
Applied bootstrap analysis with imputed data
in Stata

Felix Bittmann (felix.bittmann@lifbi.de)
Leibniz Institute for Educational Trajectories
January 2024

Abstract
Multiple imputation with chained equations (MICE) is a widespread ap-
proach to account for missing data in empirical research. Combining
MICE with bootstrapping, that is, repeatedly resampling with replace-
ment from the data to estimate variances and confidence intervals of statis-
tics of interest, is not straightforward. The current document provides an
overview of how to use bootstrapping with imputed data in Stata. Two
main approaches (impute first and then bootstrap or vice-versa) are dis-
cussed and shortly compared. Code is provided for Stata.

Code availability
Stata code is available from https://github.com/fbittmann/bootimpute

https://github.com/fbittmann/bootimpute

2

Introduction

Bootstrapping imputed datasets
Missing data is a highly prevalent problem in applied statistics. Espe-
cially in the social sciences, where survey compliance is usually rather
low nowadays, many people refuse participation completely or do not an-
swer all questions, leaving researchers with gaps in their data. As soon
as this missingness is correlated with an individual’s characteristics, bias
is created which can lead to wrong conclusions. Imputing missing data
before analyses is therefore required. One of the most prominent and
well-researched approaches to this problem is multiple imputation with
chained equations (MICE) as it is flexible and implemented in all common
statistical software packages (Van Buuren, 2018; Little & Rubin, 2019).
However, if one wants to combine imputed data with bootstrapping some
complications arise. When using MICE, multiple datasets are created
with random noise added in each. Bootstrapping is a process of resam-
pling, usually from a single dataset (Bittmann, 2021; Efron & Tibshirani,
1994). As soon as multiple ones must be utilized, this basic approach
has to be adapted. In the following, it is demonstrated how this can be
achieved in Stata (Bittmann, 2019). As there are two main approaches,
both are outlined. While one has a clear advantage of computing time,
the other might provide more valid results.

Complete data analysis
We start with the analysis of the complete dataset, that is, in the absence
of any missingness. This is required to have a benchmark for the follow-

1

2

ing analyses. By creating artificial missingness we have full control over
the process and can arrive at valid conclusions and fair comparisons. The
original dataset contains 500 individuals and seven variables, which are:
hours worked per week (hours), time worked in the current job (tenure),
total work experience (ttl_exp), educational achievement (grade) and cur-
rent age (age). Furthermore, we have two variables about income: current
income (wage) and income one year ago (wage0).

While bootstrapping can theoretically applied to virtually any analysis
or statistic, we go for a regression model and want to bootstrap R-squared
(R²). To be concrete, we will regress current wages on all other variables
in the dataset (except for wage0, which is an auxiliary variable in the
imputation model). Summarized, we try to explain whether the other
variables are able to explain current wages. If the R-squared is large,
this is the case. To compute the point estimate and the 95% confidence
interval, we use the following code:

1 use ”Data/complete . dta” , clear
2 bootstrap e(r2) , reps (2000) dots (50) seed (346) : reg wage hours

tenure ttl_exp grade age
3 estat bootstrap , pe r cent i l e

First, we open the dataset and run the bootstrap command. We inform
Stata that we are interested in bootstrapping the R-squared statistic,
which is saved in the regression command in e(r2). After the comma, the
options for the bootstrap procedure are specified. Reps is the number of
bootstrap resamples and a larger number will give more precise results.
For most analyses, 500 replications should be the minimum but for precise
results, more than 10,000 replications are advised if computational feasible
(Hesterberg, 2015). Dots prints a dot every 50 replications so we can
keep track of the process. A random seed ensures that the results are
reproducible. Finally, after the colon, we list the command that is used
to produce the statistic of interest. In this case it is an OLS regression
model using regress or reg. After completion, Stata prints the results.
The point estimate is listed under observed coefficient (Figure 1). Note
that the printed confidence interval is based on the depicted standard
error, which is usually not exactly what we want. By adding estat, we can
generate more output and a percentile confidence interval. Stata reports
CIs based on standard errors, percentiles or the BC/BCa method. In this
example, we will stick with percentile. Interestingly, the bias is rather
large, despite using a large number of replications. As a rule of thumb,

3

the bias should be at most 25% of the bootstrap standard error. The main
result is the CI, which is 11.40 to 23.91. The results using the imputed
datasets should approximate this finding.

Figure 1: Stata output.

Amputing the data
Next, we create artificial missingess in the data to test how well our meth-
ods can account for this problem. As this is a demonstration, we have
full control over the process and can compare our results to the origi-
nal findings where no missingness is present. This is a huge advantage
for simulations yet almost never the case in the real world. If your data
contains missing values, it is usually not possible to state exactly why
these values are missing. Yet, it is crucial that the missingness is either
completely at random (MCAR) or missing at random (MAR). Only then,

4

imputation attempts will lead to sensible and unbiased results. MCAR
is usually a very strong assumption (a best case scenario, so to say) and
can happen in surveys if questions are applied randomly. For example, to
keep expenses down, researchers might flip a coin before interviewing and
only 50% of all participants receive the complete questionnaire while the
other half receives a reduced one which is faster to answer. This process
guarantees that the respondent characteristics (and responses) and the
missingness are completely due to randomness and hence, no bias is cre-
ate (the statistical power of the analyses is nevertheless reduced). MAR
means that the missingness can somehow be explained by other informa-
tion in the data. For example, if individuals with a below-average wage
have a higher propensity to refuse answering when asked about their in-
come, this information is not missing at random. However, if one can
plausible deduce the wage out of other respondent characteristics (such
as the occupation or educational qualification of the individual), one can
impute the missingness and amend the bias. This means, the source of
missingness must somehow be correlated with other information in the
data or model. As long as MAR holds, imputation methods can improve
data quality.

In the following we will build a dataset where some variables are miss-
ing at random, that means, their missingness depends on the other vari-
ables in the data. We specify that age, ttl_exp hours, wage have missing
data. The data are amputed using a logistic link function. Afterwards,
the average missingness in the specified variables is 27%. However, if one
would apply listwise deletion, one would end up with an effective sample
size of only 180 observations since even having a single variable with a
missing is enough to exclude this observation from the analysis, reducing
the sample size massively. This is unacceptable.

Bootstrapping with
imputed data

We will introduce two main approaches which enable us to apply boot-
strapping to imputed data, which are BootImpute (BI) and ImputeBoot
(IB). The first approach takes a random bootstrap sample from the data
and then runs the imputation procedure, estimates the statistic of interest
and stores the result. These steps are repeated many times to arrive at a
bootstrap distribution. The second one imputes the data first and only a
single time and then samples repeatedly from this imputed dataset. Both
approaches are valid but work rather differently (Schomaker & Heumann,
2018). Before explaining each method some words are required about how
the data must be imputed for this application in Stata.

Imputed data format
Note that the following examples are used with cross-sectional data and
the data format is hence wide in Stata, where one individual / observa-
tion takes exactly one data row in the browser. When imputing data with
Stata, one has, in theory, four different options to store the imputed data,
which are different from the original (since the dataset then must contain
the original information with missingness present and the imputed data
where missing values are replaced). For the approaches shown it is cru-
cial that the data are set to flong. What this means is that for each
added imputation (M), a full dataset is stored. While this takes more
space than other formats such as mlong, it makes the processing much
more convenient. To better understand the data format, consider this toy

5

6

dataset. Here, only two individuals are included with three variables (a,
b, c). Individual 1 has valid information on all three variables, individual
2 has missings on b and c. After imputation in flong and generating two
imputations (M=2), the dataset looks as follows:

Figure 2: Data format flong in Stata (imputed dataset).

Of greatest relevance is the system variable _mi_m, created by Stata.
This variable tracks the imputation. 0 stands for the original datarows,
which are untouched. The value 1 is for imputation 1 and so on. We
see that each imputation contains also the observation which was not
imputed since it had no missing values. While this format takes more
space, it makes working with the data easy since we can simply loop over
all imputed datasets, running from 1 to M, and compute the statistic of
interest. Afterwards, these statistics are combined to arrive at a final
imputed statistic.

Boot + Impute
We start with the BootImpute (BI) approach, which is conceptually easier
to explain. One can summarize the algorithm as follows:

1. Take a single random bootstrap resample from the original data.
Naturally, this bootstrap sample will contain missing values when
the original has also missing values.

2. Run the imputation model on this bootstrap sample to fill in the
missing values.

3. Estimate the statistic of interest for each imputation and combine
the results. Store this final estimate.

7

4. Repeat steps 1 to 3 many times to collect a large number of statistics,
generated by the bootstrapping approach. Compute the desired
percentiles of the resulting collection of statistics (the bootstrap
distribution) to arrive at a percentile confidence interval.

5. To compute the point estimate, run the imputation model once on
the original dataset and compute the statistic of interest as described
in step 3.

Apparently, this approach is computational intense as for each boot-
strap resample, the imputation model has to be run again. Especially
for complex imputation models that take a long time to complete, this is
a large downside. However, the implementation in Stata is rather con-
cise. We start by defining the main program that can be given to the
bootstrapping wrapper.

1 cap program drop boot_impute
2 program def ine boot_impute , r c l a s s
3 preserve
4 mi set f long
5 mi r e g i s t e r imputed wage hours ttl_exp age
6 mi impute chained (pmm, knn(5)) age ttl_exp hours wage = wage0

grade tenure , add(35) rseed (723)
7 local mi_r2 = 0
8 mi describe
9 local mtotal = r (M)

10 forvalues i = 1/ ‘ mtotal ’ {
11 reg wage hours tenure ttl_exp grade age i f _mi_m == ‘ i ’
12 local mi_r2 = ‘mi_r2 ’ + e(r2)
13 }
14 return scalar mi_r2 = ‘mi_r2 ’ / ‘ mtotal ’
15 restore
16 end

Line 1 clears any older versions of this program from the memory, if
already loaded. We start in line 2 by defining the program as r-class,
which means that stored results will be returned in r(). Apparently, run-
ning the program will change the original data and add new values to the
dataset. However, so that the next resampling round can work again on
the original dataset, we wrap all operations in preserve/restore to restore
any changes made to the data after producing the statistic of interest.
The imputation format is set to flong as described above. We register
all variables which have missing values as required by Stata. It follows

8

the concrete imputation step where MICE is applied. This model can be
as complex as required by your data and research goals. In this demon-
stration, where all variables in the dataset are continuous, we keep it as
simple as possible and use predictive mean matching with five matches
each. After the equal sign we list all auxiliary variables that do not con-
tain missing values. The options follow after the comma. We want to
generate 35 imputations. We give a random seed so that our results are
reproducible. Dots shows the progress of the imputation estimation. This
completes the imputation model.

Now all that is left to do is to collect the results. After the imputation
has finished, we end up with 35 imputations, which must be combined
to arrive at a final result. To do so, we compute the statistic of interest
for each imputation and simply form the arithmetic mean of them. An
alternative is to compute the median, which is not implemented in this
example. We start by defining a local (mi_r2) that will hold our results
as we go. We store the total number of imputations in another local
(mtotal) and use a loop to go over all imputations separately. The main
regression model is estimated, separately for each imputation (which is
described with the if-qualifier). Note that this approach only works if the
data are imputed in flong. The statistic of interest is added up in the local
and finally the mean is computed by diving the sum by the number of
imputations. This value is returned in the scalar mi_r2. This concludes
the main program.

If we want, we can now run this program on the dataset, which will
give us the point estimate of interest. Note that this process contains
no randomness (except for the random noise added in the imputation
model). To get the bootstrapping results, we can give this program to
bootstrap, which conveniently implements all the missing aspects, such as
taking random bootstrap samples repeatedly and analyzing the results.
This is done as follows:

1 use ”Data/missings_high . dta” , clear
2 bootstrap r e s u l t=r (mi_r2) , reps (50) seed (632) : boot_impute
3 estat bootstrap , pe r cent i l e

We open the dataset in Stata and continue with the bootstrap com-
mand. We specify that we want to bootstrap the single scalar returned by
our program. For testing purposes, only 50 replications are set. We add
a random seed and name the main of the command after the colon. Fi-
nally, estat gives us desired percentile interval. While this is as simple as

9

it looks, the computational time can be immense. Keep in mind that this
specification requires Stata to estimate the imputation model 50 times!
You can gauge the approximated runtime by running the program once
and measure the time for a single pass, then multiply by the number of
desired bootstrap resamples. Keep in mind that a value below 500 might
be rather imprecise. To speed things up, you can run the program with
parallel to use all system cores (Vega Yon & Quistorff, 2019). Luckily,
doing so is rather simple as well.1

1 p a r a l l e l i n i t i a l i z e 4
2 p a r a l l e l bs , express ion (r e s u l t=r (mi_r2)) reps (500) seed (23 44 56

83) : boot_impute
3 estat bootstrap , pe r cent i l e

In the first line we set the number of cores to use. This depends on your
CPU. The next expression is rather similar to the regular Stata bootstrap
command. Note that if you want to set a seed, the number of seeds must
be identical to the number of cores specified before.

Impute + Boot
We continue with the approach to impute the data first and only a sin-
gle time and then apply bootstrapping to this dataset. The advantage
is obvious as the potential time-intensive process of imputation has to
be done only once and is independent of the bootstrapping itself. The
problem is that it is less clear whether the main goal of bootstrapping,
that is, randomly and repeatedly resampling from the original data with
replacement, is still perfectly valid, since when it is applied after the im-
putation process where data were generated using the original sample and
this only once. However, we want to outline how it can be done in Stata.
The algorithm can be summarized as follows.

1. Apply your imputation model to the original data to generate M
imputed samples and save this newly created dataset.

2. To generate the point estimate, run the analytical model separately
for each imputed dataset and store the statistics of interests so you

1First, you need to install parallel from the Github repository
(https://github.com/gvegayon/parallel). Follow the manual and restart Stata
afterwards.

https://github.com/gvegayon/parallel

10

get M values. Summarizing these estimates gives the point esti-
mates, which is usually done as the arithmetic mean (an alternative
could be the median).

3. To compute bootstrap confidence intervals, draw a random boot-
strap sample with replacement from the imputed dataset. Here it
is crucial that the dependencies within the data are respected. For
example, if case number i is selected to be included in the bootstrap
sample, it is necessary to include all M datarows for this observa-
tion. In the end, for each fo the B bootstrap resamples, M datarows
are included.

4. For this newly generated bootstrap resample, compute the point
estimate as described in step 2.

5. Repeat steps 3 and 4 B times to get a collection of bootstrap point
estimates (the bootstrap distribution). Compute the percentiles of
interest for this collection to receive the confidence interval.

In Stata, this can be done as follows:
1 mi set f long
2 mi r e g i s t e r imputed age ttl_exp hours wage
3 mi impute chained (pmm, knn(5)) age ttl_exp hours wage = wage0

grade tenure , add(35) rseed (723) dots
4 gen newid = idcode
5 save ”Data/imputed . dta” , replace
6 cap program drop impute_boot
7 program def ine impute_boot , r c l a s s
8 use ”Data/imputed . dta” , clear
9 mi describe

10 local mtotal = r (M)
11 bsample , cluster (idcode) i d c l u s t e r (newid)
12 local mi_r2 = 0
13 forvalues i = 1/ ‘ mtotal ’ {
14 reg wage hours tenure ttl_exp grade age i f _mi_m == ‘ i ’
15 local mi_r2 = ‘mi_r2 ’ + e(r2)
16 }
17 local mi_r2 = ‘mi_r2 ’ / ‘ mtotal ’
18 return scalar mi_r2 = ‘mi_r2 ’
19 end

In lines 1 to 3, the data are imputed once as described above. For
Stata it is then necessary to create a new ID that first takes the values

11

of the original ID that are, however, later overwritten (line 4). This is
necessary if an observation is included multiple times in the bootstrap
sample. Suppose observation 6 is drawn two times in total from the
original sample, which means that these data are included 2M times.
However, it is important that Stata knows that these data rows should be
treated as separate observations in the bootstrap sample, so two different
IDs will be given, even in the original data are the same. This information
is then stored in the new ID, which is called newid in our case. The dataset
is then saved to disk.

We continue to write a program that is finally executed many times and
accesses the imputed dataset we just stored (line 8). After opening, the
number of imputed datasets M is counted and this information stored in a
local. Afterwards, a single bootstrap resample is taken with the properties
as described above. To achieve this, we tell Stata that the clustering ID
is idcode and that the newly created overwritten ID is called newid. After
having drawn the bootstrap resample, we can continue to summarize the
statistic of interest as already known by running the regression command
separately for each imputation version and forming the arithmetic mean
over all estimates. This final value is returned by the program in line 18.

When we run this program, we receive a single bootstrapped point
estimate, which is only the first step. To run the program many times,
we use Stata’s simulate command. This is a little different from the first
approach where we used bootstrap. However, since Stata always needs to
start with a fresh copy of the original imputed dataset which is saved to
disk, simulate is the way to go here (the bootstrap resampling is done
within the program).

1 simulate r e s u l t=r (mi_r2) , reps (500) seed (123) : impute_boot
2 centile resu l t , centile (2 . 5 97 . 5)

Line 1 runs the entire thing. We want to bootstrap the single scalar
impute_boot returns, which we call result for convenience. We want 500
simulations and set a seed so the random bootstrap resamples can be
reproduced. After the program has finished, Stata automatically opens
the results. All we need to to is check the value of percentile 2.5 and 97.5
for a 95% confidence interval, which we can do with centile. Finally, as we
have now computed the confidence interval, we need the point estimate.
This is done by opening the imputed dataset and running the command
of interest a single time, which can be done as follows:

12

1 use ”Data/imputed . dta” , clear
2 tempfile f i l e
3 tempname name
4 postfile ‘name ’ r2 using ‘ f i l e ’ , replace
5 mi describe
6 local mtotal = r (M)
7 forvalues i = 1/ ‘ mtotal ’ {
8 reg wage hours tenure ttl_exp grade age i f _mi_m == ‘ i ’
9 post ‘name ’ (e(r2))

10 }
11 postclose ‘name ’
12 use ‘ f i l e ’ , clear
13 sum r2 , det

Instead of using a local and summing up individual values, here we
show how to use postfile to store each value, which can be interesting for
other types of analyses. We set up postfile first and then estimate the
statistic of interest separately for each imputation in the dataset. After-
wards, we save the postfile, open it and compute the mean and median of
the statistic of interest. Usually, the mean will be reported as the point
estimate. Note that in this specification, nothing is saved to disk and only
kept in memory. You can either replace tempfile (line 4) with an actual
file path on your disk or simply save the computed dataset manually. If
desired, we can also run simulate in a parallel fashion as follows:

1 p a r a l l e l i n i t i a l i z e 4
2 p a r a l l e l sim , express ion (r e s u l t=r (mi_r2)) reps (500) seed (1 2 3 4) :

impute_boot
3 centile resu l t , centile (2 . 5 97 . 5)

Just to be clear, some people might wonder why we need to write this
extra program instead of giving this task to the Stata bootstrap prefix.
One could come up with a solution like this:

1 //THIS DOES NOT WORK
2 bootstrap e(F) , reps (500) dots (50) seed (1234) cluster (idcode)

i d c l u s t e r (newid) : reg wage hours tenure ttl_exp grade age

At first, it seems fine since Stata will draw random bootstrap samples
and also respect the imputed data structure. However, as you see, reg does
not ”know” about the imputed data and simply runs over all datapoints
in the sample. The higher the number of imputations M , the higher the
total case number regress will use. Apparently, this messes up all statistics
that depend on sample size, such as standard errors. We could attempt to
solve the problem by typing: mi estimate: reg..., however, this commend

13

does not return an R-squared value. A third solution could be to use
mibeta from SSC (ssc install mibeta, replace). This would work but only
for this very special statistic (R-squared). As long as you write a custom
program that sums up the statistic you actually need you are on the safe
side as long as Rubin’s rules apply (which is the case for most normally
distributed statistics).

Simulation and
comparison

By now we have seen how to apply both approaches of bootstrapping im-
puted data in Stata. Next we want to outline how the different methods
perform. Note that this is not a proper simulation approach but only a
rather concise demonstration as in-depth review would require many more
simulations, which takes a lot of time as the bootstrapping naturally takes
a long time to compute a single result. We will compare four different ap-
proaches: using the original data without any missings, which is the gold
standard and ideal result. Ideally, our imputed results will converge to
this result as it is unbiased. Second, listwise deletion is applied without
any imputation to test how biased findings can be if nothing is done to
combat missing data. Finally, both bootstrap approaches are compared.
Evaluated are the point estimates, the distributions of the generated boot-
strap statistics and percentiles 2.5 and 97.5 (as these correspond to a 95%
confidence interval, which is usually the standard). The following table
gives an overview over the simulation specifications (Table 1).

Approach Bootstrap Resamples Number of imputations
Complete data 2000 -
Listwise deletion 2000 -
Boot + Impute 2000 35 (per bootstrap resample)
Impute + Boot 2000 35 (impute dataset once)

Table 1: Simulation specifications.

14

15

Approach Point estimate (R²) 95% CI
Complete data 15.95 11.40; 23.91
Listwise deletion 21.13 13.16; 34.30
Boot + Impute 15.75 11.57; 25.59
Impute + Boot 15.75 12.86; 21.79

Table 2: Resulting point estimates and CIs by approach.

As before, we want to generate a 95% confidence interval for R-squared.
The results are shown in the next table (Table 2).

The first and most important thing to notice is that the results for
listwise deletion are heavily biased. Since the data are MAR and not
MCAR, the resulting R-squared is clearly off. Furthermore, the CI is very
wide since the effective sample size is reduced and the uncertainty hence
larger. When we look at the imputed approaches we note that the point
estimates are identical. This must be the case since the bootstrapping
methods are used for inference and not better point estimates. Whether
or not to use bootstrapping after imputing your data does not affect the
point estimate. We also see that the point estimates are very close to
the ideal one which means that our imputation approach is beneficial and
is able to account for missing data. This holds since the data is MAR.
When looking at the CIs we see that BootImpute performs better than
ImputeBoot. For the latter approach, the CI is too narrow. This means
that in this kind of interval, the true value is included less often than the
expected 95%, resulting in undercoverage. This is a problem if we believe
that the nominal coverage should be 95%. However, given that this is a
single dataset and a single computation, one should be careful to read too
much into these numbers. We continue with a comparison of the resulting
bootstrap distributions (Figure 3).

We see that the complete dataset and the BootImpute approach give
rather similar distributions of generated statistics (based on 2,000 replica-
tions). The distribution for ImputeBoot is a bit too narrow. Completely
off is the listwise approach as the distribution is shifted to the right and
much too broad. Next we compare the centiles of interest to assess the
confidence intervals in more details (Figure 4).

It becomes clear that BootImpute performs very well and is rather

16

Figure 3: Comparison of bootstrap distributions by approach.

close to an ideal result.

17

Figure 4: Quantiles 2.5 and 97.5 of the generated bootstrap distributions
by approach, including 95% CIs. The dashed horizontal line indicates the
ideal result.

Bibliography

Bittmann, F. (2019). Stata: A really short introduction. Walter de
Gruyter GmbH & Co KG.

Bittmann, F. (2021). Bootstrapping: an integrated approach with Python
and Stata. Walter de Gruyter GmbH & Co KG.

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap.
CRC press.

Hesterberg, T. C. (2015). What teachers should know about the boot-
strap: Resampling in the undergraduate statistics curriculum. The
American Statistician, 69(4), 371–386.

Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data.
John Wiley & Sons.

Schomaker, M., & Heumann, C. (2018). Bootstrap inference when using
multiple imputation. Statistics in medicine, 37(14), 2252–2266.

Van Buuren, S. (2018). Flexible imputation of missing data. CRC press.

Vega Yon, G. G., & Quistorff, B. (2019). parallel: A command for parallel
computing. The Stata Journal, 19(3), 667–684.

18

