Preprint
Article

Finite Element Analysis of Adolescent Mandible Fracture Occurring during Accidents

Altmetrics

Downloads

595

Views

419

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

28 October 2018

Posted:

29 October 2018

You are already at the latest version

Alerts
Abstract
The paper aims in assessing risks of mandible fractures consequent to impacts or sport accidents. The role of the structural stiffness of mandible, related to disocclusion state, is evaluated through numerical simulations using the finite element method (FEM). It has been assumed that the quasi-static stress field, due to distributed forces developed during accidents, could explain the common types of mandibular fractures. Geometric model of adolescent mandible was built, upon the basis of medical imaging, in CAD software with distinction between cortical layer and inner spongy bone. The finite element model of disoccluded mandible was next created. Mandibular condyles were supposed jammed in the maxillary fossae. The total force of 700 N, simulating an impact on mandible, has been sequentially applied in three distinct areas: centrally, at canine zone and at the mandibular angle. Clinically most frequent fractures of mandible were recognized through the analysis of maximal principal stress and maximal principal strain fields. Mandibular fracture during accidents can be analyzed at satisfactory level using linear quasi-static FE models for designing protections in sport and transport. The proposed approach can be improved by introducing more realistic interactions between condylar processes and fossae.
Keywords: 
Subject: Medicine and Pharmacology  -   Dentistry and Oral Surgery
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated