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Bioinformatics Pipelines Implemented on CSI NGS Portal 

CSI NGS Portal currently has 16 bioinformatics pipelines implemented, covering 11 different 

types of NGS data from DNA, RNA, smallRNA, 4C, ChIP, RIP, SHAPE, circRNA, eCLIP, 

Bisulfite-treated DNA and single cell RNA sequencing libraries. 

 

As a rule of thumb, all the pipelines on the portal start from the fastq file and perform 

genome/transcriptome alignment generating .bam and .bigwig files. This ensures standardising the 

data processing with a suitable mapper for the specific task and refrain user from the tedious 

alignment step. Importantly, all the tools and packages used in the pipelines are regularly updated 

to the latest stable versions available by using a Conda (https://conda.io/en/latest/) environment. 

 

1. DNA-Seq 

This pipeline identifies and annotates somatic mutations (single nucleotide variations and indels) 

in the DNA of tumour samples. Both whole genome (WGS) and whole exome (WES) sequencing 

data can be used as the input. Use of matched normal sample is highly recommended to increase 

the confidence to call the somatic events although this is not theoretically required. If matched 

normal sample is provided, filtering of the germline mutations present in the normal sample will 

be performed. Otherwise “tumour-only mode” is used which may include many false positives and 

should be used with caution. Tumor-only mode is useful only for specific purposes, which and 

further details about the somatic mutation calling pipeline are described on the GATK (1) website 

(https://software.broadinstitute.org/gatk/documentation/article?id=11136). Currently utilisation of 

Panel of Normals (PoN) is not supported. After mutation calling by Mutect2 (2), a comprehensive 

annotation of the mutations is performed by ANNOVAR (3) including its genomic location, 

https://conda.io/en/latest/
https://software.broadinstitute.org/gatk/documentation/article?id=11136
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predicted functional impact of the mutation, implication as a clinically-associated mutation, 

presence in copy number variations from healthy individuals, availability in public databases such 

as 1000 Genomes (4) and COSMIC (5), and so on. The output is raw and annotated somatic 

mutations in both .txt and .vcf formats. 

 

2. RNA-Seq 

This pipeline performs gene and isoform expression quantification from RNA-Seq data, as well as 

comparison of alternative splicing events across samples in a pairwise manner. In the case of 

strand-specific RNA-Seq data, all the analyses are done on both strands separately by using the 

strand information and the output data are provided for both forward and reverse strands (sense 

and antisense for expression). For gene expression, raw read counts are provided by HTSeq-count 

(6), which is the input for many downstream analyses such as differential gene expression 

(DESeq2 (7), EdgeR (8), etc.) and raw read counts are not directly comparable between different 

samples alone. A separate pipeline for differential gene/isoform expression analysis with DESeq2 

(7) / DEXSeq (9) as well as gene set enrichment analysis with GSEA (10) is also available named 

as “Diff-Exp” (described next), which starts from the output of RNA-Seq job. For the isoform 

expression, both read counts and Transcripts Per Million (TPM) quantified by Salmon (11) are 

provided in a strand-specific manner (if available), and TPM values allow comparison between 

different samples. Significant alternative splicing events are provided in the “SPLICING” folder 

as pairwise comparison across all the samples submitted under the same job for 5 different types 

as described on the “Docs” page of the website. 
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3. Diff-Exp 

This pipeline performs differential gene expression analysis by using DESeq2 (7) / DEXSeq (9) 

starting from raw read counts / exon counts using the output of an RNA-Seq job. Therefore, it is 

required to run an RNA-Seq job first on the batch of samples, which will automatically be available 

to the Diff-Exp pipeline once finished. The differentially expressed genes/isoforms are identified 

by comparing two groups of samples specified by the user and the samples under the same group 

are collapsed as technical replicates. Note that replicates are required for the estimation of 

dispersion, as treating single samples as replicates is no longer supported by DESeq2 since v1.22. 

The group assignment of the samples is imported from the “Diff-Exp Group” column on the 

“Annotate” page, and can be changed to submit a new job for a different comparison of interest. 

For the gene expression analysis, normalization, PCA and clustering analyses are still performed 

for all the samples together under the same RNA-Seq job, even though a subset of samples are 

used for comparison (“contrast” parameter in DESeq2). Therefore for accurate results, all RNA-

Seq samples under the same job should ideally come from the same library/batch. Note that for 

strand-specific RNA-Seq, read counts only from the sense strand are used, therefore it's important 

to specify the strand specificity correctly when submitting the RNA-Seq job. Also note that to 

decrease the bias for lowly/not expressed genes, only genes expressed above a certain threshold 

are retained for differential expression analysis (those with total read counts more than 2 times of 

the number of samples), hence the number of genes in the output table may vary from one batch 

to another. 

