Pre prints.org

Review Not peer-reviewed version

Three Mandatory Doses of
Acetaminophen During the First Months
of Life with the MenB Vaccine: A
Protocol for the Induction of Autism
Spectrum Disorder in Susceptible
Individuals

John Jones, Zacharoula Konsoula, Lauren Williamson , Rachel Anderson , Susanne Meza-Keuthen,

William Parker ~
Posted Date: 23 April 2025
doi: 10.20944/preprints202501.0319v3

Keywords: Acetaminophen; Autism; Inflammation; Paracetamol; Vaccine

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/3719549
https://sciprofiles.com/profile/3614589
https://sciprofiles.com/profile/309148

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 April 2025 d0i:10.20944/preprints202501.0319.v3

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Review

Three Mandatory Doses of Acetaminophen During
the First Months of Life with the MenB Vaccine: A
Protocol for the Induction of Autism Spectrum
Disorder in Susceptible Individuals

John P. Jones I11 1, Zacharoula Konsoula !, Lauren Williamson 2, Rachel Anderson ?,
Susanne Meza-Keuthen ! and William Parker 13

1 WPLab, Inc., Durham, NC, USA

2 Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, USA

3 Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
* Correspondence: WParkerl@UNC.edu

Abstract: The connection between acetaminophen use in the pediatric population and the etiology of
autism spectrum disorder (ASD) have been a subject of misunderstanding, miscalculation, and
misinformation for more than a decade. This narrative review summarizes 29 lines of evidence
pointing with no reasonable doubt to the conclusion that exposure of susceptible babies and children
to acetaminophen is responsible for many if not most cases of ASD. Susceptibility to acetaminophen-
induced injury is imposed by a range of environmental, genetic, and epigenetic factors associated
with oxidative stress, and is apparently the greatest immediately after birth. Susceptibility then
decreases until about six years of age, which is likely outside of the developmental window in which
regression into ASD can occur. Exposure to acetaminophen very early in life can occur for a variety
of reasons, including treatment of pain during administration to the mother during labor and
delivery, during vaccination, and during circumcision. Although acetaminophen use during
vaccination is generally not recommended, the vaccine against meningococcal serogroup B (MenB),
administered at 2, 4, and 12 months of life, is now recommended with 3 accompanying doses of
acetaminophen in some countries. Unfortunately, based on current knowledge, such exposures to
acetaminophen are expected to induce ASD in some susceptible individuals. Evidence therefore
strongly and unequivocally indicates that medical recommendations should mandate the MenB
vaccine be given separately from other vaccines and without acetaminophen, which some national
healthcare services (e.g., Australian and Canadian) have already identified as an acceptable clinical
approach.

Keywords: acetaminophen; autism; inflammation; paracetamol; vaccine

Introduction

A Preprint of this article was published prior to peer review [1].

Abundant evidence has led us to conclude, without reasonable doubt, that exposure of
susceptible babies and children to acetaminophen causes neurodevelopmental injury, leading to
many if not most cases of autism spectrum disorder (ASD) [2-5]. Evidence also demonstrates that a
wide range of genetic, epigenetic and environmental factors associated with oxidative stress create
susceptibility to acetaminophen-induced injury. Furthermore, the developmental period of greatest
susceptibility appears to be at the time of birth, with susceptibility diminishing over time and ending
at about six years of age [4]. A current summary of evidence that, when considered together,
demonstrates the induction of ASD in susceptible individuals by acetaminophen is shown in Table
1.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The most recent previously published tally of evidence from our group listed 22 lines of evidence
from clinical observations, pharmacokinetic consideration, and laboratory animal studies [4]. Since
that list of evidence was published in 2023, additional lines of evidence were described in the
literature in 2024, including the numerous similarities between ASD and fetal alcohol spectrum
disorder [5], which demonstrate that a single drug, interacting with environmental and genetic
factors, can cause a complex spectrum disorder. In addition, prenatal exposure to valproate, a drug
commonly used as an anti-seizure medication, can also induce a spectrum disorder [6]. Of note is the
fact that acetaminophen [7,8], alcohol [9,10], and valproate [11] are all metabolized by the human
body via cytochrome P450 enzymes to produce a toxic metabolite in the reactive electrophile class.
That evidence demonstrating that a single drug can induce a spectrum disorder is included in Table
1.

Table 1. Lines of evidence leading to the conclusion, without reasonable doubt, that exposure of susceptible
babies and children to acetaminophen (N-acetyl-p-aminophenol; APAP) leads to many if not most cases of ASD.
Lines of evidence are independent, except for two lines of evidence (#2 and #3), which are dependent on the
same study. Division of evidence into discrete “lines”, particularly the evidence from laboratory animal studies,
is somewhat subjective. For example, studies examining the effect of APAP on learning in mice are lumped
together with studies of the effect of APAP on social behavior in rats (line of evidence #5), and the numerous

similarities between fetal alcohol spectrum disorder and ASD are lumped together as one line of evidence (#29).

Evidence / references
1. Mechanisms of APAP-mediated
injury are plausible. For review, see

Jones et al. [5]

Background / additional information

The first study showing that children with ASD are
deficient in a metabolic pathway necessary to safely
detoxify APAP in babies (sulfation) is now more than a
quarter of a century old [83], and was subsequently
corroborated [84,85]. One enzyme (CyP450 2E1) which
produces the toxic metabolite of APAP (NAPQI) is
expressed in the human brain from before birth [86] and is
a target of epigenetic alterations in mothers who have
children with ASD [87]. In addition, polymorphisms in
another enzyme (CyP450 1A2) that produces the same toxic
metabolite of APAP is associated with ASD [88,89].

2. APAP use during early childhood
is associated with a 20-fold greater
risk of regressive ASD [17].

This case-controlled study, now more than 16 years old, has
been widely criticized, but careful analysis does not reveal

any credible objections [2].

3. APAP use with mild adverse
reactions to a vaccine, but not mild
adverse reactions to a vaccine alone,
is associated with ASD [17].

This study, the same as in line of evidence #2, was the first
study to separate the impact of vaccines from APAP on
neurodevelopment, and the first to implicate APAP with

the etiology of ASD.

