Particulate matter-induced oxidative stress – recent mechanistic insights from in vitro studies
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Table S1 – Main oxidative stress-related effects triggered by particulate matter reported in the latest in vitro lung studies and tested antioxidant strategies. Cited papers were available on Pubmed on 13.07.2023 and published after 2020.01.01.
 
	Cells/cell line
	Type of PM, conc., time of exposure, condition
	Observed effects
	Treatments & other observations
	Reference 

	A549
	CSE, 3 and 6%, 12h, SUB
	 LC3B-II, protein carbonylation, translocation of ADAR1 from nucleus to cytosol
 ADAR1 (but not mRNA, so it’s post-transcriptional), CYP1A1, RNA editing levels of AhR, SOD act.
	Similar effects were induced by acrolein but not by nicotine. Decreased ADAR1 by CSE were mediated by autophagy. Authors hypothesize such translocation is mediated by the MAPK/ERK pathway, as CSE has been previously reported as an MAPK3 (ERK1) and MAPK8 (JNK1) activator.
	(Takizawa et al., 2020)

	A549
	Comercial CSE, 0.25 & 1g/mL, 24h, SUB
	 IL-6, IL-8, MCP-1, CCL5, CYBA, SOD, GPx, CAT, NOX, Nrf2, ATG5, ATG12, ATG16, beclin-1, LC3B-II/LC3B-I, autophagosome formation, FOXO1, nuclear FOXO3a 
 FOXO3a, mTOR
No change in cell viability, ANXV+ or Pi+ cells (= no necrosis, no apoptosis)
	Pre-treatment w/ 1mM NAC for 2h decreased mRNA expression of cytokines, chemokines, and autophagy-related proteins, therefore, supporting a role for ROS in the activation of CSE-induced autophagy. FOXO3a knock-down aggravated the pro-oxidative and pro-inflammatory effects, while stimulating autophagy.
	(Bagam et al., 2021)

	A549
	PM10 SRM 1648a water-soluble fraction, 400g/mL, 24h, SUB 
	 MDA, NO, MEK5, ERK5, p-ERK5, Nrf2, HO-1
 cell viability, SOD act., CAT, GSH
	Pre-treatment w/ biochanin A for 2h protected cells against WS-PM-induced oxidative stress via MEK5/ERK5/Nrf2 activation.
	(Xue et al., 2021)

	 A549
	PM SRM 1648a, 25-200g/cm2 (119-950g/mL), 24h, SUB
	 ROS, p-AMPK, Sestrin2 (oxidative stress suppressor), IL-8, TNF-, COX-2
 cell viability, mitochondrial function
	5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr), an AMPK activator used to mimic exercise in vitro, restored O2 consumption rate and decreased inflammatory profile. Confirmed in mice (inhalation), the results suggested that PM derived-effects are not exacerbated, but rather alleviated, by exercise-induced hyperventilation.
	(So et al., 2022)

	A549
	PM SRM 1649b Organic extractable fraction, 100g/mL, 24h, SUB
	 wound healing, cell migration, vimentin, fibronectin, ETS-1, p-p65 NF-κ
 E-cadherin
	O-PMs induced EMT in a ROS dependent way. Pre-treatment with 5mM NAC for 1h decreased fibronectin production and EMT transition, proving their dependence on ROS generation. Confirmed in mice (intratracheal instillation).
	(Chen et al., 2020)

	A549
	PM2.5 (Water-soluble fraction in simulated lung fluid), 50-200g/mL, 24h, SUB
	 LDH, DNA damage, proline expression
 cell viability, TAC
	Proline prevented DNA damaging effects of PM2.5.
Higher levels of metals in the urban PM2.5 (vs industrial) resulted in lower cell viability. Highlights the role of soluble metal contents in PM samples.
	(Barzgar et al., 2023)

	A549
	PM2.5 (brake-derived) w/  Cu conc., 50-500g/mL, 48h, SUB

	 ROS, % apoptotic cells, MitoMP, IL-8, IL-1, IL-6, TNF-, HO-1
 Cell viability, Bcl-2
	Effects (except inflammation) correlated w/ Cu content of the samples as the PM w/ no Cu did not induce any toxicity. Authors advocate for elimination of Cu from brake pads, and suggest ROS increase as an early marker of cytotoxicity induced by metals and PM.
	(Figliuzzi et al., 2020)

