
Citation: Sun, X.; Cai, M.; Ding, J. Title.

Journal Not Specified 2023, 1, 0.

https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: c© 2023 by the authors.

Submitted to Journal Not Specified for

possibleopenaccesspublicationunder

thetermsandconditionsoftheCreative

CommonsAttri-bution(CCBY)license

(https://

creativecommons.org/licenses/by/

4.0/).

Article

A GPU accelerated method for 3-D nonlinear Kelvin ship wave
patterns simulation
Xiaofeng Sun* 1 , Miaoyu Cai 2 and Junchen Ding 1

1 Navigation College, Dalian Maritime University, No.1 Linghai Road, Dalian 116026,
China;xfsun_dlmu@163.com; 2398719038@qq.com

2 School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, No.800 Dongchuan
Road, Shanghai 200000, China; caimiaoyu@outlook.com

* Correspondence: xfsun_dlmu@163.com

Abstract: Ship wave is of great interest for wave drag, coastal erosion and ship detection. In this paper, 1

a highly-paralleled numerical scheme is proposed for simulating three-dimensional (3-D) nonlinear 2

Kelvin ship waves effectively. First, a numerical model for nonlinear ship waves is established 3

based on potential flow theory, boundary integral method and Jacobian-free Newton-Krylov (JFNK) 4

method. In order to improve computational efficiency and reduce data storage of JFNK method, a 5

banded preconditioner method is then developed by formulating the optimal bandwidth selection 6

rule. After that, a Graphics Process Unit (GPU) based parallel computing framework is designed, 7

and a GPU solver is developed by using Compute Unified Device Architecture (CUDA) language. 8

Finally, numerical simulations of 3-D nonlinear ship waves under multiple scales are performed by 9

using the GPU and CPU solvers. Simulation results show that the proposed GPU solver is more 10

efficient than the CPU solver with the same accuracy. More than 66% GPU memory can be saved and 11

the computational speed can be accelerated up to 20 times. Hence, the computation time for Kelvin 12

ship waves simulation can be significantly reduced by applying the GPU parallel numerical scheme, 13

which lays a solid foundation for practical ocean engineering. 14

Keywords: Kelvin wake pattern;GPU acceleration;Boundary integral method;JFNK method;Banded 15

preconditioner method 16

1. Introduction 17

This study is dedicated to studying highly-parallel algorithms for steady three-dimensional18

free surface profiles that are caused by a disturbance to a free stream. These profiles will 19

appear stationary in the reference frame of the moving ship, referred to as “Kelvin ship 20

waves” [1]. Researches on Kelvin ship wave patterns have ongoing practical applications 21

to ship hull design, ship detection and environmentally friendly shipping policies [2–6]. 22

Froude [7], a famous naval architect, first comprehensively described the morphology 23

and main characteristics of ship waves. Under the assumption of infinite water depth, 24

Kelvin [8] replaced a moving ship with a pressure disturbance point moving in a constant 25

velocity straight line on the water surface, proposed the famous Kelvin angle of 19.47◦. In 26

recent years, with the further study of ship wave characteristics, Rabaud [9] noted that for 27

sufficiently fast-moving ships, contrary to commonly held views, the wake angle that is 28

observed behind a steadily moving ship is less than the well-known Kelvin angle. This 29

finding aroused the interest of many academics. Subsequently, various effect factors for 30

the Kelvin wake form were discussed in plenty of papers, e.g., Froude number [10,11], 31

non-axisymmetric simplified ship models and interference effects [12–16], shear current, 32

submergence depth and finite depth [17–20], surface tension and the bottom topography [21, 33

22], and viscosity [23], etc. Accordingly, the research method of ship waves has gradually 34

shifted from the previous analytical algorithms to numerical simulation. 35

Version September 6, 2023 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0001-5926-0382
https://www.mdpi.com/journal/notspecified


Version September 6, 2023 submitted to Journal Not Specified 2 of 24

The mathematical analysis of ship wave patterns has a very long history, the over- 36

whelming majority of which concerns linear theories. Havelock [24] firstly presented the 37

linear solution for the classic problem of flow past a pressure distribution. Such ideal 38

perturbations can also be replaced by a single submerged point source singularity [25] and 39

submerged bodies [26,27]. Another approach is to consider the ship wave pattern due to a 40

thin ship [28,29]. With the development of numerical methods and computer technology, 41

numerical simulation methods become more and more popular, and the study of ship waves 42

had been extended from two-dimensional (2-D) linear problems to three-dimensional (3-D) 43

nonlinear problems. Nowadays, there are three numerical methods widely used to solve 44

surface wave problems: finite-difference method, finite-element method and boundary 45

integral method [30–36]. In particular, Forbes [37,38] apply boundary integral method to 46

build a series of integro-differential equation by placing a mesh of N×M grid points over 47

the truncated plane, the full nonlinear free surface flow problem was solved with moderate 48

efficiencies. In more recent times, many papers have applied Forbes’s formulation to solve 49

fully 3-D nonlinear ship waves with meshes between 60× 20 and 181× 61 [39–41]. And 50

Pethiyagoda [42] noted that with less than 100 points used along the x−direction, the 51

resolution over each wavelength is simply not of a sufficient standard for any claims about 52

grid-independence to be made. 53

With increasing mesh size, however, the computation time increases exponentially us- 54

ing only Central Processing Unit (CPU) computation power. Therefore, people are seeking 55

a viable, cheap and portable alternative approach. As the electric industry develops, the 56

Graphics Processing Unit (GPU), a multi-processor designed to optimize for the execution 57

of a massive number of threads, has become an alternative acceleration approach. Currently, 58

the powerful GPU parallel computing ability has been used to improve the studies on 59

ocean engineering. Hérault [43] introduced the GPU acceleration technique in Smoothed 60

Particle Hydrodynamics (SPH) to simulate the dam-break flow. Hori [44] developed a 61

GPU-based MPS code and achieved 7 times speedup in simulating 2-D dam-break flow 62

with 110 thousand particles. Pethiyagoda [42] introduced the GPU acceleration technique 63

in the boundary integral method to improve the computational efficiency of 3-D nonlinear 64

ship wave problem. Xie [45] employed an in-house solver MPSGPU-SJTU coupled with 65

GPU techniques for the liquid sloshing simulation, to study the factors leading to the 3-D 66

effect. LU [46] developed a GPU-accelerated high-order spectral solver to simulate the 67

wave propagation and interaction with current in far field. 68

In this paper, a parallel solution framework based on GPU is designed for nonlinear 69

ship wave problem, in which almost all operations are performed in GPU device. Since 70

the nonlinear boundary integral equation on each node is independent of the synchronous 71

equations on other nodes, plenty of threads on GPU can be used to complete the integration 72

operation for each node simultaneously. In addition, the parallel computing method can 73

be used for the calculation of the large-scale linear sparse system, the complex inversion 74

process is quickly finished by using Compute Unified Architecture (CUDA) language. 75

According to this framework, a highly-paralleled GPU solver is proposed to simulate 3-D 76

nonlinear Kelvin ship waves. The computation speed for the 3-D nonlinear ship waves 77

simulation can be significantly increased, it is convenient to study the larger scale problems. 78

On the other hand, the size of Random-Access Memory limits grid growth, the application 79

of the banded preconditioner method can greatly save running memory to break through 80

this limitation. The banded preconditioner method helps to achieve the standard for the 81

grid-independence. 82

The remainder of this paper is organized as follows. A brief introduction of the 83

problem formulation is given in Section 2. In Section 3, the banded preconditioner JFNK 84

algorithm is described. In Section 4, the theory and implementation of the GPU acceleration 85

technique are presented. The accuracy, efficiency and capability of the GPU solver are 86

verified in Section 5, and a summary in Section 6 concludes the paper. 87



Version September 6, 2023 submitted to Journal Not Specified 3 of 24

2. Numerical Model 88

This paper supposes that a flow is directed along the positive x-axis with uniform 89

speed U. Considering the irrotational flow of an inviscid, incompressible fluid of infinite 90

depth with ignoring the effects of surface tension, the potential flow theory is applied. 91

Therefore, a source singularity of strength m is introduced at a distance L below the surface, 92

as illustrated in Figure 1. The transient waves will be generated on the free surface, on 93

account of the disturbance caused by a source. Free surface wave height and flow field 94

velocity potential can be expressed as z = ζ(x, y) and Φ(x, y, z). This paper is devoted to 95

the steady-state problem that arises in the long time limit of this flow.