4. APAP was never demonstrated to
be safe for neurodevelopment [18].
Over two hundred papers in the
medical literature claim that APAP
is safe for babies and/or children
when used as directed, but all

studies were based on the false

Like APAP, opioids have also never been shown to be safe
for neurodevelopment [90]. However, unlike APAP,
opioids are not generally assumed to be safe for
neurodevelopment when used as directed. Further, one
study probing the safety of prenatal opioid exposure found

reductions in communication skills in children associated
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assumption that adverse reactions
in babies would involve easily
measured liver injury, the same as

in adults [18].

with prenatal APAP exposure, but not with prenatal opioid

exposure [41].

5. Numerous studies in laboratory
animals from multiple laboratories
indicate that early life exposure to
APAP causes long term changes in
brain function [12,61,91-103].

After adjusting for weight, the amount of APAP that causes
profound changes in laboratory animals in some studies is
very close to [61] or even less than [100] the amount
administered to human babies and children. Thus, APAP
could never be used in babies or children if current

guidelines for drug safety were applied.

6. APAP inhibits neuronal cell
growth in tissue culture
experiments, altering
“arborization”, the process by

which neurons branch out to make
connections with other neurons
[104]. APAP also causes death of
brain cells in culture [105,106].

Adverse effects of APAP on neuronal cell growth in culture

(in wvitro) are dose dependent, and observable at
concentrations near those achieved in clinical therapy [104].
These effects in vitro would discourage use of APAP in

humans if current guidelines for drug safety were applied.

7. Early life exposure to APAP has a
greater long-term impact on male
laboratory animals than female
[96,102,107].

ASD is more common in males than

laboratory = animals

in females.

The reason or reasons why males are more susceptible to
APAP-mediated injury has been considered in some detail,
and several plausible mechanisms have been proposed
[102,107].

8. Increasing evidence suggests that
the gut/brain axis may play a role in
many cases of ASD (Reviewed
recently [108,109]), and APAP is
known to adversely affect gut
function in laboratory animal
models [110-112] and possibly in

humans [113].

Aberrant gut function leading to oxidative stress and
inflammation is among many factors that would predispose
individuals to adverse reactions to APAP leading to ASD
[21], and gut microbial metabolites serve as excellent
biomarkers for ASD [114,115].
unknown whether aberrant gut function can be induced by

APAP at the time of ASD induction and play a role in that

However, it remains

induction.

9. Prenatal exposure of laboratory
rats to APAP causes problems with
the processing of sound [12]. Some
degree of auditory dysfunction is
seen in the majority of individuals
with ASD. Reviewed by Graeca and
Kulesza [12].

The investigators found developmental delays with ear
opening and, essentially, difficulty with hearing later in life
after exposure to APAP as a fetus. It is unknown whether
these affects in laboratory animals are related to

impairments in some individuals with ASD.

10. APAP

mediated death of cortical neurons

causes  apoptosis-

in laboratory rats [106], and cortical

Increased levels of biomarkers for neuronal apoptosis [118—

120] and impaired autophagy [121] are associated with

ASD. Autophagy is necessary to clearing damaged

doi:10.20944/preprints202501.0319.v3
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neurons may be involved in the
pathology of ASD [116,117].

organelles such as mitochondria [122], which are created by
aberrant metabolism of APAP [123].

11.  Genetic, epigenetic, and
environmental factors associated
with an increased risk of ASD have
an adverse effect on the body’s
ability to safely metabolize APAP

[21,83,124].

The wide array of factors associated with ASD have led to
the hypothesis that many things can come together to cause
ASD, but ASD is characterized by impairment of social
function and other particular behavioral phenotypes,

suggesting specificity in the etiology of the condition.

12. Cystic fibrosis is associated with

unusually  efficient  (effective)
metabolism of APAP [125,126], and
the prevalence of ASD is apparently
very low in patients with cystic

fibrosis [21].

The mental health of patients with cystic fibrosis has been
characterized extensively, but no association between ASD

and cystic fibrosis has been reported.

13. APAP temporarily blunts social
trust [127] and awareness [128],
emotional responses to external
stimuli [129], and the ability to
identify errors [130] in adults.

Although the mechanisms are unknown, these studies
show that APAP affects aspects of mental function that are

impaired in individuals with ASD.

14. Higher levels of APAP in cord
blood are associated with ASD [22].

For the analysis, the authors divided the women into three
groups based on cord blood APAP levels. The third with the
highest levels had 3.6 times more likelihood of having a
child with ASD that the third with the lowest levels of
APAP.

15. Use of APAP during pregnancy
has been associated with adverse
long-term effects on the mental
health of offspring in numerous
studies [20,22-24,35-54].

This line of evidence has received more attention than any
other line of evidence, to the point of being the only line of
evidence considered by many investigators. However, the
numerous studies underpinning this line of evidence are
hampered by several factors which can cause errors in
estimation of the association between APAP and ASD [5]. A
recent study found a dramatic association (odds ratio (OR)
for ASD with APAP use = 1.8) [25], but incorrectly and
completely cancelled out that association using an error in

the assumptions underlying the statistical analysis [3,5,24].

16. Analysis of the Danish National
Birth Cohort (DNBC) revealed an
odds ratio (OR) of 1.3 (CI 1.02-1.66)
for ASD associated with postnatal
APAP exposure [40], despite the
fact that the use of APAP appears to
be dramatically underreported in
the DNBC [2].

The study authors averaged the results from the DNBC
with assessments of autism-like symptoms (not ASD) from
smaller data sets, and reported no association between
APAP use and those symptoms (not ASD) in the abstract of
the paper [40]. This issue has been addressed in detail by us
in the literature [2,3], but unfortunately may still result in
confusion [12]. In addition, the study [40] employed invalid

statistical adjustments expected to underestimate the

doi:10.20944/preprints202501.0319.v3
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association between APAP and ASD [3,5]. See text for

additional discussion.

17. The incidence of ASD began to
the 1980s,
coinciding with the increase in
APAP use
associated with Reye’s syndrome
[21]

increase in early

after aspirin was

Temporal associations do not prove causality, but are a
necessary prerequisite for causality to exist. Alternative
explanations for the rise in prevalence of ASD face several

insurmountable problems, previously reviewed [2,5].

