Extracellular vesicles (EVs) are lipid bilayer envelopes that encapsulate cell-specific cargo, rendering them promising biomarkers for diverse diseases. Chagas disease, caused by the parasite Trypanosoma cruzi, poses a significant global health burden, transcending its initial epicenter in Latin America to affect individuals in Europe, Asia, and North America. In this study, we aimed to characterize circulating EVs derived from patients with chronic Chagas disease (CCD) experiencing reactivation of acute symptoms. Blood samples collected in EDTA were processed to isolate plasma and subsequently subjected to ultracentrifugation for particle isolation and purification. The EVs were characterized using nanoparticle tracking analysis and enzyme-linked immunosorbent assay (ELISA). Our findings revealed distinctive differences in size, concentration, and composition of EVs between immunosuppressed patients and those with CCD. Importantly, these EVs play a critical role in the pathophysiology of Chagas disease and demonstrate significant potential as biomarkers in the chronic phase of the disease. Overall, our findings support the potential utility of the CL-ELISA assay as a specific sensitive tool for detecting circulating EVs in chronic chagasic patients, particularly those with recurrent infection following immunosuppressive treatment or with concurrent HIV and Chagas disease. Further investigations are warranted to identify and validate the specific antigens or biomarkers responsible for the observed reactivity in these patient groups, which may have implications for diagnosis, monitoring of treatment and prognosis.