Figure 1. Illustration of the disposition of the fluid.
96

Dimensionless analysis is performed with fluid velocity U and distance L. The di- 97

mensionless velocity potential Φ′(x′, y′, z′) satisfies Laplace’s equation, the free surface 98

kinematic and dynamic boundary condition, the radiation condition and the limiting be- 99

havior of source singularity. Then the problem is solved by the boundary integral method, 100

the velocity potential can be regarded as a function simply of the two independent variables 101

x′ and y′, and will be denoted by the symbol φ′(x′, y′) = Φ′(x′, y′, ζ ′(x′, y′)). The final 102

boundary integral equation is described, as follows: 103

2π(φ′(Q)− x′) =
∫ ∞

0

∫ ∞

−∞
[φ′(P)− φ′(Q)− ρ′ + x′]K(1)(ρ′, σ′, x′, y′)dσ′dρ′

+
∫ ∞

0

∫ ∞

−∞
ζ ′ρ(P)K(2)(ρ′, σ′, x′, y′)dσ′dρ′ − ε′

[x′2 + x′2 + (ζ ′(Q) + 1)2]
1
2

(1)

where the kernel functions K(1)(ρ′, σ′, x′, y′) and K(2)(ρ′, σ′, x′, y′) are described, as
follows:

K(1)(ρ′, σ′, x′, y′
)
=

ζ ′(P)− ζ ′(Q)− (ρ′ − x′)ζ ′ρ(P)− (σ′ + y′)ζ ′σ(P)[
(ρ′ − x′)2 + (σ′ + y′)2 + (ζ ′(P)− ζ ′(Q))2

] 3
2

+
ζ ′(P)− ζ ′(Q)− (ρ′ − x′)ζ ′ρ(P)− (σ′ − y′)ζ ′σ(P)[

(ρ′ − x′)2 + (σ′ − y′)2 + (ζ ′(P)− ζ ′(Q))2
] 3

2



Version September 6, 2023 submitted to Journal Not Specified 4 of 24

K(2)(ρ′, σ′, x′, y′
)
=

1[
(ρ′ − x′)2 + (σ′ + y′)2 + (ζ ′(P)− ζ ′(Q))2

] 3
2

+
1[

(ρ′ − x′)2 + (σ′ − y′)2 + (ζ ′(P)− ζ ′(Q))2
] 3

2

There is a singularity in the second integral of boundary integral equation Eq. (1), it
can be solved as follows:∫ y′M

y′1

∫ x′N

x′1
[ζ ′ρ(P)K(2)(ρ′, σ′, x′, y′

)
− ζ ′x(Q) S(2)(

ρ′, σ′, x′, y′
)
]dσ′dρ′ + ζ ′x(Q)I′(Q) (2)

and

I′(Q) =
∫ y′M

y′1

∫ x′N

x′1
S(2)(ρ′, σ′, x′, y′

)
dσ′dρ′ (3)

where the kernel function S(2)(ρ′, σ′, x′, y′) can be described, as follows:

S(2)(ρ′, σ′, x′, y′
)
=

1√
A′(ρ′ − x′)2 + B′(ρ′ − x′)(σ′ − y′) + C′(σ′ − y′)2

+
1√

A′(ρ′ − x′)2 − B′(ρ′ − x′)(σ′ + y′) + C′(σ′ + y′)2

A′ = 1 + ζ ′x
2
(Q)

B′ = 2ζ ′
2
x(Q)ζ ′y

2
(Q)

C′ = 1 + ζ ′y
2
(Q) (4)

Now, the integral I′(Q) contains the singularity and is computed exactly in terms of
logarithms:∫∫ dsdt

[As2 + Bst + Ct2]
=

t

A
1
2

ln(2As + Bt + 2[A(As2 + Bst + Ct2)]
1
2

+
s

C
1
2

ln(2Ct + Bs + 2[C(As2 + Bst + Ct2)]
1
2

+ h1(s) + h1(t) (5)

Moreover, the free surface conditions can be simplified by the symbol φ′(x′, y′). Then
the kinematic and dynamic boundary conditions of the free surface are combined to be

(1 + ζ ′2x)φ
′2
y +

(
1 + ζ ′2y

)
φ′2x − 2ζ ′xζ ′yφ′

x
φ′y

2(1 + ζ ′2x + ζ ′2y)
+

ζ ′

F′2
=

1
2

(6)

To solve the above nonlinear problem numerically, the N ×M mesh is established 104

on the free surface (N and M represent the number of longitude and latitude lines of 105

the mesh, respectively). The x-coordinates and y-coordinates of nodes are x′1, x′2, . . . , x′N 106

and y′1, y′2, . . . , y′N with intervals ∆x′ and ∆y′ in the x- and y- directions. The free surface 107

elevation ζ ′(x′, y′) and the velocity potential φ′(x′, y′) are represented by discrete point 108

values ζ ′k,l and φ′k,l at the nodes (x′k, y′l), k = 1, . . . , N, l = 1, . . . , M. And this paper chooses 109

the x- derivatives of the functions φ′ and ζ ′ as the basis for the solutions, together with 110



Version September 6, 2023 submitted to Journal Not Specified 5 of 24

the values of φ′ and ζ ′ at the upstream boundary of the truncated domain, resulting in the 111

vector of 2(N + 1)M unknowns u to be 112

u =[φ′1,1, (φ′x)1,1, . . . ,
(
φ′x
)

N,1, . . . , φ′1,M,
(
φ′x
)

1,M, . . . ,
(
φ′x
)

N,M

ζ ′1,1,
(
ζ ′x
)

1,1, . . . ,
(
ζ ′x
)

N,1, . . . , ζ ′1,M,
(
ζ ′x
)

1,M, . . . ,
(
ζ ′x
)

N,M]T . (7)

Therefore, The boundary integral equation can be discretized to the (N − 1)M nonlin-
ear equations, and an additional (N − 1)M nonlinear equations are given by evaluating
the free surface condition at the half mesh points. Moreover, 4M equations are provided
by applying the radiation condition as follows. There are total 2(N + 1)M equations to be
solved for the 2(N + 1)M unknowns in the nonlinear ship wave problem.

x′1((φ
′
x)1,l − 1) + γ(φ′1,l − x′1) = 0 (8)

x′1((φ
′
xx)1,l − 1) + γ((φ′x)

′
1,l − 1) = 0 (9)

x′1(ζ
′
x)1,l + γζ ′1,l = 0 (10)

x′1(ζ
′
xx)1,l + γ(ζ ′x)1,l = 0 (11)

where γ is the decay coefficient. 113

Furthermore, more details about the governing equations, the boundary integral 114

method and numerical discretization are provided by Sun[40]. 115

3. Banded Proconditioner JFNK Algorithm 116

3.1. Jacobian-free Newton-Krylov method 117

JFNK method combines inexact Newton iteration method with Krylov subspace 118

method. Its core content is the Generalized Minimum Residual (GMRES) algorithm, 119

according to the matrix free idea, uses the finite difference form to approximate the product 120

of coefficient matrix and vector, avoiding the Jacobian matrix calculation and storage alone. 121

After numerical discretization, a nonlinear system of equations could be obtained, as
follows:

F(u) = 0 (12)

where u is the vector of unknowns of the length 2(N + 1)M. 122

JFNK method mainly has two processes, namely external and internal iterations. The
external iteration is the inexact Newton iteration method, and the damping parameter λk
is used to ensure that the nonlinear residual decreases significantly in each iteration for
t = 0, 1, 2, . . . , as follows:

ut+1 = λkδut + ut, λk ∈ (0, 1] (13)

Its internal iteration is GMRES algorithm [47], which efficiently solves the correction
in inexact Newton iteration, that is, computes large-scale linear equations as follows:

J(ut)δut = −F(ut) (14)

where J(ut) = ∂F(ut)/∂ut is the Jacobian matrix [48]. 123

The GMRES method is one of the Krylov subspace methods which are attractive as 124

linear solvers in the context of nonlinear Newton iteration. Since each iteration does not 125

require the exact value of δut in solving nonlinear equations, the GMRES algorithm fits 126

this need well and thus can increase total computation speed. 127



Version September 6, 2023 submitted to Journal Not Specified 6 of 24

Firstly, the approximate solution of δut is found by projecting obliquely onto the
Krylov subspace

Km(JtP−1, Ft) = span{Ft, JtP−1Ft, . . . , (JtP−1)m−1Ft} (15)

where m is the value of the subspace dimension and the accuracy of the solution increases 128

with the subspace dimension, Jt = J(ut), Ft = F(ut). The matrix P ≈ Jt is the precondi- 129

tioner matrix, whose purpose is to construct an approximation to the Jacobian Jt which is 130

cheap to form and to factorize. The calculation speed of the GMRES method can be signifi- 131

cantly improved with a preconditioner matrix, because the spectrum of the preconditioned 132

Jacobian JtP−1 exhibits a clustering of eigenvalues [49]. 133

An initial linear residual r0 is defined, given an initial guess u0, for the Newton
correction,

r0 = −F(u0)− J0P−1δu0 (16)

Subsequently, the GMRES iteration minimizes ‖rt‖ to a suitable value. These Jacobian-
vector products can be approximated by applying first-order difference quotients:

JtP−1v ≈ F(ut + hP−1v)− F(ut)

h
(17)

where v represents an arbitrary vector used in building the Krylov subspace [50], and the h
is a small perturbation

h =

√
(1 + ‖ut‖)hmach

‖v‖ (18)

Finally, as for the nonlinear ship wave problem, the initial guess u0 can be defined
as below. The nonlinear equations are solved according to the calculation flow of baned
preconditioner JFNK method, as shown in Figure 2. Note that v in the figure is a unit
orthogonal vector in the orthonormal basis of Krylov subspace.