Once the differentially expressed genes are identified, pathway enrichment analysis by 

Reactome (12) is performed on the up- and down-regulated genes separately, which is described 

below in more detail. In addition, gene set enrichment analysis (GSEA) (10) is optionally available 
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under this pipeline. Gene sets from the Molecular Signatures Database (13) (MSigDB) can be 

selected as the input, including all gene sets, 8 major collections (H: hallmark (14) as the default) 

and several sub-collections. For GSEA, the normalised read counts processed by DESeq2 and 

filtered for lowly expressed genes are used, and the same grouping of the samples are applied as 

above (Group1 vs Group2 as the “phenotype” parameter). Different options for the “permute” and 

“metric” parameters are used depending on the sample size, i.e. if the number of samples in either 

group is less than 3, “log2_Ratio_of_Classes” is applied rather than the default “Signal2Noise”, 

similarly if the number of samples in either group is less than 7, “gene_set” is applied rather than 

the default “phenotype”. The analysis results are directly viewable on the browser as a 

comprehensive report. 

 

4. Pathway-Enrichment 

This pipeline performs standalone pathway enrichment analysis based on Reactome (15) starting 

from a list of input gene ids (Entrez Gene ID (16) and/or HUGO Gene Symbol (17)). Several plots 

are generated for different representations of the enriched genes and the pathways, including 

barplot, dotplot, cnetplot, upsetplot, heatplot, emapplot and pmcplot available in the enrichplot 

(12,18)package. This pipeline is also available as part of the “Diff-Exp” pipeline described above, 

where the input genes are the differentially expressed genes identified in the RNA-Seq samples 

provided by the user. 
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5. RNA-Editing 

This pipeline, adopted from a previously published method (19), identifies specific nucleotide 

changes that occur on the RNA caused by a post- and/or co-transcriptional modification known as 

RNA editing. In mammals, RNA editing predominantly results in A->I(G) changes due to the 

deamination activity of the ADAR enzymes. This pipeline runs on RNA-Seq data alone without 

matched genomic DNA sequence by using a set of stringent filters to exclude potential false 

positives, such as known single nucleotide polymorphisms (SNPs) and spurious sites. In case of 

cell lines, a pre-compiled list of cell line specific DNA mutations can be optionally excluded from 

the editing sites, which should be done in case cell line mutations for the input samples are 

available. The final list of candidate editing sites are reported per sample in repetitive (Alu and 

Non-Alu) and non-repetitive (Unique) genomic regions. In addition, merged tables are also 

provided in long and wide formats which allows to compare the editing sites (only A->G and C-

>T changes) across all the samples submitted under the same job (wide format only if n <= 30), 

and includes annotation by ANNOVAR (3) for the genomic location and the predicted functional 

consequence of each variant. The reported editing sites should be further filtered by the coverage 

and the editing frequency with a proper cut-off for the downstream analyses, for example Coverage 

>= 20 and Mutation_Frequency > 0.1. In addition, Alu Editing Index (AEI) is calculated by using 

RNAEditingIndexer (20) to infer overall RNA editing level as a single value per sample for 6 types 

of mismatches (A2C, A2G, A2T, C2A, C2G, C2T), where A2GEditingIndex is the signal of the 

editing as an indicator of ADAR activity, and C2TEditingIndex is the highest noise (in most cases). 
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6. smallRNA 

This pipeline, developed in-house, quantifies the expression of the smallRNA family including 

miRNAs, snoRNAs, tRNAs, rRNAs and piRNAs. The annotations of the smallRNAs are obtained 

as follows: 

 

i. miRNAs 

• downloaded from miRBase v21 (21), which is originally in hg38, the coordinates were 

then converted to hg19 using UCSC LiftOver (22) tool in Galaxy (23). 

ii. snoRNAs, tRNAs and rRNAs 

• downloaded from UCSC hg19 sno/miRNA, tRNA and rmsk tracks (24), respectively. 

iii. piRNA 

• downloaded from piRNABank (25). 

 

Based on the above annotations, a smallRNA reference genome was prepared to which the raw 

reads are mapped by using NovoAlign (http://www.novocraft.com/products/novoalign/). The 

expression of the smallRNAs are quantified based on the Concise Idiosyncratic Gapped Alignment 

Report (CIGAR) string in the alignment bam file by using an in-house perl script. For the miRNAs, 

because the hairpin and the mature miRNAs share identical sequence but are of different length, 

the reads are assigned according to the mapped read length. The reads which map to a sequence 

longer and shorter than 30bp are counted as hairpin and mature miRNA, respectively. To reduce 

the output file size, raw read counts only for the expressed smallRNAs are provided in the 

expression output file, i.e. those with 0 read count are omitted. 

