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Resnet34 on all magnifications:
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Figure S1. Training Loss (a) and Training Accuracy (b) for Resnet34 on 5× magnification.                                                     [image: A comparison of a graph

Description automatically generated with medium confidence]                                                                
Figure S2. Training Loss (a) and Training Accuracy (b) for Resnet34 on 10× magnification.
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Description automatically generated with medium confidence]
Figure S3. Training Loss (a) and Training Accuracy (b) for Resnet34 on 40× magnification.

Resnet18 on all magnifications:
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Figure S4. Training Loss (a) and Training Accuracy (b) for Resnet18 on 5× magnification.
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Figure S5. Training Loss (a) and Training Accuracy (b) for Resnet18 on 10× magnification.
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Description automatically generated with medium confidence]
Figure S6. Training Loss (a) and Training Accuracy (b) for Resnet18 on 20× magnification.
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Description automatically generated with medium confidence]
Figure S7. Training Loss (a) and Training Accuracy (b) for Resnet18 on 40× magnificatin.

Resnet50 Training Loss and Accuracy across all magnifications:  
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Figure S8. Training Loss (a) and Training Accuracy (b) for Resnet50 on 5× magnification.
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Figure S9. Training Loss (a) and Training Accuracy (b) for Resnet50 on 10× magnification.
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Figure S10. Training Loss (a) and Training Accuracy (b) for Resnet50 on 20× magnification.
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Figure S11. Training Loss (a) and Training Accuracy (b) for Resnet50 on 40× magnification.
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