φ′1,l = x′0, (φ′x)k,l = 1, ζ ′1,l = 0, (ζ ′x)k,l = 0, k = 1, . . . , N and l = 1, . . . , M. (19)



Version September 6, 2023 submitted to Journal Not Specified 7 of 24

Figure 2. Calculation flow chart of the banded preconditioner JFNK method

3.2. Banded preconditioner method 134

Iterative methods, e.g. GMRES method etc., are currently most popular choices for 135

solving large sparse linear systems of equations. However, this process of prcconditioning 136

is essential to most successful application of iterative methods, since the convergence of 137

a matrix iteration depends on the properties of the matrix, e.g. the eigenvalue, etc., [51]. 138

Generally, the methods for choosing the appropriate preconditioner are different for the 139

specific problems. In this section, a banded preconditioner method for solving the nonlinear 140

ship wave problem is proposed. 141

3.2.1. Building preconditioner matrix 142

For a good preconditioner P, it should be cheap to form and to factorizeis. Meanwhile, 143

the preconditioned Jacobian JtP−1 should be easier to solve, which means the eigenvalues 144

are more concentrated. In general, it is feasible to consider a matrix constructed from the 145

same problem under simplified physics [49]. This paper applies the numerical scheme to 146

the linearized governing equations which apply formally in the limit ε′ → 0. 147



Version September 6, 2023 submitted to Journal Not Specified 8 of 24

The equations of the linear problem of computing the Havelock potential for flow past
a submerged point source can be described, as follows [25,52–54]:

ζ ′x = φ′z on z′ = ζ ′(x′, y′) (20)

φ′x − 1 +
ζ ′

F′2
= 0 on z′ = ζ ′(x′, y′) (21)

According to the linear free surface boundary condition, the boundary integral equa-
tion can be described, as follows:

2π(φ′(Q)− x′) = − ε′

(x′2 + y′2 + 1)
1
2
+
∫ ∞

0

∫ ∞

−∞
φ′ρ(P)K(3)(ρ′, σ′, x′, y′)dσ′dρ′ (22)

where

K(3)(ρ′, σ′, x′, y′) =
1

[(ρ′ − x′2)2 + (σ′ + y′)2]
1
2
+

1

[(ρ′ − x′2)2 + (σ′ − y′)2]
1
2

After numerical discretization, the linear system can be described, as follows:

F1k,l = φk,l(Q) +
ζ ′k,l(Q)

F′2
− 1 (23)

F2k,l = 2π(φ′k,l(Q)− x′k) +
ε′

[x′2k(Q)− y′2l(Q) + 1]
1
2
−

N

∑
i=1

M

∑
j=1

w(i, j)[(ζ ′ρ)i,j − (ζ ′x)i,j]K
(3)
i,j,k,l − (ζ ′x)i,j I (24)

where w(i, j) is the weighting function for numerical integration, for k = 1 . . . (N − 1), l = 148

1 . . . M. Then the linear Jacobian can be calculated directly, by differentiating the linear 149

system with respect to φ′1,m, (φ′x)n,m, ζ ′1,m and (ζ ′x)n,m. Therefore, the preconditioner matrix 150

P can be formed cheaply, and the eigenvalues of JtP−1 obviously cluster as shown in 151

Figure 3. 152

(a) Jt (b) JtP−1

Figure 3. A plot of the spectrum for Jt and JtP−1 on a 31× 11 mesh.

3.2.2. Preconditioner factorisation and storage 153

The JFNK method requires the result of the product of the inverse preconditioner
matrix and vector, P−1v. In general, the operation of inverting a matrix should be converted
to solving a system of linear equations, Pr = v. Find the solution r, the result of P−1v will



Version September 6, 2023 submitted to Journal Not Specified 9 of 24

be got. In order to calculate this linear system conveniently, the preconditioner can be
divided up into four submatrices and factorized using the block decomposition,

P =

[
A B
C D

]
=

[
I 0

CA−1 I

][
A 0
0 D− CA−1B

][
I A−1B
0 I

]
(25)

where I is the unit matrix, A, B, C and D are the four submatrices which are constructed on 154

the base of Jacobian Jt. 155

Accordingly, the vector v can be divided into upper and lower parts [v1 v2]T, and
then the solution r can be got after three cheap steps, as follows:[

o1
o2

]
=

[
v1

v2 − CA−1v1

]
(26)

[
s1
s2

]
=

[
A−1o1

(D− CA−1B)−1o2

]
(27)

[
r1
r2

]
=

[
s1 −A−1Bs2

s2

]
(28)

The calculation of P−1v in the Eq. (17) can be facilitated according to the progressive 156

order from Eqs. (26) - (28). The reasons are as follows: the submatrix A is tridiagonal, 157

allowing for easy storage and fast factorization; the submatrices B and C are only used 158

in matrix vector multiplication operations and thus can be implemented as functions that 159

perform these operations rather than stored as matrices. 160

3.2.3. The banded preconditioner 161

After the factorisation operation, the calculation and storage of preconditioner matrix 162

P are optimized. However, the size of submatrix D is (N + 1)M× (N + 1)M, it will increase 163

dramatically as the size of mesh increases. Consequently, there will be two problems when 164

the preconditioner matrix size is large. One is a memory problem, the running memory of 165

this computer cannot accommodate this preconditioner matrix; the other is an efficiency 166

problem, inverting the preconditioner matrix will take much time. 167

By observing the preconditioner matrix, it can be found that the values decay with 168

distance from the main block diagonal. This observation suggests using a banded ap- 169

proximation to the matrix for our preconditioner, as shown in Figure 4. Moreover, batch 170

construction avoids the problem of insufficient running memory due to the large size of the 171

submatrix D. The compressed sparse row (CSR) data format is used to save this matrix. 172

Hence, a lot of memory can be saved. 173

Figure 4. Construction of the banded preconditioner



Version September 6, 2023 submitted to Journal Not Specified 10 of 24

The feasibility of the banded preconditioner matrix method is verified, as shown in 174

Figure 5. The tightness of clustering can be further improved by increasing the band- 175

width. When the band = 21, the eigenvalues of JtP−1 have been clustered, satisfying the 176

requirement of the GMRES method. 177

(a) band = 1 (b) band = 11 (c) band = 21

Figure 5. A plot of the spectrum for Jt and JtP−1 on a 31× 11 mesh for: band = 1, band = 11, band = 21.

For certain bandwidth values, the computing speed of GMRES will not be significantly 178

improved by increasing the bandwidth further. However, the time required for inverse 179

operation will increase in these cases as the banded preconditioner matrix size increases. 180

The bandwidth regulates the runtime of inverting banded preconditioner matrix and the 181

number of the inner iterations of the GMRES method. The runtime of inverting banded 182

preconditioner matrix increases with the bandwidth, while the inner iterations decrease 183

with the bandwidth. Therefore, the total runtime will decrease first and then increase with 184

the bandwidth, as shown in Figure 6. The case is F′ = 0.7 and ε′ = 0.4, computed on a 185

121× 41 mesh, when b′ (bandwidth band = b′ × (N + 1)) is less than 14, an ill-conditioned 186

coefficient matrix is formed, the accuracy of the solution is low. The runtime decreases 187

with b′ ranges from 14 to 16, then the runtime increases monotonically with b′ ranges from 188

16 to 20. For the case of 121× 41 mesh, the shortest running time is 5.6s with the optimal 189

bandwidth band = 16× (N + 1). Therefore, provided that the appropriate bandwidth is 190

selected, not only can save memory, but also can improve the computational efficiency.

Figure 6. The plot of runtime against the bandwidth, computed on a 121× 41 mesh with ∆x′ =
0.3, ∆y′ = 0.3, band = b′ × (N + 1).

191

4. GPU Parallel Computing Framework 192

Although the banded preconditioner JFNK algorithm can improve the computational 193

efficiency of nonlinear ship wave problem, the running time of the program will increase 194

significantly with the increase of the mesh size, which is very unfavorable to the further 195



Version September 6, 2023 submitted to Journal Not Specified 11 of 24

study of nonlinear ship wave. The reason is that the CPU is not good at handling such 196

large-scale nonlinear equations. Compared with CPU, GPU possesses more arithmetic 197

logic units in the same chip area [55]. This hardware framework makes GPU own plenty 198

of threads naturally to process large amounts of data simultaneously. The computational 199

efficiency of nonlinear ship wave can be greatly improved by utilizing the GPU acceleration 200

technique . 201

4.1. Parallel computing framework design 202

In this paper, Compute Unified Device Architecture (CUDA) language is used to 203

develop the numerical scheme for computing ship wave patterns. CUDA is a parallel 204

computing platform and programming model created by NVIDIA and implemented by 205

GPU [56]. CUDA toolkit includes abundant GPU accelerated libraries, optimization tools 206

and a runtime library, which can be compiled in C language, C++ language and Fortran 207

language. In addition, CUDA source program can be executed on multiple GPUs. By 208

applying the hybrid programming model, the parallel computing process consists of kernel 209

function on device and serial code on host CPU. Therefore, a typical CUDA program is 210

consisted of two parts: a host part runs on CPU and a device part runs on GPU. The 211

host code is responsible for the logic work, environment configuration, instructions to 212

set up parallelism, and data communication between the host and the device. The main 213

responsibility of device code is to process tasks in parallel, and the dimensions of the grid 214

and thread are specified by configuration parameters in the kernel function. Figure 7 shows 215

the CUDA execution mode and thread hierarchy. 216

Figure 7. Illustration of CUDA execution mode and thread organization hierarchy [56]

As for the solver of ship wave pattern, as described above, there are four main 217

parts: building preconditioner matrix, creating nonlinear system, inverting preconditioner 218

matrix and solving linear equations by GMRES algorithm. Simulation results of the CPU 219

solver proposed by Sun[40] show that the parts of creating nonlinear system and inverting 220

preconditioner matrix take up most of the time, as shown in Figure 8. This figure shows 221

the computation time distribution of the CPU solver on a 151× 51 mesh case. The total 222

runtime is 185.8 seconds, in which the runtime of inverting preconditioner matrix and 223

creating nonlinear system is 95.8 and 80.4 seconds respectively. Each of them takes up 224

nearly half the total runtime. Therefore, calculations on these two parts parallelly are vital 225

for improving computational efficiency. And the part of building preconditioner matrix 226

and solving linear equations will also be executed in GPU to further shorten the program 227

running time. 228



Version September 6, 2023 submitted to Journal Not Specified 12 of 24

Figure 8. The computation time distribution of ship wave solver. The alphabet I represents the part
of inverting preconditioner matrix, the alphabet C represents the part of creating nonlinear system,
the alphabet B represents the part of building preconditioner matrix, the alphabet S represents the
part of solving linear equations by GMRES algorithm and the alphabet O represents the part of other
code in the solver.

Based on the above analysis, the GPU solver of Kelvin ship waves adopts a hybrid 229

programming model. The entire parallel computing procedure is shown as follows : 230

Step 1: Input calculation parameters including the initial guess, the data is transferred 231

from CPU to GPU; 232

Step 2: According to the calculation parameters, the nonlinear equations are created in 233

the GPU device; 234

Step 3: The banded preconditioner method is applied to build the banded precondi- 235

tioner matrix in GPU; 236

Step 4: QR decomposition algorithm is used to invert the preconditioner matrix, and 237

saving the decomposition results outside the loop body to avoid repeated QR decomposi- 238

tion of preprocessing; 239

Step 5: The result of P−1v is calculated directly using the QR decomposition results, by 240

combining the result of P−1v with the approximate solution u of the nonlinear equations, 241

the finite difference approximation is carried out to obtain the linear equations; 242

Step 6: The GMRES algorithm is used to calculate the linear equations, obtain the 243

correction values and update the approximate solutions u; 244

Step 7: Check of the approximate solutions of the nonlinear equations: If the accuracy 245

requirement is not met, back to Step 5; if the accuracy requirement is met, the result is 246

transferred from the GPU to the CPU. 247

The corresponding calculation flow chart is shown in Figure 9, which shows the 248

calculation procedure more clearly. 249



Version September 6, 2023 submitted to Journal Not Specified 13 of 24

Figure 9. The computational flow chart of GPU implementation.

4.2. GPU solver implementation 250

4.2.1. Creating nonlinear system 251

The programming for creating nonlinear system on GPU by using CUDA language is 252

briefly shown in Table 1. On the whole, the dimension of the GPU grid is the equivalent of 253

the size of mesh, which means that one block can complete the relevant equations of one 254

node in mesh. One block has 1024 threads, these plenty of threads can calculate Eq. (1), Eq. 255

(6) and Eqs. (8)-(11) simultaneously. 256

In the device part, there are two device functions which are called by the kernel 257

function multiple times. According to Eq. (5), these two device functions are formed to 258

solve the singularity in the second integral of the boundary integral equation. Eq. (5) 259

is distributed into 16 special threads for fast computation. Other threads with the same 260

CUDA code are used to complete the calculation of the remaining parts of the boundary 261

integral equation. After threads have finished computing, all thread contributions are 262

summed up, and (N − 1)M nonlinear equations are built. Then arbitrarily choose 5 blocks 263

to calculate the free surface condition and the radiation condition, (N + 3)M nonlinear 264



Version September 6, 2023 submitted to Journal Not Specified 14 of 24

equations can be obtained. Therefore, 2(N + 1)M nonlinear equations are formed by using 265

the 1024× (N − 1)M threads on GPU. 266

In the host part, the environment variables are configurated firstly. Then the data is 267

transferred from CPU to GPU and the parallel instruction is sent to GPU. Finally, CPU gets 268

the computation results from GPU. 269

Table 1. The programming on GPU.

Device Part
Device function 1
1 __device__double Integral(double s,double t,doubleA,double B,double C)
2 {
3 double val= t/sqrt(A)*log(2*A*s + B*t+ 2*sqrt(A*(A*s*s+ B*s*t +C*t*t)));
4 return val;
5 }
Device function 2
1 __device__double Integrall(double s,double t,doubleA,double B,double C)
2 {
3 double val = s/sqrt(C)*log(2*C*t + B*s+ 2*sqrt(C*(A*s*s+ B*s*t +C*t*t)));
4 return val;
5 }
Kernel function

1 __global__void nonlinear(const long int N, const long int M, . . . )
2 {
3 __shared__double A, B, C, . . . ;
4 __shared__long int K, l, blockpos, . . . ;
5 long int i, j, threadPos, . . . ;
6 threadPos = threadIdx.x; k = blockIdx.x; l = blockIdx.y ;
7 // Calculate necessary values
8 while(threadPos<(M*N)) { . . . }
9 // Calculation of the 16 parts to the closed integral
10 if(threadIdx.x==blockDim.x-1) { . . . }
11 . . .
12 if(threadIdx.x==blockDim.x-16) { . . . }
13 // Sum up all thread contributions
14 for(i=blocDim/2;i>0;i=i/2){ . . . }
15 //Split the free surface condition and radiation conditions between 5 blocks
16 if(k==0&&l==0) { . . . } . . . if(k==0&&l==5) { . . . }
17 }
Host Part
1 int main
2 {
3 // Initialize data on CPU
4 InitialData(double* cpuData, double* gpuData);
5 long int i, j, threadPos, . . . ;
6 // Copy data from CPU to GPU
7 cudaMemcpy(cpuData, gpuData, Datasize, cudaMemcpyHostToDevice);
8 // Set dimensions of the grid and thread
9 dim3 block(1024, 1); dim3 grid(M, N - 1);
10 // Start Kernel function
11 Nonlinear� grid, block�(gpuData);
12 // Copy data from GPU to CPU
13 cudaMemcpy(gpuData, cpuData, Datasize, cudaMemcpyDeviceToHost);
14 return 0;
15 }



Version September 6, 2023 submitted to Journal Not Specified 15 of 24

4.2.2. Building preconditioner matrix 270

The building preconditioner matrix is decomposed to several tasks that can be operated 271

in parallel by corresponding kernel functions in GPU blocks. The parallel idea and program 272

structure are roughly similar to the part of creating nonlinear equations. 273

In the device part, in order to avoid data storage conflicts in GPU, three kernel func- 274

tions are used to construct the preconditioner matrix in turn. As mentioned above, the 275

preconditioner matrix size is 2(N + 1)M× 2(N + 1)M, and four submatrices are formed by 276

block decomposition method and banded preconditioner method: Submatrix A is a tridiag- 277

onal matrix of size 3× (N + 1)M; the submatrix B and C only differ between coefficients, 278

and the base matrix B0 can be constructed to represent them respectively with a size of 279

(N + 1)× (N + 1), B = 1/F′2 ·B0 and C = 2π ·B0; the submatrix D is a sparse matrix with 280

a size of band× (N + 1)M/3. Firstly, M× (N + 1) thread blocks are called in the GPU to 281

fulfill the parallel construction of the four submatrices by the kernel function precondition(), 282

and the two device functions mentioned above are also used to eliminate the singularity of 283

the linear boundary integral equation. Then the kernel function matrix() is written to call 284

N + 1 thread blocks for parallel computation of CA−1B, which involves solving multiple 285

right-handed linear systems and matrix multiplication. Finally, the subtraction operation 286

between matrices is completed by kernel function Schur(), and M× (N + 1) thread blocks 287

are called to perform parallel operation of D− CA−1B. The programming for building 288

preconditioner matrix on GPU by using CUDA language is briefly shown in Table 2. 289

In the host part, the variables are first defined according to calculation parameters, then 290

data is transferred from the CPU to the GPU, then the dimension of the thread blocks and 291

thread grid is specified, and finally the kernel functions precondition(), matrix(), and Schur() 292

are successively released. This part of the host side code is similar to the establishment of 293

nonlinear equations and will not be repeated here. 294



Version September 6, 2023 submitted to Journal Not Specified 16 of 24

Table 2. The programming on GPU.

Device Part
Kernel functions
1 __global__void precondition(const long int N, const long int M, . . . )
2 {
3 // Calculate submatrix A
4 while(threadPos<N+3) { . . . };
5 if(blockIdx.x==0) { . . . };
6 // Calculate basis matrix B0
7 if(blockIdx.x==0) { while(threadPos<N+1) { . . . } };
8 // Calculate submatrix D
9 while(threadPos<N*M) { . . . };
10 // Sum up all thread contributions
11 for(i=blocDim/2;i>0;i=i/2){ . . . }
12 }
13 __global__void matrix(const long int N, const long int M, . . . )
14 {
15 // Calculate CA−1B
16 double Bcoef = 1/(F′ × F′);
17 double Ccoef = 2*3.1415;
18 if(blockIdx.x==0) { while(threadPos<N+1) { . . . } };
19 }
20 __global__void Schur(const long int N, const long int M,double*_b,double*D )
21 {
22 // Calculate D− CA−1B
23 int l=blockIdx.x;
24 int k=blockIdx.y;
25 int pos=1*(N+1)+k;
26 while(threadPos<N+1)
27 {
27 D[(1*(N+1)+threadPos)*M*(N+1)+pos]=D[(1*(N+1)+
28 threadPos)*M*(N+1)+pos]-_b[threadPos*(N+1)+k];
29 threadPos+=blockDim.x;
30 }
31 }

4.2.3. Inverting preconditioner matrix 295

Comparing the Math Kernel Library which is famous for the computation of sparse 296

linear algebra, the cuSolverSP library is generally faster for solving sparse linear systems 297

[57]. In this paper, the cuSolverSP library is adopted to invert preconditioner matrix. 298

The present sparse linear system is special, the right-hand term of the system v changes 299

continuously in the iteration whereas the left-hand term does not. The characteristic 300

of the sparse linear system suggests using QR factorization to calculate P−1v [51]. By 301

QR factorization, the sparse matrix is decomposed into an orthogonal matrix and an 302

upper triangular matrix, which are saved in GPU memory and are directly used to solve 303

linear equations in each iteration. Finally, the preconditioner-vector products P−1v can be 304

obtained. 305

Step1: Using CSR data format to save preconditioner matrix with an appropriate 306

bandwidth; 307

Step2: In the analysis stage, cusolverSpXcsrqrAnalysis() function is used to analyze 308

the sparsity of orthogonal matrix and upper triangular matrix in QR decomposition. This 309

process may consume a large amount of memory. If the memory is insufficient to complete 310

the analysis, the program will stop running and return the corresponding error message; 311

Step3: In the preparation stage, cusolverSpXcsrqrAnalysis() function is used to select 312

the appropriate computing space to prepare for QR decomposition. Here, two memory 313



Version September 6, 2023 submitted to Journal Not Specified 17 of 24

Table 3. The list of CUDA functions for QR factorization

No. Function name Goal
1 cusolverSpXcsrqrAnalysisHost(); Analyze structure
2 cusolverSpDcsrqrBufferInfoHost(); Set up workspace
3 cusolverSpDcsrqrSetupHost(); QR factorization
4 cusolverSpDcsrqrFactorHost(); QR factorization
5 cusolverSpDcsrqrZeroPivotHost(); Check singular
6 cusolverSpDcsrqrSolveHost(); Solve system

blocks are prepared in the GPU, one to store the orthogonal matrix and the upper triangular 314

matrix, and the other to perform QR decomposition; 315

Step4: The cusolverSpDcsrqrSetup() function is called to allocate storage space for the 316

orthogonal and upper triangular matrices based on the results of the preparation stage. 317

Then, cusolverSpDcsrqrFactor() function is used to complete the QR decomposition of 318

coefficient matrix outside the cycle; 319

Step5: Using cusolverSpDcsrqrZeroPivot() function checks the singularity of the 320

decomposition results, if the nearly singular the program terminates operation and error is 321

given, return to step 1 to choose the bandwidth again; 322

Step6: In the loop body, the cusolverSpDcsrqrSolve() function is repeatedly called, and 323

the solution of linear equations can be obtained directly by using the decomposition results 324

stored in GPU; 325

The main CUDA functions are shown in Table 3. 326

4.2.4. Solving linear equations by GMRES algorithm 327

In the process of solving linear equations, because the matrix free idea is adopted to 328

avoid the storage of coefficient matrix, there is no product operation of coefficient matrix 329

and vector in GMRES algorithm, so the operations that can be parallel in this part are 330

operations between vectors. Therefore, this paper mainly uses cuBLAS library to complete 331

the CUDA programming of GMRES algorithm to solve linear equations. 332

The cuBlasDdot() function is used to realize the inner product of vectors in the GMRES 333

algorithm; the vector subtraction is calculated using cublasDaxpy() function; cublasDnrm2() 334

function is used to calculate the Euclidean norm of the vector; cublasDscal() function is 335

used to divide vector and scalar. After obtaining the orthonormal basis of Krylov subspace 336

and the upper Hessnberg matrix, cublasDrotg() function is used to perform Givens rotation 337

transformation on the upper Hessnberg matrix in GPU device to obtain the upper triangular 338

matrix. Then the solution of linear least squares problem in GMRES algorithm is obtained, 339

and cublasDspmv() function is used to achieve orthonormal basis and vector multiplication 340

to get the solution of linear equations. 341

5. Numerical Simulations and Discussion 342

In this section, numerical simualtion of ship wave in multiple cases are carried out 343

using the CPU and GPU solvers, and the simulation results are discussed. The effectiveness 344

of the developed banded preconditioner JFNK method is first verified. Then, comparisons 345

between the proposed GPU solver and the CPU solver on accuracy and efficiency are 346

performed. Finally, the capability of GPU solver is verified by comparing simulation results 347

with real ship wakes. 348

Both CPU and GPU solvers are executed on a high-performance computing cluster, the 349

CPU Clock Speed is 1.90 GHz, the GPU card is NVIDIA Tesla A100, which includes 6912 350

CUDA cores and 40 GB graphics memory. The parameters of the computing environment 351

are listed in Table 4. 352



Version September 6, 2023 submitted to Journal Not Specified 18 of 24

Table 4. The computing environment of high-performance computing cluster

CPU GPU
Card Intel Xeon Bronze 3204 NVIDIA Tesla A100
Memory 64 GB 40 GB
Max Cores 6 per node 6912
Programming language C++ CUDA, C++

Table 5. The running memory usage before and after applying the banded preconditioner method

Mesh size Before b′ After Reduction ratio
181× 61 0.91GB 19 0.28GB 3.2
241× 81 2.9GB 24 0.88GB 3.3

301× 101 6.9GB 33 2.3GB 3.0
361× 121 15GB 38 4.6GB 3.3

5.1. Verification of the banded preconditioner JFNK method 353

To reveal the effectiveness of the banded preconditioner method, numerical sim- 354

ulations on different mesh sizes,i.e.,181 × 61, 241 × 81, 301 × 101 and 361 × 121 with 355

∆x′ = 0.3, ∆y′ = 0.3 are carried out. 356

The overall runtimes against bandwidth on these four mesh sizes are illustrated in 357

Figure 10. From this figure, it can be seen that a optimal value of bandwidth b′ exists for 358

a certain mesh size. Furthermore, the optimal value of b′ increases with the mesh size 359

and approximately equals M
3 , in which M means the number of latitude lines of the mesh. 360

Therefore, the optimal bandwidth can be set to M
3 × (N + 1) to get an optimal efficiency, 361

which is called the optimal bandwidth selection rule in this paper. 362

According to the optimal bandwidth selection rule, the running memorys against 363

the bandwidth are shown in Table 5. Correspondingly, the required running memory 364

is drastically reduced by applying the banded preconditioner JFNK method. The mean 365

reduction ratio is about 3.2, this means that the banded preconditioner JFNK method can 366

save running memory by at least two-thirds. 367

Figure 10. Optimal values of bandwidth b′ for different mesh sizes.

5.2. Verification of the GPU solver 368

5.2.1. Accuracy 369

To verify the accuracy of the GPU solver, numerical simulations are conducted on 370

F′ = 0.7 and ε′ = 0.4 with a 361× 121 mesh and ∆x′ = 0.3, ∆y′ = 0.3. The simulated wave 371

heights on the centerline are compared with that of the CPU solver proposed by Sun [40], 372



Version September 6, 2023 submitted to Journal Not Specified 19 of 24

Table 6. The comparisons of runtime between CPU solver and GPU solvers on different mesh sizes,
the CPU solver is proposed by Sun [40], one GPU solver is proposed in this paper, the other GPU
solver is proposed by Pethiyagoda [42](results of Exp. ).

Mesh size CPU solver Exp. GPU solver Accelerated-up ratio
121× 41 8.96E+1 s 1.61E+1 s 5.60E+0 s 16.1
181× 61 2.70E+2 s 1.22E+2 s 1.13E+1 s 23.9
241× 81 8.70E+2 s 5.51E+2 s 5.37E+1 s 16.0

301× 101 2.56E+3 s 1.78E+3 s 1.32E+2 s 19.3
361× 121 6.08E+3 s 5.04E+3 s 2.95E+2 s 20.6

which is shown in Figure 11. From this figure, it can be seen that almost all points in the 373

figure are traversed through the center by line, indicating that the calculation results of the 374

GPU solver are very consistent with those of the CPU solver. 375

Furthermore, the Mean Square Error (MSE) is used to further explain the error between
them, as follows:

MSE =
1
n

n

∑
i=1

(Truchi −Valuei)
2 (29)

where n is the amount of data, Truchi and Valuei represent CPU results and GPU results 376

respectively. According to Eqs.(29), the calculated MSE is 9.37E-8, indicating that the 377

calculation error between the GPU and CPU solver is minimal. Since the CPU solver has 378

been verified by Sun [40], the accuracy of the proposed GPU solver can also be acceptable. 379

Figure 11. A comparison of the centerline profiles for the simulation results of CPU solver and GPU solver, computed on a 361× 121
mesh with ∆x′ = 0.3, ∆y′ = 0.3, F′ = 0.7 and ε′ = 0.4. The solid line represents the simulation result of the GPU solver, the solid circles
represent the simulation result of the CPU solver.

5.2.2. Efficiency 380

To verify the efficiency of the GPU solver, numerical simulation are conducted on 381

F′ = 0.7 and ε′ = 0.4 with five mesh sizes, namely 121× 41, 181× 61, 241× 81, 301× 101, 382

361× 121 and ∆x′ = 0.3, ∆y′ = 0.3. The overall runtimes of GPU solver are compared with 383

that of the CPU solver proposed by Sun [40], as shown in Figure 12. From this figure, it 384

can be seen clearly that the overall runtimes of the GPU solver are much shorter than that 385

of the CPU solver. The clear accelerated-up ratios between the GPU solver and the CPU 386

solver are shown in Table 6. From this table, it can be seen that the accelerated-up ratio on 387

all cases are around 20.0. Therefore, the computaion efficiency of the proposed GPU solver 388

is much higher than the CPU solver. 389

The proposed GPU solver has also been compared with another GPU solver proposed 390

by Pethiyagoda [42] on these cases. The comparison of computation time between them 391

is shown in Table 6. Obviously, the efficiency of the GPU solver proposed in this paper 392

is higher than the GPU solver proposed by Pethiyagod [42], and the advantage is more 393



Version September 6, 2023 submitted to Journal Not Specified 20 of 24

Figure 12. The comparison of runtime between the GPU solver and CPU solver at different mesh sizes, red bars represent the GPU
solver results and blue bars represent the CPU solver results.

significant with the increase of the mesh size. The reason is that Pethiyagoda [42] only 394

introduced the GPU acceleration technique in the boundary integral method not the whole 395

processs, whereas this paper proposes a complete parallel computing framework including 396

the parallel process for inverting preconditioner matrix. In the process of inverting, the 397

larger mesh size the heavier computational load, hence the advantage of the GPU solver 398

proposed in this paper can be more significant. 399

5.2.3. Capability 400

In the proposed GPU solver, like the CPU solver [40,41], three parameters can be used 401

to regulate simulation results, namely Froude number, source strength and source type. 402

Numerical simulations show that the wake angle is tending to decrease with Froude num- 403

ber but increase with the source strength, and that the divergent waves will be prominent 404

with the sufficiently large Froude number or the Rankine source, and that the wavelength 405

dramatically increases with Froude number. By adjusting these parameters, the wake 406

characteristics including the wake angle, wave amplitude, prominent waves and wave- 407

length can be changed, resulting in the polymorphic ship wave patterns. For example, 408

the wake waves of high-speed boats can be generated by using large Froude number, low 409

source strength and Rankine source. As the vessel speed decreases and overall length 410

increases, it is appropriate to choose small Froude number and a higher strength Kelvin 411

source. Comparisons between the three types of real ship waves and the corresponding 412

GPU solver simulation results are shown in Figure 13. It is found that the simulation results 413

are in good agreement with the real ship waves, the proposed GPU solver can also generate 414

high quality simulation patterns for 3-D nonlinear ship wave. 415



Version September 6, 2023 submitted to Journal Not Specified 21 of 24

(a) Real speedboat wake (b) Simulation result of speedboat wake

(c) Real fishing ship wake (d) Simulation result of fishing ship wake

(e) Real large vessel wake (f) Simulation result of large vessel wake

Figure 13. Comparisons between the three types of real ship waves and the corresponding the GPU solver simulation results. The
picture of real speedboat wake pattern comes from internet https://www.quanjing.com, accessed on 1 september 2023; the picture of
real fishing ship wake comes from https://www.shutterstock.com, accessed on 1 september 2023; the picture of real large vessel wake
comes from internet https://blogs.worldbank.org, accessed on 6 september 2023.

6. Conclusions 416

The numerical simulation of ship wave is important for practical ocean engineering. 417

This paper proposes a highly-paralleled numerical scheme for simulating three-dimensional 418

(3-D) nonlinear Kelvin ship waves effectively, including a numerical model for nonlinear 419

ship waves, a banded preconditioner JFNK method and a GPU based parallel computing 420

framework. Numerical simulations show that the proposed GPU solver can save GPU 421

memory and obtain high efficiency significantly. This highly-paralleled numerical scheme 422

provides an opportunity for the further study of the nonlinear Kelvin ship waves on a large 423

scale, the following conclusions can be drawn. 424

(1) The bandwidth has an effect on the running memory and runtime of the GPU solver. 425

Based on the mesh size, the value of the most appropriate bandwidth is around 426

M
3 × (N + 1), with more than 66% GPU memory can be saved. 427

(2) The GPU solver can obtain an accurate numerical solution. The mean square error of 428

GPU solver results and CPU solver results is MSE=9.37E-8, which is acceptable. 429



Version September 6, 2023 submitted to Journal Not Specified 22 of 24

(3) By designing the GPU parallel computing framework, the computation of ship wave 430

simulation is accelerated up to 20 times. 431

Although an highly-paralleled numerical scheme for nonlinear ship wave is proposed 432

in this paper, some assumptions are still made in the construction of the numerical model, 433

such as infinite water depth and the steady motion of ship on calm water. It is of great 434

significance to improve simulation results by further exploring the influence of finite water 435

depth, tangential flow and unsteady ship motion on nonlinear ship waves. 436

Author Contributions: Conceptualization, X.S. and M.C.; methodology, X.S.and M.C.; software, 437

M.C.; validation, X.S., M.C. and J.D.; investigation, X.S.; resources, X.S.; data curation,J.D.; writing— 438

original draft preparation, X.S. and M.C.; writing—review and editing,X.S. and M.C.; visualization, 439

M.C; supervision, X.S. All authors have read and agreed to the published version of the manuscript. 440

Funding: The work was supported by the National Key R&D Program of China (No.2022YFB4300803, 441

2022YFB4301402), the Ministry of Industry and Information Technology of the People’s Republic of 442

China(No. CBG3N21-3-3), and the National Science Foundation of Liaoning Province, China(No.2022- 443

MS-159).The authors would like to express sincere thanks for their support. 444

Conflicts of Interest: The authors declare no conflict of interest. 445

Abbreviations 446

The following abbreviations are used in this manuscript: 447

448

JFNK Jacobian-free Newton-Krylov
GMRES Generalized Minimum Residual
CUDA Compute Unified Device Architecture
GPU Graphics Process Unit
CPU Central Processing Unit
MSE Mean Square Error

