Water covers a greater part of the earth's surface. Even though we know very little about the underwater world as most parts of it remain unexplored. Oceans including other water bodies hold huge natural resources and also the aquatic lives. These are mostly unexplored and very few of those are known due to unsuited and hazardous environments for the human to explore. This vast underwater world can be monitored remotely from a distant location with much ease and less risk. To monitor water-bodies remotely in real-time, sensor networking has been playing a great role. It is needed to deploy a wireless sensor network over the volume which we want to surveil. For vast water bodies like oceans, rivers and large lakes, data is collected from the different heights of the water level which is sent to the surface sink. Unlike terrestrial communication, radio waves and other conventional mediums can't serve the purpose of underwater communication as they pose high attenuation and very reduced transmission range. Rather an acoustic medium can transmit data more efficiently and reliably in comparison to other mediums. To transmit data reliably from the bottom of the sea to the sinks at the surface, multi-hop communication is needed which must involve a certain scheme. For seabed to surface sink communication, leading researchers have proposed different routing protocols. The goal of these routing protocols is to make underwater communication more reliable, energy-efficient and delay efficient thus to improve the performance of the overall communication. This paper surveys the advancement and applications of the routing protocols which eventually helps in finding the most efficient routing protocol for the Underwater Wireless Sensor Network (UWSN).