	A549
	PM2.5 Urban vs industrial, 80g/mL, 24h, SUB
	 ROS, TNF- (non-pollution), IL-6 (industrial)
 Cell viability, NOQ1 

	PM2.5 conc higher in urban setting and in pollution stage. Interestingly, in the pollution stage, both types of PM induced lower levels of ROS than in the non-pollution stage. TNF- levels correlated w/ Na+ and SO24- and w/ metals (As, Cr, Cu, Fe, Mn, Ni, Ti, Sr, Zn).
	(Pang et al., 2020)

	A549
	PM2.5, 80g/mL, 24h, SUB
	 ROS, IL-6, TNF-, LDH
 Cell viability (significant but not relevant)
	Positive correlations were found between the toxicity indexes, particularly ROS generation, and the components of the PM2.5 such as EPFRs (eg. PAH radicals), organic carbon, Cu, As and Pb. Cold season samples tended to be more cytotoxic than warm season ones.
	(H. Li et al., 2022)

	A549+HUVEC on chip
	PM2.5, 100g/mL, 24h, SUB
	 ROS, IL-1, IL-1β, IL-6, INF-, % apoptotic cells, BIP, PERK, p-eIF2, CHOP, caspase-3
	Co-treatment with 10mM NAC reversed oxidative stress, apoptosis and ER stress.
	(Guan et al., 2021)

	A549,
SD-1
	PM2.5, 100g/mL, 12h, SUB
	 ROS, Ca2+, IL-1, IL-6, TNF-, NLRP3, caspase-1, TRPM2 
	Pre-treatment with 5mM NAC for 1h counteracted the PM2.5-induced increases in ROS, Ca2+ and TRPM2. Confirmed in mice (intratracheal instillation), supporting that ROS activates NLRP3 and its downstream signaling.
	(C. Wang et al., 2020)

	A549, RAW 264.7
	PM, 50g/mL, 24h, SUB
	 ROS, NO, O2-, IL-6, TNF-, NF-, cells in G2/M, % apoptotic cells 
 viability
	The authors conclude that PM leads to ROS production that in turn triggered cytokine production and NF- up-regulation but the different experiments were performed using different cell lines and there was no clear link between the events.
	(Guerra e Oliveira et al., 2022)

	A549+ diff THP-1
	Cow stable dust, 25-100g/mL, 18h, SUB
	 ROS, IL-6, TNF-, cells in G1/G0
 metabolic act, cell in S-G2/M 
	The decreased metabolic activity and number of cells S/G2 (proliferating) together with increased inflammatory mediators may indicate activation of defense mechanisms. 
	(Martikainen et al., 2021)


	A549
BEAS-2B

	CSE, 3 (A549) 1.38% (BEAS-2B), 48h, SUB
	 p-NF-/NF-, vimentin, N-cadherin, -SMA
 Cell viability, Nrf2, SIRT1, p--catenin/-catenin, E-cadherin
	Post-treatment with Piperine 1.25 or 6.25M for 1h partially restored cell viability and reverted the CSE-induced effects, including EMT activation.

	(Saha et al., 2022)

	BEAS-2B
	3 functionalized carbon black vs carbon black (PM2.5), 1.56-25g/mL, 24h, SUB
	 IL-1, IL-6, protein carbonylation
 Cell viability, SOD2, Nrf2
	Functionalized carbon black particles as surrogates for synthetic soot. Highest surface oxygen % and carboxylic acid content seemed to yield stronger oxidative and inflammatory response. Carbon black was the least toxic, only inhibiting Nrf2.
	(Housseiny et al., 2020)


	BEAS-2B
	CSE, 8%, 24h, SUB


	 ROS, MDA, ERK p-p38 MAPK, IL-6, TNF-, MMP-9, mitochondrial fission factor
 SOD and GPx activity, OPA1
	Pre-treatment w/ 100μM SS-31 for 1h alleviated CSE-induced oxidative and inflammatory effects. Confirmed in mice (inhalation?).
	(Yang et al., 2021)

	BEAS-2B
	CSE, 5%, 24h, SUB


	 ROS, apoptotic cells, Bax, cleaved caspase-3/caspase-3, cleaved PARP/ PARP, MDA, TNF, IL-6, IL-1
 cell viability, Bcl-2, SOD, GSH-Px, ANXA1, FRP2, pAMPK/AMPK
	Pre-treatment with 10M methylprednisolone up-regulated Annexin-A1 expression and suppressed oxidative stress, inflammation and apoptosis via FPR2/AMPK pathway
	(Yu & Zhang, 2022)