18. The incidence of ASD has
steadily increased [21] as direct-to-
consumer advertising [131] and
perhaps other factors such as
mandated use of APAP with the
MenB vaccine (see discussion) have
led to increased APAP exposure

early in life.

Temporal associations do not prove causality, but are a
necessary prerequisite for causality to exist. Alternative
explanations for the rise in prevalence of ASD face several
insurmountable problems, previously reviewed [2,5]. One
possible explanation for the persistence of unrealistic
alternative explanations may be that many investigators are
unaware of a satisfactory explanation consistent with

available evidence.

19. The ratio of regressive to
infantile ASD rose at the same time
as pediatric APAP use rose [132]
after aspirin was associated with

Reye’s syndrome [21].

This observation, made in 2000, would suggest that
something was introduced into the environment that could
ASD

neurodevelopment.

months or
This

incorrectly suspected to be a vaccine at that time, an issue

induce after even years of

factor was tragically and
that was decisively addressed by Stephen Schultz eight

years later (see line of evidence #3).

20. Circumcision of males is
associated with a 2-fold increase in
the risk for early-onset (infantile)
ASD [62].

Circumcision is often performed using APAP as an
analgesic despite the fact that such use is of highly

questionable effectiveness [133].

21. The popularity of APAP use and
the of ASD was
substantially higher in Denmark
than in Finland in the mid-2000s [4].

prevalence

Geographic-dependent associations do not prove causality,
but do contribute to the total body of evidence. Particularly
in the absence of alternative explanations, these associations

can be compelling.

22. An high
prevalence of ASD was identified in
South Korea [134,135] following
repeated findings of levels of APAP

exceptionally

exceeding the package label of
children’s products [136].

Repeating mistakes made when the initial determination of
APAP safety for pediatric use was determined (See line of
evidence #4), public health authorities assessed the
prevalence of reports of liver failure in the pediatric
population, and determined that no harm was caused by
the excess active ingredient (APAP) in the formulation.
Liver failure is the primary adverse event from APAP
overdose in adults. However, a study in laboratory animals
in the 1980s demonstrated that the liver is not susceptible to
APAP-mediated injury in very young animals, even with

lethal doses of APAP [137].

doi:10.20944/preprints202501.0319.v3


https://doi.org/10.20944/preprints202501.0319.v3

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 April 2025

6 of 26

23. Ultra-Orthodox Jews [138] in
Israel have a reported prevalence of
ASD less than half of that of reform
Jews.  Traditional circumcision
practices

Orthodox Jews do not utilize APAP.

employed by Ultra-

Circumcision is often performed using APAP as an
analgesic despite the fact that such use is of highly
questionable effectiveness [133]. Almost all Israeli Jews are

circumcised [139].

24. APAP is not used in domestic
cats because they lack of a robust
glucuronidation-dependent
capacity for metabolism [140-143],
making them susceptible to APAP-
mediated injury. Human neonates
also lack a robust glucuronidation-
dependent pathway [144,145].

Based on liver function in human babies and children,
APAP was incorrectly determined to be safe for pediatric
use in the 1960s and 1970s (see line of evidence # 4), before
this evidence from veterinary science became available in
the 1980s. One study in laboratory animals in the 1980s
showed that even lethal doses of APAP do not cause liver
failure in neonates [137], but the first study showing APAP-
mediated neurodevelopmental brain injury in laboratory

animals was not published until 2013 [61].

25. Surveys show that up to 50% of
parents who have a child with ASD
believe that their children’s ASD
was induced by a vaccine [146,147].

Although this belief has been widely attributed to a 1998
report describing 12 patients [148], the title of that report is
not intelligible to individuals outside of the medical
profession, and medical papers have seldom affected public
opinion. A more likely explanation involves the induction
of ASD by APAP use concurrent with vaccination, as
suggested by Schultz [17,149].

26. Studies in several countries with
chronic shortages of medication
found dramatically lower-than-
expected levels of ASD relative to
issues,

other  developmental

including Down syndrome.

Reviewed by Jones et al. [5]

Not included in the previous review of this issue [5] is the
apparently low levels of ASD in Cuba, where 241 cases of
ASD in the entire nation (1 in 25,000 children) have been
identified based on a 2016 report [150]. APAP is available in
Cuba by prescription only [151], and multiple travel
advisors cite APAP in particular as being in short supply in
Cuba [152-155].

27. APAP binds directly to
arachidonic acid [14] and affects
arachidonic acid metabolism [13].
Alterations of arachidonic acid [16]
and enzymes involved in
arachidonic acid metabolism [15]

are associated with ASD.

It is unknown what role arachidonic acid plays in ASD, but
arachidonic acid plays a role in both the analgesic and
antipyretic properties of APAP, and its metabolism is

associated with ASD.

28. The “missing heritability”
paradox of ASD suggests that
epigenetic factors or very early
exposure to environmental factors
might influence the onset of ASD

[156].

The role of APAP in the induction of ASD nicely resolves
the missing heritability paradox connected with ASD, in
which sibling studies indicate a high contribution of
genetics, but genome wide studies fail to identify the genes

involved [156]. The observation that abuse of a mother

when she was a child is associated with ASD in the

doi:10.20944/preprints202501.0319.v3
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offspring [157] is one example of evidence that supports this

view.

29. ASD and fetal alcohol spectrum | These observations demonstrate that a complex spectrum
disorder (FASD) are similar in many | disorder (FASD) sharing many similarities with ASD can (a)
regards. Reviewed by Jones et al. [5] | be induced by a single chemical and (b) be influenced by a

A spectrum disorder can also be | variety of genetic and environmental factors.

triggered by the drug valproate [6].