449

References 450

1. Dias, F. Ship Waves and Kelvin. j.Fluid Mech. 2014, 746, 1–4. https://doi.org/1.10.1017/jfm.2014.69. 451

2. Michell, J. The Wave-Resistance of a Ship. London, Edinburgh, Dublin Philos. Mag. j. Sci. 1989, 45, 106–123. https://doi.org/10.108 452

0/14786449808621111. 453

3. Sheremet, A.; Gravois, U.; Tian, M. Boat-Wake Statistics at Jensen Beach, Florida. J. Waterw. Port, Coastal, Ocean Eng. 2013, 454

139, 286–294. https://doi.org/3.10.1061/(asce)ww.1943-5460.0000182. 455

4. Wang, L.; Liu, J.; Min, G.; Xie, Y. Simulation for the Ship Kelvin Wake with Narrow Components in SAR Image. In Proceedings of 456

the 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC 2021), 2021, pp. 186–188. 457

5. Pethiyagoda, R.; Moroney, T.J.; Macfarlane, G.J.; McCue, S.W. Spectrogram Analysis of Surface Elevation Signals Due to 458

Accelerating Ships. Phys. Rev. Fluids. 2021, 6, 104803. https://doi.org/10.1103/PhysRevFluids.6.104803. 459

6. Luo, Y.; Zhang, C.; Liu, J.; Xing, H.; Zhou, F.; Wang, D.; Long, X.; Wang, S.; Wang, W.; Shi, F. Identifying Ship-Wakes in a Shallow 460

Estuary Using Machine Learning. Ocean Eng. 2022, 246, 110456. https://doi.org/10.1016/j.oceaneng.2021.110456. 461

7. Froude, w. Experiments upon the effect produced on the wave-making resistance of ships by length of parallel middle body; Institution of 462

Naval Architects, 1877. 463

8. Kelvin, L. On Ship Waves. Proc. Inst. Mech. Engrs. 1887, 38, 409–434. https://doi.org/0.1243/PIME_PROC_1887_038_028_02. 464

9. Rabaud, M.; Moisy, F. Ship Wakes: Kelvin or Mach Angle? Phys. Rev. Lett 2013, 110, 214503.1–214503.5. https://doi.org/10.1103/ 465

PhysRevLett.110.214503. 466

10. Pethiyagoda, R.; Moroney, T.; Lustri, C.; McCue, S. Kelvin Wake Pattern at Small Froude Numbers. J. Fluid Mech. 2021, 915, A126. 467

https://doi.org/10.1017/jfm.2021.193. 468

11. Verberck, B. Hydrodynamics: Wake Up. Nat. Phys. 2013, 9, 390–390. https://doi.org/10.1038/nphys2687. 469

12. Benzaquen, M.; Darmon, A.; Raphael, E. Wake Pattern and Wave Resistance for Anisotropic Moving Disturbances. Phys. Fluids. 470

2014, 26, 092106. https://doi.org/10.1063/1.4896257. 471

13. Miao, S.; Liu, Y. Wave Pattern in the Wake of an Arbitrary Moving Surface Pressure Disturbance. Phys. Fluids. 2015, 27, 122102. 472

https://doi.org/10.1063/1.4935961. 473

14. Ma, C.; Zhu, Y.; Wu, H.; He, J.; Zhang, C.; Li, W.; Noblesse, F. Wavelengths of the Highest Waves Created by Fast Monohull Ships 474

or Catamarans. Ocean Eng. 2016, 113, 208–214. https://doi.org/10.1016/j.oceaneng.2015.12.042. 475

15. Zhu, Y.; Wu, H.; Ma, C.; He, J.; Li, W.; Wan, D.; Noblesse, F. Michell and Hogner Models of Far-Field Ship Waves. Appl. Ocean Res. 476

2017, 68, 194–203. https://doi.org/10.1016/j.apor.2017.08.015. 477

https://doi.org/1.10.1017/jfm.2014.69
https://doi.org/10.1080/14786449808621111.
https://doi.org/10.1080/14786449808621111.
https://doi.org/10.1080/14786449808621111.
https://doi.org/3.10.1061/(asce)ww.1943-5460.0000182
https://doi.org/10.1103/PhysRevFluids.6.104803
https://doi.org/10.1016/j.oceaneng.2021.110456
https://doi.org/0.1243/PIME_PROC_1887_038_028_02
https://doi.org/10.1103/PhysRevLett.110.214503
https://doi.org/10.1103/PhysRevLett.110.214503
https://doi.org/10.1103/PhysRevLett.110.214503
https://doi.org/10.1017/jfm.2021.193
https://doi.org/10.1038/nphys2687
https://doi.org/10.1063/1.4896257
https://doi.org/10.1063/1.4935961
https://doi.org/10.1016/j.oceaneng.2015.12.042
https://doi.org/10.1016/j.apor.2017.08.015


Version September 6, 2023 submitted to Journal Not Specified 23 of 24

16. Wu, H.; Wu, J.; He, J.; Zhu, R.; Yang, C.; Noblesse, F. Wave Profile Along a Ship Hull, Short Far-Field Waves, and Broad Inner 478

Kelvin Wake Sans Divergent Waves. Phys. Fluids. 2019, 31, 47102. https://doi.org/10.1063/1.5088531. 479

17. Ellingsen, S. Ship Waves in the Presence of Uniform Vorticity. J. Fluid Mech. 2014, 742, R2. https://doi.org/10.1017/jfm.2014.28. 480

18. Li, Y.; Ellingsen, S. Ship Waves on Uniform Shear Current at Finite Depth: Wave Resistance and Critical Velocity. J. Fluid Mech. 481

2016, 791, 539–567. https://doi.org/10.1017/jfm.2016.20. 482

19. Li, Y. Wave-Interference Effects on Far-Field Ship Waves in the Presence of a Shear Current. J. Sh. Re. 2018, 62, 37–47. 483

https://doi.org/10.5957/JOSR.170017. 484

20. Wu, H.; He, J.; Liang, H.; Noblesse, F. Influence of Froude Number and Submergence Depth on Wave Patterns. Eur. J. Mech. 485

B/Fluids. 2019, 75, 258–270. https://doi.org/10.1016/j.euromechflu.2018.10.018. 486

21. Liang, H.; Chen, X. Asymptotic Analysis of Capillary–Gravity Waves Generated by a Moving Disturbance. Eur. J. Mech. 2018, 487

72, 624–630. https://doi.org/10.1016/j.euromechflu.2018.08.012. 488

22. Grue, J. Ship Generated Mini-Tsunamis. J. Fluid Mech. 2017, 816, 142–166. https://doi.org/10.1017/jfm.2017.67. 489

23. Liang, H.; Chen, X. Viscous Effects on the Fundamental Solution to Ship Waves. J. Fluid Mech. 2019, 879, 744–774. https: 490

//doi.org/doi:10.1017/jfm.2019.698. 491

24. Havelock, T. Wave resistance: Some cases of three-dimensional fluid motion. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. 492

Phys. 1919, 95, 354–365. 493

25. Havelock, T. Ship Waves: The Calculation of Wave Profiles. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. 1932, 494

135, 950971. https://doi.org/10.1098/rspa.1932.0016. 495

26. Tuck, E.; Scullen, D. A comparison of linear and nonlinear computations of waves made by slender submerged bodies. J Eng 496

Math 2002, 42, 255–264. 497

27. Reed, A.; J.H., M. Ship wakes and their radar images. ANNU REV FLUID MECH 2002, 34, 469–502. 498

28. J.H., M. The wave resistance of a ship. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1898, 499

45, 106–123. 500

29. Nobless, E.; Delhommeau, G.; Kim, H.; Yang, C. Thin-ship theory and influence of rake and flare. J Eng Math 2009, 64, 49–80. 501

30. Barbosa, E.; Daube, O. A Finite Difference Method for 3D Incompressible Flows in Cylindrical Coordinates. Comput. Fluids. 2005, 502

34, 950–971. https://doi.org/10.1016/j.compfluid.2004.03.007. 503

31. Kan, Z.; Song, N.; Peng, H.; Chen, B. Extension of Complex Step Finite Difference Method to Jacobian-Free Newton–Krylov 504

Method. J. Comput. Appl. Math. 2022, 399, 113732. https://doi.org/10.1016/j.cam.2021.113732. 505

32. Bettess, P.; Bettess, J. Analysis of Free Surface Flows Using Isoparametric Finite Elements. Int. J. Numer. Methods Eng. 1983, 506

19, 1675–1689. https://doi.org/10.1002/nme.1620191107. 507

33. Ma, C.; Scheichl, R.; Dodwell, T. Novel Design and Analysis of Generalized Finite Element Methods Based on Locally Optimal 508

Spectral Approximations. SIAM J. Numer. Anal 2022, 60, 244–273. https://doi.org/10.1137/21m1406179. 509