	BEAS-2B
	CSE, 5%, 24h, SUB
	 ROS, MDA, Nrf2, HO-1, NQO1, TRIM25, caspase-1, LDH, NLRP3, GSDMD-N, IL-1, IL-18 
 cell viability, SOD-1, SOD-2, SOD-3, Keap-1
	Co-treatment w/ 50M (−)-Epicatechin for 24h alleviated the CSE-induced NLRP3-mediated inflammation and pyroptosis through repressing the oxidative stress via induction of Nrf2. Confirmed in rats (inhalation).
	(Tian et al., 2021)

	BEAS-2B
	CSE (1%, 7days) & PM10 (SRM 1648 100g/mL, 24h) alone vs combined, SUB

	 ROS (combined exposure), LDH (not CSE), MDA, IL-6, IL-8, p-ERK, p-JNK, Nrf2, IL-1β, IL-6, IL-8, TNF-α, MCP-1, CXCL-1, HO-1, NQO1
 Cell viability (not CSE), GSH, TXN
	Exposure to PM aggravated CSE-induced oxidative stress, inflammation, and cell death (but not through apoptosis) in bronchial epithelial cells, suggesting that smokers that live in highly polluted areas may be at higher risk. Sulforaphane or sulforaphane N-acetylcysteine (after exposure to CSE and/or PM10) suppressed the oxidative stress and inflammatory effects of CSE and PM10 by further enhancing Nrf2 signaling.
	(Son et al., 2020)

	BEAS-2B
	PM SRM 1649b, 200μg/mL, 24h, SUB
	 ROS, IL-6, IL-8, p-IκBα/IκBα, p-p65/p65 NF-κ, Nrf2, HO-1, NQO1
 Keap1
	Pre-treatment w/ 10ng/mL FGF10 for 1h resulted in antioxidant and anti-inflammatory effects through Nrf2 signaling and NF-κ. Similar results were obtained 2.5mM NAC or w/ 5M BAY11-7082, an NF-κ inhibitor. Confirmed in mice (intratracheal instillation).
	(Q. Wang, Shi, et al., 2022)

	BEAS-2B
	PM SRM 1649b, 200g/mL, 24h, SUB
	 ROS, Pi+ cells, NLRP3, ASC, GSDM-N/GSDMD, cleaved caspase-1/caspase-1, caspase-1 act., LDH release, mature IL-1/IL-1, mature IL-18/IL-18, Nrf2 (total + nuclear), NQO1, HO-1, p-Akt/Akt 
 cell viability
	Pre-treatment with 10ng/mL FGF10 for 1h alleviated PM-induced oxidative damage and pyroptosis through activation of PI3K/Akt/Nrf2. Confirmed in mice (intratracheal instillation).
	(L. Liu et al., 2022)

	BEAS-2B
	PM2.5 (SRM 2786), 20μg/cm2, 36h, SUB
	 Lipid ROS, ROS, MitoMP, Mitochondrial ROS, NADP+/NADPH, COX2, MDA, IL-6, IL-8, TNF-, Fe2+ accumulation, LC3B-II, NCOA4, FTH1
 cell viability, GPX4, GSH, GPx, Nrf2, PPAR-γ
	Pre-treatment with NaHS (donor of hydrogen sulfide) alleviated ferroptoptic changes, activated the expression of Nrf2 and PPAR-γ, inhibited ferritinophagy markers. Confirmed in mice (intratracheal instillation).
	(Y. Wang, Liao, et al., 2022)

	BEAS-2B
	PM2.5 (China) soluble extract, 300μg/mL (~94 μg/cm2), up to 24h, SUB
	 ROS, IL-1, IL-6, IL-8, GM-CSF, cleaved PARP, cleaved caspase-3, Bax, %apoptotic cells, COX2, p-p65 NF-κ, p-ERK, p-p38 MAPK/ERK, p-JNK
 cell viability, ZO-1, E-cadherin, Bcl-2, GSH activity, p-mTOR
	Soluble PM2.5 extract disrupted the barrier function, induced apoptosis and the release of pro-inflammatory cytokines, as well as activation of the NF-. Confirmed in mice (intranasal instillation).
	(Zhao et al., 2020)