Another example of newly published evidence connecting acetaminophen with
neurodevelopmental problems, including ASD, is a study by Graeca and Kulesza showing that
exposure of laboratory rats to acetaminophen in utero leads to problems with auditory processing
later in life [12]. As reviewed by the authors [12], some degree of auditory dysfunction is seen in the
majority of individuals with ASD. However, it remains unknown whether the acetaminophen-
induced auditory dysfunction observed in laboratory rats is related to auditory dysfunction observed
in individuals with ASD. Thus, this line of evidence, by itself, does not lead to the conclusion that
acetaminophen can act as a trigger for the induction of ASD. Nevertheless, the study by Graeca and
Kulesza adds to an already overwhelming body of evidence connecting acetaminophen with
developmental problems and the induction of ASD in particular, and therefore should be included
in an updated tally of evidence (Table 1). Other evidence that can be included for consideration
involves the relationships between arachidonic acid metabolism and acetaminophen [13,14], and
between arachidonic acid metabolism and ASD [15,16]. These studies, taken together, suggest that
arachidonic acid could be involved in the acetaminophen-mediated induction of ASD by mechanisms
that have yet to be elucidated, and constitute yet another link between acetaminophen and ASD.

The current summary of evidence demonstrating the induction of ASD in susceptible
individuals by acetaminophen entails 29 lines of evidence (Table 1). Despite this overwhelming
evidence, acetaminophen continues to be used in the pediatric population. For example, although
acetaminophen is not generally recommended for vaccinations by major healthcare organizations,
three doses of acetaminophen are now recommended for use with each dose of the vaccine against
meningococcal serogroup B (MenB), administered to 2, 4, and 12 months of age (see discussion
below). Given the existence of this policy, one obvious question is, do we have enough evidence of
harm from acetaminophen to change practice regarding its use?

How Much Evidence Is Enough?

Although randomized, blinded, placebo-controlled experiments to obtain absolute proof that
acetaminophen induces ASD in humans might seem worthwhile at first glance, such experiments
would be both impractical and unethical. In terms of trial design, acetaminophen effectively treats
fevers, so a blinded placebo control could prove difficult if study subjects were able to effectively
guess their study group. In addition, even without a blinded placebo control, exposure would need
to be controlled from conception to age 5 in thousands of individuals, consuming vast amounts of
time and resources for the trial. Even more important is the fact that evidence (Table 1) already
conclusively demonstrates that acetaminophen is a developmental neurotoxin. Thus, exposure of any
fetus, baby or child to the drug for the sake of research is unethical.

Changes in clinical practice should not require enough evidence to conclude without any
reasonable doubt that exposure of susceptible children to acetaminophen causes many if not most
cases of ASD. For example, the facts that, (a) children with ASD are deficient in a metabolic pathway
(sulfation) that is necessary for safe metabolism of acetaminophen (Table 1, line of evidence #1), (b)
relatively low doses acetaminophen in early life cause long-term brain dysfunction in laboratory mice
and rats (Table 1, line of evidence #5), and (c) acetaminophen can’t be used in some domestic animals
because they are deficient in the same pathway (glucuronidation) that is deficient in all newborn
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babies (Table 1, line of evidence #22) should have been sufficient to remove the drug entirely from
the pediatric market more than a decade ago.

From another perspective, the 2008 study by Schultz and colleagues [17] should have been
sufficient to have the safety of acetaminophen for pediatric use completely and immediately
reevaluated. That study (see Table 1, lines of evidence #2 and #3) provided an explanation for the
repeated observation that many parents believe that a vaccine was involved in the induction of their
child’s ASD (Table 1, line of evidence #23). Although the study suggested that the vast majority of all
regressive ASD might be induced by acetaminophen, it was largely ignored for reasons that, based
on an in-depth analysis [2], are invalid. Thus, the widespread belief that acetaminophen was proven
safe for use in babies and children was not disproven until more than a decade later, in 2022 [18]
(Table 1, line of evidence #4).

The bottom line is that evidence sufficient to drive regulatory changes and changes in clinical
practice has long been ignored. Further, proof without reasonable doubt that exposure of susceptible
children to acetaminophen causes ASD exceeds what should be required to remove the drug entirely
from the pediatric market. Suspicion of danger should be sufficient. At this point, the evidence (Table
1) leads to a level of certainty that far exceeds suspicion.

Means, Motive and Opportunity

One potentially useful perspective on the link between acetaminophen and ASD involves
comparison with establishment of guilt in criminal court. Does acetaminophen have the means,
“motive”, and opportunity to induce ASD? Given that the metabolism of acetaminophen yields a
toxic metabolite (N-acetyl-p-benzoquinone imine; (NAPQI), a reactive electrophile, similar to that
produced by the metabolism of ethanol) especially under conditions associated with ASD, and given
that the toxic metabolite affects mitochondrial and neuronal function, acetaminophen has the means
to induce ASD (Table 1, lines of evidence #1,#10, #11). The observation that ASD is similar in many
regards to fetal alcohol spectrum disorder (Table 1, line of evidence #29) demonstrates that a single
chemical does, in fact, have the means to produce a complex developmental spectrum disorder.

While “motive” is not a feature that can be attributed to a chemical compound, the observation
that acetaminophen affects social function in adults (Table 1, line of evidence #11) demonstrates that
the drug does indeed have a propensity to affect aspects of brain function involved in all ASD
phenotypes. This view is corroborated by studies in laboratory animals showing acetaminophen-
mediated damage to cortical neurons (Table 1, line of evidence #8), a cell type apparently involved in
ASD phenotypes.

Although use of acetaminophen is frequently undocumented [2], evidence suggests that most
individuals throughout the US and Europe are exposed to the drug both in utero and during early
childhood [2], indicating that acetaminophen does indeed have the opportunity to induce ASD. As
we have previously discussed [3], despite low levels (< 10 % of the population) of exposure to
acetaminophen are reported in the Danish and Swedish databases, assessments of acetaminophen
use in those populations indicate that more than 50 % of those populations are exposed [19,20].
Further, factors associated with oxidative stress, which determine sensitivity to acetaminophen-
mediated injury [21], are connected with reasons for using acetaminophen. Such factors include
infection, antibiotics and headaches. Thus, exposure to acetaminophen of individuals susceptible to
acetaminophen-mediated neurological injury is almost certainly higher than in the population as a
whole, increasing risk. Also convincing is the direct measurement of acetaminophen metabolites in
humans [22-24], which demonstrates widespread exposure to the drug during neurodevelopment in
the populations assessed. More recently, the introduction of the MenB vaccine into pediatric use at 2,
4, and 12 months of age, with mandatory administration of acetaminophen in many countries (see
discussion below), will ensure that acetaminophen has the opportunity to induce ASD in many
countries. Thus, it would seem that acetaminophen has means, propensity, and opportunity to induce
ASD.
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Two Lines of Easily Misconstrued Evidence Dominate the Field

Observational studies assessing acetaminophen use and neurological outcomes have dominated
the medical literature and public discourse surrounding the link between acetaminophen and ASD.
More than 20 studies assessing the connection between prenatal acetaminophen use and ASD (Table
1, line of evidence #13), and one study assessing the connection between postnatal acetaminophen
use and ASD (Table 1, line of evidence #14) have been published. Such studies can provide insight
into potential causality. Indeed, if no association exists, causality is not a possibility.

The “raw analysis” from observational studies generally shows a strong connection between
acetaminophen use and ASD. However, using statistical methods to adjust for factors that the authors
believe might confound the conclusions, the associations between acetaminophen and ASD usually
found in the raw analysis can be diminished or even removed entirely. For example, in a widely
publicized study published by Ahlqvist and colleagues in 2024 [25], the raw data showed a strong
connection between acetaminophen use during pregnancy and ASD (Figure 1). The relationship was
dose-dependent, with high doses of acetaminophen associated with a hazard ratio of 1.87 (C.1.:1.71-
2.06) and statistically significant associations (p < 0.001) at low, medium and high doses of
acetaminophen (Figure 1). These associations are particularly concerning given the high prevalence
of acetaminophen use in the population. As we have previously discussed [3], a combination of the
hazard ratio associated with a given factor and the prevalence of that factor in the population dictates
the potential impact of that factor on public health. Thus, for something as common as acetaminophen
use, any statistically significant risk for ASD is probably unacceptable.

2.2
2.0
1.8
1.6
1.4+
1.2+
Tal =) seins Smns SaieE S=ie S8 il B
0.8
0.6

APAP exposure
-e- high
- medium
=+ |low

Hazard Ratio for ASD

1 1 1 |
Model1 Model 2 Model 3 Model 4

Figure 1. Hazards ratios calculated by Ahlqvist et al [25] depending on the amount of acetaminophen (APAP)
exposure and the number of factors adjusted for in the analysis. Model 1 adjusted only for time of birth and for
sex. Model 2 adjusted for the same factors as Model 1, plus 7 factors associated with inflammation and oxidative
stress. Model 3 adjusted for the same factors as Model 2, plus 19 additional factors, including at least a dozen
factors associated with inflammation and oxidative stress. Model 4 adjusted for the same factors as Model 3, plus
“unobserved genetic and environmental confounders shared by full siblings”, many of which may be related to
inflammation and oxidative stress. These results demonstrate that acetaminophen does not induce ASD in the
absence of factors associated with inflammation and oxidative stress, a fact that has been known for some years
[21]. As demonstrated previously [5], the conclusion reached by the authors of the original study, that there is
no real association between acetaminophen and ASD [25], cannot be drawn from these results. Error bars

indicate 95 % confidence intervals reported by Ahlqvist and colleagues [25].
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However, the conclusion of the widely publicized paper by Ahlqvist noted above [25] was that
“Acetaminophen use during pregnancy was not associated with children’s risk of autism...”. Those
conclusions may be particularly consequential, since the work by Ahlqvist and colleagues led to a
media announcement from the US National Institutes of Health with a headline stating that “Study
reveals no causal link between neurodevelopmental disorders and acetaminophen exposure before
birth: NIH-funded research in siblings finds previously reported connection is likely due to other
underlying factors.” [26]

One factor potentially affecting the conclusions of the Ahlqvist work is that it was funded to an
undisclosed extent by legal experts employed by the drug manufacturer. The results of clinical
research studies sponsored by pharmaceutical companies are more likely to yield a favorable
outcome for the drug than are studies without pharmaceutical backing [27-29]. Further, numerous
companies from a variety of industries, including the tobacco industry [30], the food industry [31],
and the pharmaceutical industry [32,33] have a known history of trying to influence scientific
research in favor of their products [34]. Although it remains unknown whether any industry-related
bias affected the outcome of the Ahlqvist study [25], the study conclusions differed from those of
more than 20 other studies that found associations between acetaminophen use during pregnancy
and adverse neurodevelopmental outcomes [20,22-24,35-54].

The conclusion reached by Ahlqvist and colleagues [25], that acetaminophen use during
pregnancy is not associated with ASD, was based on the application of statistical “correction” for
confounding factors that are, in fact, associated with oxidative stress, a cofactor rather than a
confounding factor in the induction of ASD. The effect of correction for cofactor-associated variables
in the Ahlqvist study is shown in Figure 1. As we and others have previously pointed out [3,5,24],
such corrections are not valid or justifiable. Such an error will be evident to trained statisticians,
suggesting that experts on the Ahlqvist study team performing statistical tests may have been
unaware of the pharmacokinetics of acetaminophen, including interactions of the drug with factors
related to inflammation and oxidative stress. In effect, Ahlqvist and colleagues catalogued the
conditions under which acetaminophen is dangerous for neurodevelopment. They did not determine
that the drug is safe for neurodevelopment. The same problem can be identified in a study by Tovo-
Rodrigues and colleagues [55], who also adjusted their analysis using numerous factors related to
oxidative stress.

A formal demonstration of the problem of statistical correction for cofactors (aka, predisposing
factor or interacting variables) is shown in Table 2. That table shows the results of an analysis of a
virtual (artificially generated) database in which 50 % of all cases of ASD were caused by a
combination of oxidative stress and exposure to acetaminophen during an arbitrary time period. In
the analysis, the raw (“uncorrected” analysis) shows a hazard ratio for ASD with acetaminophen use
of 2.55 (CI 2.41-2.71, p = 2 x 107¢), close to the actual hazard ratio of 2.667 built into the model.
However, after correcting for 100 % of the factors that account for all susceptibility to acetaminophen-
mediated injury, the calculated hazard ratio for ASD with acetaminophen use is 0.85 (CI 0.80-0.90; p
=2 x 107). Thus, when oxidative stress factors are treated as confounding factors, acetaminophen is
“shown” to be protective from ASD despite the fact that it actually caused 50 % of all ASD cases in
this virtually constructed dataset.

