 363 
coil power. Several papers [35,36] identified thermal preference by the office occupants 364 
was ranging between 21.5°C to 24.5°.  365 
 Equation 7 describes how the power consumption, P(T,H), of an ACU is influenced 366 
by the levels of dry bulb temperature, T, and relative humidity, H. The polynomial curve 367 
fit coefficient values (k1 to k5) differ for instructional rooms and office spaces. 368 

P(T,H) = k1 + k2T + k3H + k4HT + k5H2 (7) 

For instructional rooms: k1 = 2.9919, k2 = -0.0924, k3 = -0.0512, k4 = 0.0014, k5 = 0.0010. 369 
For office spaces: k1 = 1.7940, k2 = -0.0442, k3 = -0.0463, k4 = 0.0009, k5 = 0.0002. 370 

The optimal polynomial fit was obtained by using a power of one (1) for dry bulb 371 
temperature and a power of two (2) for humidity while applying the Least Absolute Re- 372 
siduals (LAR) method. For the given predictor values, the R-square values vary from 373 
0.9874 to 0.9982. The root mean square error (RMSE) is 0.0048 for office spaces and 0.0026 374 
for instructional spaces. These results are included in the Supplementary Tables S10 and 375 
S11. Overall, the model derived from polynomial regression analysis shows better result 376 
than that of derived from neural network fitting – contrary to the results of [37], which is 377 
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limited to consumption submetering data in household, and [38] that yielded best results 378 
in ANN than linear and polynomial regression from dataset of supermarket energy usage. 379 
It’s notable that [38] emphasized on the time of the day and environmental conditions as 380 
primary predictors of energy consumption. The regression-based learning has exhibited 381 
faster processing in the energy consumption modeling patent of [39] that employs de- 382 
mand response (DR) strategy. The comparison of contour, fit, and residual plots for the 383 
polynomial surface fit of the ACU power consumption based on dry bulb temperature 384 
and humidity are shown on Figure 4 for instructional room and Figure 5 for office spaces. 385 

 386 
 387 

  388 
(a) 389 

 390 

 391 
(b) 392 

 393 
Figure 5. Polynomial Surface Fit of Power, P(T,H) vs Temperature, and Humidity for 394 
(a) Instructional Room, and (b) Office Space  395 
 396 
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5. Conclusions 397 
The learning-based methodology incorporated actual data and utilized regression 398 

techniques, such as curve and neural network fitting, to determine the influence of indoor 399 
heat conditions and carbon dioxide levels on ACU power usage. The extensive data 400 
obtained during continuous ACU operation for at least four (4) hours greatly decreased 401 
measurement error when reanalyzing the model fit. The study obtained an optimal 402 
polynomial regression by using a first-order polynomial for dry bulb temperature and a 403 
second-order polynomial for humidity, utilizing the Least Absolute Residuals (LAR) 404 
approach. The R-square values, which range from 0.9874 to 0.9982, suggest a high level of 405 
correlation of power with indoor dry bulb temperature and humidity. The root mean 406 
square error (RMSE) is 0.0048 for office spaces and 0.0026 for instructional spaces. The 407 
neural model, assessed with ten layers, showed a modest linear relationship between 408 
predicted power (P) and measured dry bulb temperature (T) in classrooms and laboratory 409 
rooms. The model's performance increased after accounting for indoor relative humidity 410 
(H) in power consumption adjustments, with correlation values of 0.5426 on the training 411 
set and 0.5395 on the testing set. Furthermore, the influence of air conditioning units 412 
(ACUs) on CO2 levels was minimal, as it was mostly caused by the restricted human 413 
activity in educational areas.  The most effective sensor placements for accurately 414 
capturing the correlation between power consumption of the cooling unit and inside 415 
temperature are in close proximity to the entrance door (at a distance of 3 meters) and at 416 
a greater distance from the ACU vent (5 meters away). Humidity measurements obtained 417 
from sensors located in close proximity to cooling vents are highly precise. Significantly, 418 
carbon dioxide (CO2) levels in the vicinity of the door display fluctuations, providing data 419 
for a model that accurately represents changes due to cooling. In general, the polynomial 420 
regression model performs better than the neural network fitting strategy. 421 

The point at which the temperature and power levels have reached a stable state 422 
within specified boundaries can be determined throughout the iterative process of 423 
analyzing data. Variables such as the duration of ACU operation, the number of people 424 
present, and the level of physical activity have an influence on the collecting of data and 425 
the determination of stable points. Determining the steady state of a system is crucial in 426 
control systems and experimental circumstances. The models and stable ACU power 427 
conditions can be used to create decision rules for controlling indoor temperature and 428 
humidity through the automated operation of cooling systems. The results of this work 429 
will be used in future research to create an optimized energy consumption model for a 430 
building. This will be accomplished by identifying the most efficient temperature setting 431 
and propert timing to operate the air conditioning unit (ACU) by considering parameters 432 
such as the surrounding temperature, humidity, time of day, and activities performed 433 
during specified hours. 434 

  435 
  436 

Supplementary Materials: The following supporting information can be downloaded at: 437 
https://bit.ly/PowerCosumptionModeling, Figure S1: Framework for Power Consumption Analysis 438 
Based on Indoor Thermal Condition and Air Quality.; Figure S2 Interconnectivity of Data Monitor- 439 
ing Modules and Devices, and Server.; Figure S3: Placement of Indoor Thermal and Air Quality 440 
Sensors (Room Size : 76 m2 for laboratory room, 61m2 for classroom and shared office space, 15m2 441 
for solo office space); Figure S4a: Polynomial Surface Fit of Power, P(T,H)) vs Temperature, and 442 
Humidity for Instructional Room; Figure S4b: Polynomial Surface Fit of Power, P(T,H)) vs Temper- 443 
ature, and Humidity for Office Space; Table S1: Polynomial Curve Fitting Performance for Instruc- 444 
tional Rooms (ACU Power vs Dry Bulb Temperature); Table S2: Polynomial Curve Fitting Perfor- 445 
mance for Office Spaces (ACU Power vs Dry Bulb Temperature); Table S3. Polynomial Curve Fitting 446 
Performance for Instructional Rooms (ACU Power vs Relative Humidity); Table S4. Polynomial 447 
Curve Fitting Performance for Office Spaces (ACU Power vs Relative Humidity); Table S5. Polyno- 448 
mial Curve Fitting Performance for Instructional Rooms (ACU Power vs CO2 level); Table S6. Poly- 449 
nomial Curve Fitting Performance for Office Spaces (ACU Power vs CO2 Level); Table S7. Neural 450 

https://bit.ly/PowerCosumptionModeling
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Fit in ACU Power vs Dry bulb Temperature; Table S8. Neural Fit in ACU Power vs Relative Hu- 451 
midity; Table S9. Neural Fit in ACU Power vs Carbon Dioxide Level; Table S10. Coefficients of Pol- 452 
ynomial Curve Fit for Power vs Temperature and Humidity; Table S11. Polynomial Curve of ACU 453 
Power using Least Absolute Residuals for Office Spaces.  454 
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