 

http://www.novocraft.com/products/novoalign/
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7. 4C-Seq 

This pipeline identifies long-range genomic interaction regions generated by 4C-Seq experiment 

using the R package r3Cseq (26). Briefly, for each sample/replicate the raw reads are aligned to 

the masked version of the reference genome (masked for the gap, repetitive and ambiguous 

sequences) for human (hg19) or mouse (mm10, mm9) species as downloaded from the R 

Bioconductor repository (BSgenome.Hsapiens.UCSC.hg19.masked, 

BSgenome.Mmusculus.UCSC.mm10.masked, BSgenome.Mmusculus.UCSC.mm9.masked). The 

viewpoint chromosome, the restriction enzyme (first cutter) to digest the genome, the reads count 

method and the primers (forward and reverse) are the required inputs from the user. The primers 

must be minimum 20 bases long and uniquely mapped to the reference genome on the specified 

viewpoint chromosome. To count the number of reads per region, in addition to the default method 

“Fragment” where the restriction fragments are considered, a non-overlapping window size in the 

range of 2-100kb can also be selected. The number of mapped reads for each fragment/window 

are then counted and normalised to obtain RPM (the reads per million per fragment/window) 

values to perform the statistical analysis. This pipeline works with or without control samples, and 

also with or without replicates, however, if replicates are provided, it is compulsory also to provide 

control samples. The output is a text file containing the interaction regions along with the statistics 

and the overlapping genes, and a pdf report which provides plots for the visualisation of the 

interactions. 
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8. ChIP-Seq 

This pipeline identifies and characterises genome-wide binding sites for DNA-protein interactions. 

Peak regions are called by using MACS2 (27) with default parameters, allowing user an option to 

choose for “regular” or “broad” peaks. Peak annotation and motif analysis are done by HOMER 

(28). The visualisation of the data is provided by a UCSC track hub (29). The output is a text file 

containing the peak regions with statistics and gene annotations, motif enrichment analysis results 

and a link to the UCSC Genome Browser (22) to display the peaks as custom tracks. 

 

9. RIP-Seq 

This pipeline, developed in-house (unpublished work), identifies and characterises genome-wide 

binding sites for RNA-protein interactions. Reads from the RIP-Seq sample and its control are 

mapped against specified reference genome by STAR (30) with GENCODE (31) transcriptome 

annotation. The resulting alignments are separated into two parts: (1) Exonic part consisting of 

alignments belonging to GENCODE annotated transcripts. (2) Non-exonic part consisting of the 

other alignments. Based on the number of reads mapped to the transcriptome, the larger one of the 

RIP and the control is shrunk down linearly to fit the size of the smaller one, thereby producing 

the normalised read count. The read coverage of each position is estimated as the average of 

normalised read counts within surrounding 150 bases. Based on the comparison of the read 

coverage between the IP and the control, sites with ≥ 2-fold enrichment and Poisson distribution 

p-value ≤ 10-5 are defined as peaks. Each peak is extended to surrounding areas until the fold 

enrichment dropped below 2 (note: a peak from the exonic part could span across multiple exons). 

Overlapping peaks are merged, and those ≤ 300bp in size are ignored. The summit of a peak is 

defined as the position of highest fold enrichment in the peak. This pipeline accepts only paired-
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end reads as the input. For each job, 1 experiment up to 10 replicates may be submitted, and each 

experiment targeting a different protein can be submitted as a different job. The output is text files 

containing the peak regions in exonic and non-exonic regions and a link to the UCSC track hub 

(29) to visualise the peaks. 

 

10.  SHAPE-Seq 

This pipeline provides secondary structure information on RNA based on experimental constraints. 

The analysis is performed by using icSHAPE pipeline (32) and RNAfold (33) from the 

ViennaRNA package (34) with the default parameters unless otherwise selected. Briefly, after 

trimming for adapter sequences and removal of PCR duplicates, the reads are mapped to the 

selected human transcriptome by using bowtie2 (35). The transcript abundance is estimated by 

using Reads Per Kilobase of transcript per Million (RPKM) values and reverse transcription (RT) 

stops are calculated in each transcript. The background and the target RT stops from the control 

(DMSO) and the treated (NAI) samples, respectively, are normalised to calculate the enrichment 

reactivity scores for all the transcripts. These enrichment scores are further filtered to select the 

candidate transcripts with valid scores as well as high hit coverage and base density, where the 

enrichment threshold can be set by the user. The secondary structures of the substrates are then 

predicted with the SHAPE (36) reactivity scores as constraints to guide the structure prediction. 