Table 2. Consequences of assumptions underlying multivariate analysis of observational data in a virtual
computer construct. Acetaminophen (APAP) is “shown” to be protective against ASD (HR < 1.0), even though
it induced 50 % of all cases of ASD in the virtual construct. The virtual data set was constructed and analyzed as
previously described [5] using a Cox regression analysis, with 240,000 individuals, 60 % exposure to APAP and
one in 36 individuals with ASD. In this virtual data set, 50 % of ASD was induced by exposure to acetaminophen
combined with the sum of 10 cofactors, modeling the contribution of oxidative stress (OS) related factors in the
induction of ASD. The other 50 % of ASD cases were randomly assigned. The propensity for acetaminophen

exposure was dependent on levels of oxidative stress, as previously described [5]. n=96,000 virtual individuals
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without APAP use, and n = 144,000 virtual individuals with APAP use. CI = confidence interval. NA = not

applicable.
Variable HR (CD P
APAP, actual risk built into virtual construct 2.667 (NA) NA
APAP, result of regression analysis 2.55 (2.41-2.71) 2 x 1076
APAP, adjusted for all contributing cofactors 0.85 (0.80-0.90) 2x107
OS factor 1, all individuals 1.24 (1.23-1.26) 2 x 101
OS factor 1, virtual individuals with APAP use only 1.32 (1.30-1.34) 2 x 101
OS factor 1, virtual individuals with no APAP use only 1.00 (0.97-1.03) 0.90

Another problem with analyses of healthcare databases is that such analyses do not take into
account that oxidative stress may be associated with genetic, epigenetic, or persistent environmental
factors, causing persistence of susceptibility in an individual. The resulting effect is that assessment
of acetaminophen exposure versus oxidative stress-related variables at a given time (e.g., during
pregnancy or during infancy) may miss important injury-inducing exposure to acetaminophen that
happened at a different time (e.g., during labor and delivery). The net result of this situation is that
the analysis can identify associations between oxidative-stress related variables but not
acetaminophen, even under ideal circumstances. That is to say, even if, hypothetically, 100 % of
acetaminophen exposures are documented in a given study period, the net effect of limiting the study
period (e.g., to prenatal or postnatal exposure) is that only a fraction of potentially important
acetaminophen exposures will be documented. The only way to avoid this problem would be to
assess all exposures to acetaminophen which might trigger ASD, from conception to age 5. Although
such an approach is not feasible, sufficient evidence is already available (Table 1) to draw conclusions
for clinical practice. Therefore, the fact that an ideal observational study is not feasible should be of
little concern.

Misconstrued analyses of healthcare databases can be influential. An example of placing heavy
emphasis on a misconstrued line of evidence is found in Graeca and Kulesza’s groundbreaking work
showing acetaminophen-induced developmental problems related to auditory function [12]. The
overreliance on observational studies as a basis for understanding the connection between
acetaminophen and ASD is evident in the Introduction of that paper:

“Specifically, in utero (but not postnatal) exposure to paracetamol results in a 19% increased risk of
ASD (Masarwa et al., 2018; Alemany et al., 2021; Khan et al., 2022)...”

The studies by Masarwa et al. in 2018 [56] and by Khan et al. in 2022 [57] cited by Graeca and
Kulesza address only prenatal exposure. Therefore, Graeca and Kulesza base their conclusion that
postnatal exposure to acetaminophen (paracetamol) is not associated with ASD solely on the study
by Alemany and colleagues in 2021 [40]. However, Alemany and colleagues did not conclude that
postnatal acetaminophen use is not associated with ASD. Rather, they concluded that postnatal use
of acetaminophen is not associated with “autism spectrum condition symptoms”, which has a
prevalence from 6 % to 13 % of the samples they evaluated, much higher than the prevalence of ASD.
However, more than 80 % of Alemany’s sample (48,161 out of 58,006 total individuals) came from the
Danish National Birth Cohort (DNBC), and ASD, not autism spectrum condition symptoms, was
measured in that cohort. In Alemany’s analysis of the connection between postnatal acetaminophen
use and ASD in the DNBC, they found a positive association (OR = 1.30, CI 1.02-1.66). Given that the
DNBC dramatically underreports acetaminophen use, and given that the authors corrected for
oxidative stress-related variables in an invalid fashion (see discussion above), the odds ratio of 1.30
is probably underestimated dramatically. Nevertheless, an odds ratio of 1.30 is profoundly
concerning given the high prevalence of acetaminophen exposure. However, when reporting overall
results, for example in the abstract of the paper, Alemany and colleagues combined results from
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analysis of ASD in the DNBC with results from analysis of smaller databases that reported only
autism spectrum condition symptoms [40]. In their combined analysis, they counted (weighted) the
very concerning results from the DNBC as only 31.84 % of the total, despite the facts that it contained
more than 80 % of the total individuals, was the only database to contain measures of ASD, and was
the only database which yielded statistically significant results in the analysis. Alemany and
colleagues provided no explanation for the weighting scheme or for the lack of emphasis on the very
concerning results from their analysis of the DNBC.

In short, analysis of the connection between prenatal acetaminophen use and ASD (Table 1, line
of evidence #13) and the connection between postnatal acetaminophen use and ASD (Table 1, line of
evidence #14) is informative and useful, but those lines of evidence have been fraught with
misinformation, miscalculation, and misinterpretation. As we concluded recently [5]:

“It is concluded that risks of acetaminophen use for neurodevelopment obtained from multivariate
analysis of cohort data depend on underlying assumptions in the analyses, and that other evidence,
both abundant and robust, demonstrate the critical role of acetaminophen in the etiology of ASD.”