34. Bystricky, L.; Pålsson, S.; Tornberg, A. An accurate integral equation method for Stokes flow with piecewise smooth boundaries. 510

BIT Numer. Math. 2021, 61, 309–335. https://doi.org/10.1007/s10543-020-00816-1. 511

35. Wang, H.; Zhu, R.; Gu, M.; Gu, X. Numerical Investigation on Steady Wave of High-Speed Ship with Transom Stern by Potential 512

Flow and CFD Methods. Ocean Eng. 2022, 246, 110456. https://doi.org/10.1016/j.oceaneng.2022.110714. 513

36. Gu, M.; Zhu, R.; Yang, X. Numerical investigation on evaluating nonlinear waves due to an air cushion vehicle in steady motion 514

by a higher order desingularized boundary integral equation method. Ocean Eng. 2022, 246, 110598. https://doi.org/10.1016/j. 515

oceaneng.2022.110598. 516

37. Forbes, L. On the Effects of Non-Linearity in Free-Surface Flow about a Submerged Point Vortex. J. Eng. Math. 1985, 19, 139–155. 517

https://doi.org/10.1007/BF00042737. 518

38. Forbes, L. An algorithm for 3-dimensional free-surface problems in hydrodynamics. J. Comput. Phys. 1989, 82, 330–347. 519

https://doi.org/10.1016/0021-9991(89)90052-1. 520

39. Parau, E.; Vanden-Broeck, J. Three-dimensional waves beneath an ice sheet due to a steadily moving pressure. Philosophical 521

Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 2011, 369, 2973–2988. 522

40. Sun, X.; Cai, M.; Wang, J.; Liu, C. Numerical Simulation of the Kelvin Wake Patterns. Appl. Sci. 2022, 12, 6265. https: 523

//doi.org/10.3390/app12126265. 524

41. Cai, M.; Sun, X.; Y., Z.; Wang, J. Simulation for the Ship Kelvin Wake with Narrow Components in SAR Image. In Proceedings of 525

the 2022 8th International Conference on Virtual Reality, 2022, pp. 247–254. https://doi.org/10.1109/ICVR55215.2022.9847685. 526

42. Pethiyagoda, R. Mathematical and Computational Analysis of Kelvin Ship Wave Patterns. Queensland University of Technology, 527

Brisbane, Australia. 2016. 528

43. Hérault, A.; Bilotta, G.; Dalrymple, R.A. SPH on GPU with CUDA. Journal of Hydraulic Research 2010, 48, 74–79. https: 529

//doi.org/10.1080/00221686.2010.9641247. 530

44. Hori, C.; Gotoh, H.; Ikari, H.; Khayyer, A. GPU-Acceleration for Moving Particle Semi-Implicit Method. Comput. Fluids. 2011, 531

51, 174–183. https://doi.org/10.1016/j.compfluid.2011.08.004. 532

45. Xie, F.; Zhao, W.; Wan, D. CFD Simulations of Three-Dimensional Violent Sloshing Flows in Tanks Based on MPS and GPU. J. 533

Hydrodyn. 2020, 32, 672–683. https://doi.org/10.1007/s42241-020-0039-8. 534

46. Lu, X.; Dao, M.H.; Le, Q.T. A GPU-accelerated domain decomposition method for numerical analysis of nonlinear waves-current- 535

structure interactions. Ocean Eng. 2022, 259, 111901. https://doi.org/10.1016/j.oceaneng.2022.111901. 536

https://doi.org/10.1063/1.5088531
https://doi.org/10.1017/jfm.2014.28
https://doi.org/10.1017/jfm.2016.20
https://doi.org/10.5957/JOSR.170017
https://doi.org/10.1016/j.euromechflu.2018.10.018
https://doi.org/10.1016/j.euromechflu.2018.08.012
https://doi.org/10.1017/jfm.2017.67
https://doi.org/doi:10.1017/jfm.2019.698
https://doi.org/doi:10.1017/jfm.2019.698
https://doi.org/doi:10.1017/jfm.2019.698
https://doi.org/10.1098/rspa.1932.0016
https://doi.org/10.1016/j.compfluid.2004.03.007
https://doi.org/10.1016/j.cam.2021.113732
https://doi.org/10.1002/nme.1620191107
https://doi.org/10.1137/21m1406179
https://doi.org/10.1007/s10543-020-00816-1
https://doi.org/10.1016/j.oceaneng.2022.110714
https://doi.org/10.1016/j.oceaneng.2022.110598
https://doi.org/10.1016/j.oceaneng.2022.110598
https://doi.org/10.1016/j.oceaneng.2022.110598
https://doi.org/10.1007/BF00042737
https://doi.org/10.1016/0021-9991(89)90052-1
https://doi.org/10.3390/app12126265
https://doi.org/10.3390/app12126265
https://doi.org/10.3390/app12126265
https://doi.org/10.1109/ICVR55215.2022.9847685
https://doi.org/10.1080/00221686.2010.9641247
https://doi.org/10.1080/00221686.2010.9641247
https://doi.org/10.1080/00221686.2010.9641247
https://doi.org/10.1016/j.compfluid.2011.08.004
https://doi.org/10.1007/s42241-020-0039-8
https://doi.org/10.1016/j.oceaneng.2022.111901


Version September 6, 2023 submitted to Journal Not Specified 24 of 24

47. Saad, Y.; Schultz, M. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. 537

Sci. Stat. Comput. 1986, 7, 856–869. https://doi.org/10.1137/0907058. 538

48. Brown, P.; Saad, Y. Hybrid Krylov Methods for Nonlinear Systems of Equations. SIAM J. Sci. Stat. Comput. 1990, 11, 450–481. 539

https://doi.org/10.1137/0911026. 540

49. Knoll, D.; Keyes, D. Jacobian-Free Newton-Krylov Methods: A Survey of Approaches and Applications. J. Comput. Phys. 2004, 541

193, 357–397. https://doi.org/10.1016/j.jcp.2003.08.010. 542

50. Dembo, R.; Eisenstat, S.; Steihaug, T. Inexact Newton Methods. SIAM J. Numer. Anal. 1982, 19, 400–408. https://doi.org/10.113 543

7/0719025. 544

51. Trefethen, L.; Bau, D. Numerical linear algebra; Siam, 1997. 545

52. Lustri, C.J.; Chapman, S.J. Steady Gravity Waves Due to a Submerged Source. J. Fluid Mech. 2013, 732, 400–408. https: 546

//doi.org/10.1017/jfm.2013.425. 547

53. Noblesse, F. Steady Wave Potential of a Unit Source, At the Centerplane. J. Sh. Res. 1978, 22, 80–88. https://doi.org/10.5957/jsr. 548

1978.22.2.80. 549

54. Noblesse, F. Alternative Integral Representations for the Green Function of the Theory of Ship Wave Resistance. J. Eng. Math. 550

1981, 15, 241–265. https://doi.org/10.1007/BF00042923. 551

55. Chen, X.; Wan, D. GPU Accelerated MPS Method for Large-Scale 3-D Violent Free Surface Flows. Ocean Eng. 2019, 171, 677–694. 552

https://doi.org/10.1016/j.oceaneng.2018.11.009. 553

56. NVIDIA. CUDA Toolkit Documentation v11.7.1., 2022. 554

57. Grossman, M.; Mckercher, T. Professional CUDA C programming; China Machine Press: Beijing, China, 2017. 555

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 556

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 557

people or property resulting from any ideas, methods, instructions or products referred to in the content. 558

https://doi.org/10.1137/0907058
https://doi.org/10.1137/0911026
https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.1137/0719025
https://doi.org/10.1137/0719025
https://doi.org/10.1137/0719025
https://doi.org/10.1017/jfm.2013.425
https://doi.org/10.1017/jfm.2013.425
https://doi.org/10.1017/jfm.2013.425
https://doi.org/10.5957/jsr.1978.22.2.80
https://doi.org/10.5957/jsr.1978.22.2.80
https://doi.org/10.5957/jsr.1978.22.2.80
https://doi.org/10.1007/BF00042923
https://doi.org/10.1016/j.oceaneng.2018.11.009

	Introduction
	Numerical Model
	Banded Proconditioner JFNK Algorithm
	Jacobian-free Newton-Krylov method
	Banded preconditioner method
	Building preconditioner matrix
	Preconditioner factorisation and storage
	The banded preconditioner


	GPU Parallel Computing Framework
	Parallel computing framework design
	GPU solver implementation
	Creating nonlinear system 
	Building preconditioner matrix
	Inverting preconditioner matrix
	Solving linear equations by GMRES algorithm


	Numerical Simulations and Discussion
	Verification of the banded preconditioner JFNK method
	Verification of the GPU solver
	Accuracy
	Efficiency
	Capability


	Conclusions
	References