	BEAS-2B 
	PM2.5, 25-200g/mL, 24h, SUB 
	 Nrf2, NF-, IL-1, IL-6, IL-8, -SMA
 Cell viability (lower in direct exp), E-cadherin
	BEAS-2B directly exposed to PM2.5 or indirectly exposed to supernatant from PM2.5-treated macrophages (THP-1). While direct exposure had a stronger effect on viability, indirect stimulation w/ high PM2.5 conc strengthened the inflammatory response, and low conc favored EMT phenotype of BEAS-2B.
	(Y. Wang, Zuo, et al., 2022)

	BEAS-2B
	PM2.5-0.3 vs organic extractable & non-extractable fractions, 12gEq. PM/cm2, 6-48h, SUB
	 ROS, Nrf2, Nrf2 binding activity, Keap-1, NQO1, HO, SOD, GSSG/GSH, DNA damage protein carbonylation, 8-isoprostane, TNF-, IL-6, IL-8, MCP-1, caspase 3/7, caspase 8, caspase 9
 cell viability, ATG5, Beclin, LC3B-II
	Both whole PM2.5-0.3 and its fractions induced oxidative stress, inflammation and apoptosis in BEAS-2B cells, but PM2.5-0.3 was in general more toxic than its organic extractable and non-extractable fractions.
	(Badran et al., 2020)

	BEAS-2B, WL-38, Primary rat alveolar macrophages
	PM2.5, 70g/mL, 24h SUB
	BEAS-2B:
 ROS, apoptosis rate, collagen I/III, -SMA, TGF-1, p-Smad2
 cell viability
WL-38:
 ROS, apoptosis rate, collagen I/III, -SMA, TGF-1, p-Smad2
 cell viability
Alveolar macrophages:
 ROS, apoptosis rate, M2 phenotype, mTORC1, TIPE2
 cell viability, M1 phenotype
	Co-treatment w/ 5mM NAC for 24h could reverse all the effects observed in the alveolar macrophages, suggesting that the PM2.5-induced M2 polarization was caused by oxidative stress. The PM2.5-induced airway remodeling markers in BEAS-2B and WL-38 were also reverted by NAC treatment, indicating that airway remodeling was also dependent on ROS production. Confirmed in rats (inhalation).

	(H. Liu et al., 2022)

	BEAS-2B,
Primary mouse tracheal epithelial cells
	PM2.5, 100g/mL, 24h, SUB
	 ROS, MDA, miR-155
 SOD, GPx, FOXO3a, SOD2, CAT
	Pre-treatment w/ 16g/mL ECC-BYF or NAC (500M) for 24h resulted in significant antioxidant activity via down-regulation of miR-155, which lead to FOXO3a up-regulation and decreased ROS. Confirmed in rats (inhalation).
	(J. Li et al., 2021)

	BEAS-2B,
Primary human small airway epithelial cells
	Polycarbonate (PC) vs polyurethane (PU) incinerated thermoplastics & derivatives w/ 3% carbon nanotubes (CNT), 0.6 or 1.2g/cm2, 48h, ND
	 ROS (only for PC-CNT and results in DNA damage), LDH, CYP1 act, cells in G2
 viability, cells in G1, mitochondrial membrane potential

	When exposing the cells to the particles’ supernatant (filtration, where the PAHs would be) no cytotoxicity was observed. BEAS-2B were more sensitive to the toxic effects of aerosolized incinerated thermoplastics than the small airway cells. 3% CNT exacerbated PC toxicity, especially regarding DNA damage. The PU thermoplastics did not cause toxicity.
	(Coyle et al., 2020)

	BEAS-2B, NHBE cells
	Poultry organic dust extract, 0.25%, up to 24h, SUB
	 ROS, mitoROS, pro-IL-1, IL-8, IL-6, PTGS2, ICAM-1, p-p65 NF-κ, p-STAT-3
 p47phox (indicates NOX2 activation)
	The results show that NOX- (particularly NOX2) and XO-derived ROS (not mitochondrial) contribute to the induction of inflammatory mediators. NOX inhibitors VAS2870, GKT137831 and ML171 suppressed ROS production induced by the dust extract. Confirmed in mice (intranasal instillation).
	(Meganathan et al., 2022)

	BEAS-2B, THP-1

	Organic dust extract, 5%, 24h, SUB
	BEAS-2B:
 ROS, RNS, Nrf2, IL-1β, IL-6, IL-8, IL-10
THP-1: 
 ROS, RNS, iNOS, Nrf2, Trl2, Trl4, IL-6, IL-8, NF-
	Pre-treatment w/ NaHS (donor of hydrogen sulfide) for 3h alleviated the oxidative stress but not the inflammatory response in vitro. The authors report a clear dissonance between the in vivo (mice, intranasal instillation) and in vitro studies that could relate to interspecies differences and conclude that pre-exposure to H2S modulates lung inflammatory response. 
	(Shrestha et al., 2021)

	16-HBE
	CSE, 5%, 24h, SUB
	 ROS, LDH, IL-1, IL-18, Pi+ cells, caspase-1 activity, NLRP3
 GSDMD
	NAC reversed all the observed effects. The NAC-induced decrease in NLRP3 mRNA expression suggests that NLRP3 activation requires the production of ROS. Confirmed in mice (inhalation).
	(Zhang et al., 2021)

	16HBE
	PM2.5 (China); 67.5, 116.9, 202.5g/mL; 4 & 24h, SUB
	 ROS, LDH, MDA, HO-1, DNA damage
 Cell viability, GSH
	PM2.5 also induced DNA damage and influenced DNA repair genes.

	(Niu et al., 2020)


	16HBE14o-, NuLi-1
	SRM 2585 (Organic extract of house dust), 0.2g/mL, SUB
	 ROS, mitochondrial dysfunction 
 TEER
	PM affected cell bioenergetics. Oxidative stress is not due to a single fraction but to many of the 22 fractions obtained. Highlights the need to carefully select the cells/cell lines because different results were obtained in terms of cytokine release.
	(Marques dos Santos et al., 2022)



	HBECs
	PM SRM 1649b, 300μg/mL, 24h, SUB
	 ROS, IL-6, IL-1, IL-1, COX2, p-p65/p65 NF-κ
 MitoMP
	The inflammatory effects were NF-κ-mediated. Pre-treatment w/ 500M Edaravone for 1h inactivated NF-κ, therefore decreasing inflammatory cytokines and ROS generation, while increasing the MitoMP (attenuated mitochondrial dysfunction). Confirmed in mice (intratracheal instillation).
	(Zeng et al., 2022)

	HBECs
	PM SRM 1649b, 200g/mL, 24h, SUB


	 ROS, ATF4, GRP78 (Bip), CHOP, ATF6, cleaved caspase-3, NLRP3, ASC, GSDMD-N, IL-1β, caspase-1, IL-18, IL-6, IL-8, apoptotic and necrotic cells, Nrf2 (total and nuclear), HO-1, NQO1.
	Pre-treatment with 50M Glycyrrhizin for 1h alleviated all the observed effects. The Nrf2-mediated antioxidative effect of GL regulated ER stress and NLRP3 inflammasome-mediated pyroptosis in PM-exposed cells. Confirmed in mice (intratracheal instillation).
	(Shi et al., 2023)

	HBECs
	CSE, 2%, 48h, SUB
	 ROS, apoptosis rate, IL-8, IL-6, TNF-, cleaved caspase-3, p-NF-, Keap-1, Bip/GRP78, p-PERK, p-IRE1, ATF6, ATF4, CHOP, NOX1, NOX2, NOX4, XO, Keap-1
 Cell viability, HO-1, NQO-1, SOD, GCLM, Nrf-2
	Co-incubation with Ephedrine 10g/mL alleviated the CSE-induced apoptosis, inflammation and oxidative stress, in a Nrf2-independent manner, by blocking ER-stress. Bip/GRP78 over-expression potentiated all the effects. Confirmed in mice (inhalation).
	(H. L. Wang, Chen, et al., 2022)

	HBSM
	CSE, 2.5% 24h, SUB


	 proliferation rate, BrdU incorporation (into newly synthesized DNA of actively proliferating cells), cyclin D1, -SMA, p-SMAD2, p-SMAD3, TGF-1
 PPAR- γ
	1h pre-treatment w/ Artesunate 100μM up-regulated PPAR-γ, decreased TGF-β1/ Smad2/3 phosphorylation, and suppressed cell proliferation through the TGF-β1/ Smad2/3 signaling pathway by targeting PPAR-γ. Confirmed in rats (inhalation).
	(Pan et al., 2021)

	J774A.1
	CSE, 0.5%, 24h, SUB
	 ROS, NO
 Cell viability
	Effects reversed by co-treatment with 10M quercetin for 24h. Confirmed in mice (inhalation).
	(da Silva Araújo et al., 2020)

	L-132
	CSE, 10%, 24h, SUB
	 TXNIP, NLRP3, mitoROS, LDH release
 cell viability, mitophagy (mitochondria clearance)

	Pre-treatment with 40 M melatonin during 1h protected against the CSE-induced cell death, ER-stress mediated inflammasome activation, but only partially decreased ROS production. NAC 10mM, when combined w/ melatonin, abolished ROS generation and further decreased the expression of TXNIP and NLRP3. Confirmed in mice (inhalation?).
	(Mahalanobish et al., 2020)


	MH-S
	CSE, 3%, 1h, SUB
	 ROS, EVs conc, vesicular (not intracellular) SOCS3
 20S proteasome act.

	Pre-treatment with 50M NAC for 1h reversed the effects induced by CSE, supporting that the observed effects are ROS-dependent. Also, proteasome inhibition by bortezomib displayed the same effects as CSE and proved that the increased SOCS3 secretion in EVs derives from 20s proteasome inhibition. 
	(Haggadone et al., 2020)

	MLE-12
	PM2.5, 100g/mL, 24h, SUB
	 -SMA, Txnip, p-mTOR
 cell viability, E-cadherin, Txnrd1 
	Co-incubation w/ 20M Epigallocatechin gallate for 24h alleviated the oxidative stress (Txnrd1) and EMT induced by PM2.5 via inhibition of AKT/mTOR pathway. Confirmed in mice (intranasal instillation).
	(Zhongyin et al., 2022)

	NCI-H292
	CSE, 10%, 48h, SUB
	 IL-8, TNF-, MMP-9, STAT3, JAK1, JAK2
 SOD, TIMP-1, PPAR
	Co-treatment w/ Tiaobu Feishen formulae 20% for 48h alleviated the CSE-induced oxidative stress.
	(Haoran et al., 2020)

	NCI-H292, 
HPAEC
	PM2.5, 10g/cm2, up to 24h, SUB

	 ROS (sub-urban), HO-1, SOD-2, IL-8 in both cell types but higher in endothelial
	Distinct chemical signature was observed between the PM obtained in urban (traffic) and in suburban (biomass burn) areas. Oxidative potential of the PM was also assessed in acellular assays and seemed to be proportional to the PM composition rather than PM concentration, and predictive of cellular oxidative and pro-inflammatory responses
	(Crobeddu et al., 2020)

	NCI-H460
	PM10, 400g/mL, 12h, SUB
	 ROS
 cell viability
	Pre-treatment with quercetin (conc. ND), naringin (800g/mL) or Citrus junos peel extract (800g/mL) for 1h prevented ROS generation and enhanced cell viability. Confirmed in mice (intranasal instillation).
	(Lee et al., 2022)

	NHBE
	CS diluted in clean air, 0.5-4L/min, 40’/day * 3x/week * 4weeks followed by a 20day-recovery phase (RP), ALI

	 HO-1 (back to basal after RP), IL-1β, IL-1 receptor antagonist, IL-6, IL-8, G-CSF, RANTES, CK6, involucrin, TEER, PPAR
 GSH/GSSG (acute exposure), IL-7, MCP-1, MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, MMP-13, MUC5AC, MUC5B, CCSP, cilliated cells, goblet cells, number of cilia, cilia lenght, cilia beating frequency,  
	Transcriptomics-based study on an in vitro model w/ repeated ALI exposure regimen. Most of the effects were reverted after a 20-day RP, except for IL-6, MMP10, MMP-12, mucin secretion, ciliary abnormalities. Good in vitro emulation of the CS-induced human chronic obstructive pulmonary disease. 
	(Xiong et al., 2021)

	Primary human bronchial epithelial cells
	DEP alone (12.5 μg/cm2, 3’/day x3days) vs single combined exposure w/ NO2 (0.1ppm) and w/ SO2 (0.2ppm), aerosol 
	Alone: 
 IL-6, IL-8, TNF-, GSTA1, HO, SOD3 
 IL-8, MMP-9
Combined: 
 TNF-, GSTA1, SOD3, MMP-9
	Repeated exposures to DEP and single combined exposure to DEP and gases induced more significant oxidative stress and inflammation than repeated exposures to gaseous pollutants alone.
	(Upadhyay et al., 2022)