Barriers to Moving Forward

Necessary changes in practice should be, for the most part, a matter of rethinking the accepted
routines and habits of analgesic use given overwhelming evidence that acetaminophen is a
neurodevelopmental toxin [4]. However, several factors may underlie failure to implement obvious
solutions, resulting in the continued and apparently cavalier use of acetaminophen during
neurodevelopment. The currently widespread acceptance of a view that does not include
acetaminophen as a key component in the etiology of ASD is one such factor. The “multifactorial
model”, in which a wide range of genetic, epigenetic and environmental factors contribute to the
induction of ASD is now widely accepted by investigators in the field [5,58]. A wide range of genetic,
epigenetic and environmental factors are indeed associated with ASD, but the conclusion based on
this association that the etiology of ASD is “complex”, involving many factors, is an illusion of
causality, or a false cause fallacy. Such errors in inferring cause based on association are compelling
and extremely common [59], but can readily be avoided using science-based reasoning [60]. Since
the wide range of ASD-associated factors have a common denominator (oxidative stress and
inflammation) [21], and since compelling scientific evidence (Table 1) demonstrates that a relatively
simple model involving oxidative stress and acetaminophen describes the etiology of ASD, the
multifactorial model should either be dismissed or subsumed under the simpler model [5].

Compelling evidence for the specific role of acetaminophen in the etiology of ASD has mounted
for years. The first study in laboratory mice showing long-term, profound (almost complete) loss of
important aspects of cognitive function following early life exposure to acetaminophen was
published more than a decade ago, in 2013, by Viberg and colleagues [61]. In that study, two doses
of 30 mg/kg acetaminophen were administered in one day. That dose is not exceedingly higher than
the oral dosage of acetaminophen in babies and children, who can receive up to 4 doses of 14.7 mg/kg
of acetaminophen on multiple, consecutive days. Given these results, acetaminophen could never be
approved for pediatric use today, even in clinical trials, if it was evaluated using modern safeguards
in place to prevent adverse drug reactions. The drug would not pass preclinical testing.

Shortly after Viberg’s study in laboratory mice in 2013, Frisch and Simonsen, two Danish
investigators, found more than double the risk of infantile ASD associated with circumcision when
assessing the DNBC [62]. They initiated that investigation in part because Bauer had proposed that
acetaminophen exposure during circumcision may induce ASD [63]. Although Frisch and Simonsen
could not evaluate acetaminophen use during circumcision, their report did confirm the predictions
of Bauer.

The dismissal of compelling results is one factor driving the continued and apparently cavalier
use of acetaminophen during neurodevelopment despite overwhelming evidence that the drug
causes many if not most cases of ASD. Dismissal of the report by Frisch and Simonsen [62] showing
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associations between circumcision and ASD is an excellent example. One dismissal, by Morris and
colleagues [64], was based on the perplexing assertion that “Sneppen and Thorup, in particular,
found ASD prevalence was 7.2 % inuncircumcised Danish boys and suggested Frisch (and
Simonsen)'s study suffered from confounding.” [64] However, Sneppen and Thorup [65] explained
that their study could not be confounded by ASD induction during circumcision because ASD had
already been diagnosed in their cohort prior to circumcision. They never suggested in any way that
the initial report by Frisch and Simonsen was confounded [65].

Part of the argument by Morris and colleagues cited above [64] for dismissing the results of
Frisch and Simonsen seems to be that the Sneppen and Thorup study found higher rates of ASD than
did Frish and Simonsen. However, the children assessed by Sneppen and Thorup were selected
because they had been sent to the surgery department as a result of problems with their penis, most
(95 %) because of phimosis, a condition usually treated effectively with anti-inflammatory drugs.
More than a quarter of the boys had “severe voiding problems”, which often involve pain when
urinating, and more than a quarter of the boys were suspected of having inflammation of their penile
tissue. Thus, we expect the boys selected by Sneppen and Thorup to have more ASD than average
boys because inflammation and ASD are connected, and because pain management with
acetaminophen is connected with ASD. Further, Sneppen and Thorup assessed about 2500-fold less
uncircumcised individuals than did Frish and Simonsen (137 versus about 340,000), and did not
report or discuss ASD versus circumcision status in their patients. With that in mind, finding a higher
prevalence of ASD in a group of 137 uncircumcised boys, most of whom have a painful and/or
inflamed penis, does not suggest that a study of all children of certain ages in the entire Danish
population could be “confounded”. The view that Frisch and Simonsen’s study could be confounded
by unknown factors was apparently not the intent of Sneppen and Thorup’s statements, and it
remains a mystery as to how their study could be used as justifiable grounds for dismissal of the
Frisch and Simonsen study.

Misinterpretation or misrepresentation of results are not limited to Morris’s analyses of the
Frisch and Simonsen study [64] or to high-profile studies of associations between acetaminophen and
ASD in healthcare databases [25,40]. Indeed, the initial study by Schultz showing that acetaminophen
but not vaccination was associated with ASD [17] has been widely criticized, although a detailed
assessment of those criticisms reveals no valid arguments (for review, see Zhao et al. [2]).

Misinformation, miscalculation, and misinterpretation plague investigation of the role of
acetaminophen in the etiology of ASD and create significant barriers to progress. However, these
problems are likely only a symptom of underlying causes. Given the long history of acetaminophen
use in the pediatric population and the extensive damage already incurred as a result, most if not all
stakeholders are potentially faced with a variety of hurdles (Figure 2), many of which reinforce one
another. For example, conflicts of interest and emotional compromises face scientists and clinicians
whose careers and reputations may be damaged by acknowledging the role of acetaminophen in the
etiology of ASD (Figure 2). The pressure from these factors could lead to continued support of
acetaminophen use by authorities and a lack of published work clearly describing the connection
between acetaminophen and ASD. These factors, in turn, could make it more difficult for parents and
parents-to-be to receive and act upon information regarding the role of acetaminophen in the etiology
of ASD (Figure 2). Further, studies of human cognition demonstrate that greater analytical ability
increases rather than decreases susceptibility to confirmation biases [66,67]. Thus, any improvement
of analytical skills as a result of professional training in the fields of science and medicine could,
inadvertently, exacerbate rather than alleviate difficulties overcoming the biases incurred during that
training (Figure 2). Regardless of the underlying reasons, difficulty in overcoming long held beliefs,
despite abundant evidence undermining those beliefs, appears to be a significant factor promoting
continued use of acetaminophen during early brain development.
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Figure 2. Potential factors affecting continued use of acetaminophen before the age of 6 years despite
overwhelming evidence that the drug is a developmental neurotoxin involved in the etiology of both infantile
and regressive ASD. The list is not intended to be exhaustive, and some or even all factors may not necessarily
affect all individuals. None of the factors affecting continued use of acetaminophen are evidence-based, but
rather are aspects of human nature or results of aspects of human nature manifested in response to the current

environment.