The output is text files containing the reactivity scores before and after filtering, and pdf files 

depicting the secondary structures of the target RNAs. 
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11.  rMATS 

This pipeline identifies differential alternative splicing events from RNA-Seq data between test 

and control samples by using replicate Multivariate Analysis of Transcript Splicing (rMATS) (37) 

(http://rnaseq-mats.sourceforge.net/), which requires replicates as per its design. The identified 

events are categorised as skipped exon (SE), alternative 5’ splice site (A5SS), alternative 3’ splice 

site, mutually exclusive exons (MXE) and retained intron (RI). This pipeline requires replicates as 

the input, and the output is text files for each category. This is a standalone tool for splicing analysis 

in addition to the in-house developed tool available under the RNA-Seq pipeline. 

 

12.  circRNA 

This pipeline, developed in-house, identifies circRNAs based on chimeric junction reads from 

STAR (30) alignment and quantifies their expression as read counts. Both RNA-Seq and circRNA-

Seq data can be used as the input. However, circRNA enriched libraries are strongly suggested for 

easier detection, i.e. polyA(-), rRNA-depleted, RNase R treated for linear RNA digestion etc. 

PolyA selected RNA-Seq data are not useful for circRNA detection, as circRNAs do not possess 

polyA tails. At the end of the pipeline, circRNAs identified from all the samples under the same 

job are merged into one file to make comparison and filtering easy. 

13.  eCLIP-Seq 

This pipeline identifies genomic locations of RNA-bound proteins. The output is a text file 

containing the normalised peak regions annotated with the overlapping genes. The peaks are 

identified by eCLIP (38,39) pipeline and annotated by using ANNOVAR (3) for the genes and the 

genomic locations. For the annotation, the mid-point (i.e. the base at the centre) of the peaks are 

used rather than the entire region for simplicity. 

http://rnaseq-mats.sourceforge.net/
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14.  Bisulfite-Seq 

This pipeline identifies methylation pattern on bisulfite-treated genomic DNA. The leading bases 

and the adaptor sequences are trimmed from the reads by TrimGalore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Then methylation calls are 

performed by using Bismark (40) with default parameters on the trimmed files, first by removing 

PCR duplicates by deduplicate_bismark script and then extracting the DNA methylation status on 

every cytosine site by bismark_methylation_extractor script. DNA methylation status are 

converted to bigWig format for the visualization of the data as custom tracks by a UCSC track hub 

(29). The processing and summary reports are generated by bismark2report and bismark2summary 

scripts. de-novo differentially methylated regions (DMRs) are identified by metilene (41) for all 

pairwise sample combinations under the same job. A filtered file for significant DMRs (q < 0.05) 

and basic statistic plots are also provided. 

 

15.  scRNA-Seq 

This pipeline performs single cell gene expression (scRNA-Seq) analysis for the samples 

generated by 10x Genomics platform by using Cell Ranger software 

(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-

cell-ranger). The required inputs are sample index read (I1), read1 (R1) and read2 (R2) files in 

fastq format that are already demultiplexed. Each sample is individually processed by cellranger 

count for feature counting, and then an aggregated analysis on all the samples under the same job 

is performed with cellranger aggr. The output is barcoded BAM, run summary, cloupe file, 

analysis folder, raw and filtered feature-barcode matrix files, as overviewed here. Cloupe file can 

be downloaded to visualise and analyse the data for finding significant genes, identifying cell 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
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types, and exploring substructure within cell clusters by following Loupe Cell Browser Tutorial. 

Analysis folder output and matrix files can be downloaded to directly utilize in R or other software 

specialized for single cell RNA-Seq data (such as Seurat, Monocle, dropEst, or others) for 

downstream analyses. 

 

16.  ngsplot-deepTools 

This pipeline generates a number of useful plots to visually explore RNA-Seq and ChIP-Seq data 

at functional genomic regions by using both ngsplot (42) and deepTools (43) . The pipeline starts 

from fastq files and performs genome alignment as the first step using STAR (30) for RNA-Seq 

and bowtie2 (35) for ChIP-Seq samples. Then for each sample, genome-wide (GENOME) 

coverage plots are generated useful for bias detection from the bam files by ngsplot at 5 different 

functional genomic regions: GENEBODY, TSS, TES, EXON, CGI. If input genes are provided 

by the user (optional), the same plots are additionally generated limited to these genes (GENES). 

Note that currently only gene symbols and 1 list of genes are accepted, and genes analysis will be 

limited to those symbols matching NCBI RefSeq database (UCSC refGene table). In addition, 

OVERALL plots including all the samples under the same job are also provided by ngsplot as well 

as deepTools (coverage, correlation, PCA, fingerprint, heatmap, profile, gcbias) for genome-wide 

and for the input genes (if provided and wherever applicable). 
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