	Primary human CCR6+Th17 cells
	CSE, 5%, 48h, SUB
	 ROS, SA- gal+ cells, p16INK4a + cells, VEGF, p-ERK+ cells, HO-1, NQO1

	CS induced ROS-dependent premature senescence of mucosa-homing CCR6+Th17 cells.
Pre-treatment w/ 10mM NAC for 1h30 reverted all the effects, supporting their relationship with the CSE-induced ROS generation.
	(Baskara et al., 2020)

	Primary rat alveolar epithelial cells
	CSE (Heat-not-burn), 20% vs
CSE (conventional), 10%, up to 24h, SUB
	 Nrf2, HO-1, GSTA1, GSTA3, NQO1
	No difference between both types of cigarettes. The defense response against oxidative stress was more activated in alveolar type II than type I-like cells. 
	(Ito et al., 2020)


	Rat ATII cells, NR8383
	PM2.5, 50g/mL, 24h, SUB
	 ROS, IL-6, TNF-, apoptosis or necrosis
Data related to immunomodulation is normalized to PM2.5 making it not possible to understand the effects of PM2.5 relative to control. 
	EVs and antioxidant-EVs (containing Nrf2 mRNA and protein) derived from rat adipose-derived stem cells decreased ROS, apoptosis, MDA and favored M2 phenotype, therefore displaying antioxidant and anti-inflammatory properties. Confirmed in rats (intratracheal instillation).
	(Gao et al., 2021)

	RAW 264.7
	PMET720 (common stainless-steel wire) aerosols collected @50 or 60 psi, up to 200g/mL, 24h, SUB
vs. GMA-SS, MMA-SS welding particles 
	PMET720(60) @200g/mL:
 LDH, NF- (>3.12ug/mL)
 Cell viability 
PMET720(50&60) @100g/mL:
 ROS, NF- (>3.12ug/mL)
	The PMET720 thermal spray coating particulates were less toxic than the welding particles. While both types of particles induced ROS generation, its association with the increased levels of NF- is not explored. Confirmed in rats (inhalation).


	(Kodali et al., 2022)

	RAW 264.7
	PM2.5, 400g/mL, 24h, SUB
	 ROS, MDA, NLRP3, NF-, Bax, apoptotic rate, caspase-1, caspase-3, GSDMD, IL-1β, %cells in G2
 Bcl-2, SOD act., %cells in G1
	Pre-treatment w/ 10mM NAC could partially reverse the oxidative stress, apoptosis and pyroptosis induced by PM2.5. Confirmed in mice (inhalation).

	(Ren et al., 2022)

	RAW264.7
	PM (China) urban aerossol, 30g/cm2, 24h, SUB
	 ROS, TNF-, IL-1, IL-6, MIP-2
	Pre-treatment w/ 2.5-10M epigallocatechin gallate or gallocatechin gallate for 1h alleviated the urban-aerosol-induced oxidative stress and inflammation. Confirmed in mice (intratracheal instillation).
	(Tanaka et al., 2022)

	diff U937, HMC3 (microglia)
	DPM SRM 2975, 25g/mL, 24h, SUB
Conditioned serum, 48h, SUB
	U937:  ROS, H2O2, MCP-1, IL-1, IL-6, IL-8, TNF-
HMC3:  ROS, H2O2, IL-6, IL-8, IL-1, TNF-, CD-14 activation
	Studying systemic DPM-derived effects to HMC3 by exposing the latter to medium conditioned by U937 previously exposed to DPM. For CD14 activation, this indirect exposure (cytokine diffusion) proved more potent and specific than the direct exposure of HMC3 to DPM.
	(Pradhan et al., 2023)