Clinical Implications

At the present time, no evidence supports the idea that the benefits of acetaminophen use
outweigh the risks of neurodevelopmental injury. The drug has never been shown to be lifesaving or
to provide any long-term benefits in any study. Fears over fevers tend to be unfounded, with no
evidence supporting the view that acetaminophen can block adverse fever-associated events with
long-term negative consequences. This topic has been reviewed in detail recently [4]. At the same
time, acetaminophen exposure to babies and children seems to be performed with a cavalier attitude,
likely due to the erroneous assumption that it is extremely safe because hepatoxicity is not generally
induced, even at doses exceeding the recommended dose [68]. Hospital pharmacies, for example,
generally recommend doses of acetaminophen up to 45 mg/kg when the drug is administered via the
rectum [69-71], three times more than the recommended oral dose. The recommended dose for rectal
administration is greater than the recommended dose for oral administration because, on average,
the rectally administered drug has less bioavailability than the orally administered drug. However,
the bioavailability of the drug administered via the rectal route is variable among children and
especially neonates [70-73], which could result in some babies and children receiving considerably
more acetaminophen than is possible via the oral route. Further, it seems unlikely that acetaminophen
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use with circumcision in the first hours of life is always considered with the possibility that some
acetaminophen might remain in the neonate’s body as a result of the mother receiving the drug
during labor and delivery. In addition, reports abound describing the common occurrence of
acetaminophen administration more frequently than recommended, at doses higher than
recommended, and for reasons that are not recommended (for review, see Patel et al. [3]), supporting
the view that a cavalier attitude exists toward the drug among medical health professionals and
possibly other caregivers.

Acetaminophen use during sensitive periods of neurodevelopment continues to be
recommended by medical authorities without apparent awareness of the risks. An excellent example
of a policy that should be reconsidered is the recommendation of three doses of acetaminophen
concurrent with the meningococcal group B (MenB) vaccine at 2, 4, and sometimes 12 months of life
[74], when acetaminophen-induced induction of ASD is likely [4]. Children older than 1 year of age
may also receive the MenB vaccine if they are not already vaccinated. Israel, the UK, Australia, New
Zealand and Canada are among the countries that have implemented such recommendations [74-78]
for the MenB vaccine, which became available in 2014 [79]. Although measures of the prevalence of
ASD tend to take several years to compile, some health services have provided relatively current
estimates that include individuals receiving the MenB vaccine early in life. For example, the
prevalence of ASD in Australia in 2022, eight years after the MenB vaccine recommendation was put
into place, was 4.3 % of the total population aged 5-14 years, a 34 % increase in four years (up from
3.2 % of 5-14 year olds with ASD in 2018) [80]. Unfortunately, 73 % of those affected were found to
have severe and profound disabilities [80]. In another example, the prevalence of ASD was found to
be rising dramatically and rapidly in Israel in 2021, with two independent data sources showing that
the prevalence of ASD in 1-17 year-old children had almost doubled within 4 years [81]. The most
rapid increases were seen in children ages 2-3 years old, some of whom could have received three
doses of acetaminophen with the MenB vaccine more than once during the first four months of life,
when ASD might be more readily induced than in older children [4].

The rising prevalence of ASD has been a fact of life in high-income countries for more than 40
years, and can be affected by several factors other than actual changes in the occurrence of ASD. Thus,
it remains unknown whether dramatic increases in the prevalence of ASD in some Westernized
countries observed at the present time are attributable in part to acetaminophen exposure at the time
of the MenB vaccine. However, available evidence (Table 1) makes it abundantly clear that
acetaminophen use with any vaccine is exceedingly risky for the long-term well-being of the infant
or child. Fortunately, Australian and Canadian authorities have determined that the MenB vaccine
can be given separate from other vaccines and without acetaminophen [75,77]. It is this approach, in
addition to avoidance of other acetaminophen exposures from the start of labor and delivery until
after age 5, that should be strongly recommended by medical authorities. Finally, the risk of
acetaminophen exposure to the fetus during pregnancy is presently uncertain, and parents-to-be
should be made aware of this fact prior to pregnancy in order to make informed decisions and have
plans in place to treat fever and pain during pregnancy.

Conclusions

The call for “more research (and funds)” rather than calls for action is encouraged by perverse
incentives within in the practice of science today [82]. However, the time for analyses of the
acetaminophen/ASD connection examining only a few lines of evidence with substantial limitations
is in the past. Decisions based on analyses having depth without breadth have led to stagnation and
a steady increase in the prevalence of ASD for more than half a century. Although no single line of
evidence is conclusive, the weight of total evidence (Table 1) is now overwhelming, demonstrating
that acetaminophen is, in fact, a developmental neurotoxin that is responsible for many and possibly
even the vast majority of all cases of ASD.

The conclusions regarding the role of acetaminophen in the induction of ASD and the
recommendations for pediatric practice expressed in this manuscript do not constitute an “opinion”
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in the classical sense of the word. The authors have reached the conclusion, without reasonable doubt,
that many if not most cases of ASD are induced by exposure of susceptible individuals to
acetaminophen. We have also concluded that the best explanation for all known observations is that
the vast majority of ASD is induced by exposure of susceptible individuals to acetaminophen. Given
these conclusions, and given the fact that acetaminophen use in the pediatric population has never
been shown to have long-term benefits, the cost/benefit ratio of the drug in the pediatric population
is insufficient to merit its continued use in that population. The axiom in medicine, “do no harm”,
which is more reasonably stated as “do not knowingly do more harm than good”, is not a matter of
question. Rather, the axiom is accepted as unquestionable and foundational, to the point of being
included in an oath taken by all physicians. Thus, discontinuation of acetaminophen use from labor
and delivery through the age of 5 years should be considered as a matter of course, not a matter of
opinion. In contrast, use of acetaminophen during pregnancy merits additional study, and parents-
to-be should be educated regarding the potential benefits and risks of acetaminophen exposure to
their fetus.
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