Act: activity; ADAR: adenosine deaminase acting on RNA; AhR: aryl hydrocarbon receptor; -SMA: alpha smooth muscle actin; AKT: protein kinase B; ANX: annexin; AMPK: 5' adenosine monophosphate-activated protein kinase; ASC: Apoatfptosis-associated speck-like protein containing a caspase recrutiment domain; ATF: activating transcription factor; ATG: autophagy-related; BAX: Bcl-2-associated protein X; Bcl: B-cell lymphoma; BIP: binding immunoglobulin protein; BrdU: bromodeoxyuridine; CAT: catalase; CCL: CC chemokine ligand; CCR6+: CC chemokine receptor; CCSP: club-cell secretory protein; CD: cluster of differentiation; CHOP: CCAAT/enhancer-binding protein homologous protein; CK: keratin; COX: cycloxigenase; CSE: cigarette smoke extract; CXCL: CXC chemokine ligand; CYBA: Cytochrome b-245 light chain; CYP: cytochrome P450; DEP: diesel exhaust particles; diff: differentiated; DPM: diesel particulate matter; ECC-BYF: effective-component compatibility of Bufei Yishen formula; eIF: eukaryotic initiation factor; EMT: epithelial-mesenchymal transition; EPFR: environmentally persistent free radicals; ER: endoplasmic reticulum; ERK: extracellular signal-regulated kinase; ETS: E26 transformation-specific sequence; EV: extracellular vesicle; FGF: fibroblast growth factor; FOXO: forkhead box protein class O; FRP: N-formyl peptide receptor; FTH: ferritin heavy chain; GCLM: glutamate-cysteine ligase regulatory subunit; GM-CSF: granulocyte-macrophage colony-stimulating factor; GPx: glutathione peroxidase; GPX4: phospholipid hydroperoxide glutathione peroxidase; GRP78: 78 kDa glucose-regulated protein; G-CSF: granulocyte colony-stimulating factor; GMA-SS: gas metal arc- stainless steel; GSDMD: gasdermin D; GSH: reduced glutathione; GSSG: oxidized glutathione; GST: glutathione S-transferase; HO: heme oxygenase; ICAM: intracellular adhesion molecule; IB: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor; IL: interleukin; iNOS: inducible nitric oxide synthase; IRE: inositol-requiring enzyme; JAK: Janus kinase; JNK: c-Jun N-terminal kinases; Keap: Kelch-like ECH-associated protein; LC3B: microtubule-associated proteins 1A/1B light chain; LDH: lactate dehydrogenase; MAPK: mitogen-activated protein kinase; MCP: monocyte chemoattractant protein; MDA: malondialdehyde; MEK: mitogen-activated protein kinase kinase; MIP: macrophage inflammatory protein; miR: microRNA; mito: mitochondrial; MitoMP: mitochondrial membrane potential; MMA-SS: manual metal arc stainless steel; MMP: matrix metallopeptidase; mTOR: mammalian target of rapamycin; MUC: mucin; NAC: N-acetylcysteine; NCOA: selective cargo receptor nuclear receptor coactivator; ND: not disclosed; NF-: nuclear factor kappa beta; NLRP: NOD-like receptor family pyrin domain containing; NO: nitric oxide; NOX: NADPH oxidase; NQO1: NAD(P)H dehydrogenase (quinone); Nrf2: nuclear factor erythroid 2-related factor 2; OPA: dynamin-like 120 kDa protein, mitochondrial; p: phosphorylated; p47-phox: Neutrophil cytosol factor 1; PAH: Polycyclic aromatic hydrocarbons; PARP: poly [ADP-ribose] polymerase; PERK: protein kinase R-like endoplasmic reticulum kinase; Pi: propidium iodide; PM: particulate matter; PMET: common consumable stainless-steel wire; PPAR: peroxisome proliferator-activated receptor; PTGS: prostaglandin-endoperoxide synthase; ROS: reactive oxygen species; SA-gal: senescence-associated  galactosidade; SIRT: sirtuin; Smad: mothers against decapentaplegic homolog; SOCS: suppressor of cytokine signaling; SOD: superoxide dismutase; SRM: standard reference material; STAT: signal transducer and activator of transcription; SUB: submerged; TAC: total antioxidant capacity; TEER: transepithelial electrical resistance; TGF: transforming growth factor; Th17: T-helper lymphocyte; TIMP: tissue inhibitor metalloproteinase; TIPE: TNF alpha induced protein 8 like; TNF: tumor necrosis factor; TRIM: tripartite motif-containing protein; Trl: toll-like receptor; TRPM: transient receptor potential cation channel, subfamily M; TXN: thioredoxin; TXNIP: thioredoxin-interacting protein; TXNRD1: thioredoxin reductase; VEGF: vascular endothelial growth factor; XO: xanthine oxidase; ZO-1: zonula occludens 1.
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