ESI: Comprehensive Overview of the effective thermal conductivity for hydride material: experimental and modeling approaches

Gabriele Scarpati 1, Julián A. Puszkiel 2,3,*, Jan Warfsmann2,3, Fahim Karimi2, Elio Jannelli1, Claudio Pistidda2, Thomas Klassen2,3, Julian Jepsen2

- ¹ University of Naples "Parthenope", Naples, Italy; gabriele.scarpati001@studenti.uniparthenope.it
- ² Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
- ³ Helmut Schmidt University, University of the Federal Armed Forces Hamburg, Holstenhofweg 85, 22043, Hamburg, Germany
- * Correspondence: <u>julian.puszkiel@hereon.de</u>; Tel.: +49(0)415287-2171 / +49(0)406541 3297

Name	Year	Main equation ar	nd parameters	Main features			
3.1.1 Maxwell model [42]: M	1873	$k_{eff} = k_g -$	$\frac{\frac{k_{S}}{k_{S}} - 1}{2\frac{k_{S}}{k_{S}} + 2} (1 - \varepsilon)}{\frac{k_{S}}{k_{S}} + 2} \frac{1}{1 - \varepsilon}$	 Made for solid particles dispersed in a fluid phase (not for MHs) There is no finite contact area between adjacent particles Applicable for low concentrations of the particulate 			
mouet [42]: W		Measurable or literature	Hard to measure or to fit	Pros	Cons		
		$ \begin{array}{c} \bullet k_s \; (\text{Solid phase (bulk) thermal conductivity}) \\ \bullet k_g \; (\text{Gas (hydrogen) thermal conductivity}) \\ \epsilon \; (\text{Porosity, if considered constant}) \end{array} $	• ε (Porosity, if not constant)	Simple A reduced number of parameters No hard-to-get parameters	Not specific for MH		
,		$k_{eff} = \frac{l_p(1-l_s)}{\frac{l_s}{k_s} + \frac{l}{k_g + l}}$	$\frac{\left(\varepsilon\right)}{v}_{l_{v}h_{rS}}+\varepsilon l_{p}h_{rv}$	 Made for solid particles dispersed in the dispersed in the solid particles dispersed in th	veen adjacent particles ndent of fluid flow, and the other		
3.1.2 Yagi and		Measurable or literature	Hard to measure or to fit	Pros	Cons		
Kunii model [92]: YK	1957	$ \begin{array}{l} \bullet k_s \; \text{(Solid phase (bulk) thermal conductivity)} \\ \bullet k_g \; \text{(Gas (hydrogen) thermal conductivity)} \\ \bullet \epsilon \; \text{(Porosity, if considered constant)} \\ \bullet l_p \; \text{(effective length between the centers of two adjacent particles)} \\ \bullet l_s \; \text{(effective length of the solid particles related to the heat conduction)} \\ \end{array} $	 • C (emissivity factor of the solid surface) • l_V (effective thickness of the fluid film adjacent to the contact surface of two solid particles) • ε (Porosity, if not constant) 	Simple Limited number of parameters	Not specific for MH Some parameters are hard to get or remain as fitting parameters		
3.1.3 Z ehner-		$k_{eff} = k_g \cdot \left(1 - \sqrt{1 - \varepsilon} + \frac{2\sqrt{1 - \varepsilon}}{1 - \frac{k_g}{k_s B}}\right)$	$\frac{\left(1 - \frac{k_g}{k_s}\right) B}{\left(1 - \frac{k_g}{k_s}\right)^2} \ln \frac{k_s}{k_g B} - \frac{B + 1}{2} - \frac{B - 1}{1 - \frac{k_g}{k_s}} \right)$	 Made for solid particles dispersed in a fluid phase (not for MHs) There is no finite contact area between adjacent particles Two parallel paths for heat conduction, one in the fluid area and one in the biphasic region 			
Schlünder model	1970	Measurable or literature	Hard to measure or to fit	Pros	Cons		
[44]: ZS		$ \begin{array}{l} \bullet k_s \; (\text{Solid phase (bulk) thermal conductivity}) \\ \bullet k_g \; (\text{Gas (hydrogen) thermal conductivity}) \\ \bullet \epsilon \; (\text{Porosity, if considered constant}) \\ \end{array} $	 C (Form factor) m (Exponential fitting parameter) B (Shape factor/alternative to C, m, and ε) ε (Porosity, if not constant) 	A small number of parameters	Not specific for MH		
		$k_{eff} = \left(1 - \sqrt{1 - \varepsilon}\right)k_h + \sqrt{1 - \varepsilon}$	 Made for solid particles dispersed in Finite contact area between adjacent Three parallel paths for heat conduction biphasic region, and one through solid particles. 	nt particles ction: one in the fluid area, one in the			
21.47.1		Measurable or literature	Hard to measure or to fit	Pros	Cons		
3.1.4 Zehner- Bauer-Schlünder model [95-97]: ZBS	1978	 k_s (Solid phase (bulk) thermal conductivity) k_g (Gas (hydrogen) thermal conductivity) ε (Porosity, if considered constant) γ (Specific heat ratio) μ_g (Dynamic viscosity of hydrogen) 	 C (Form factor) m (Exponential fitting parameter) B (Shape factor/alternative to C, m, and ε) e (emissivity factor of the solid surface) d_c (Contact area diameter) 	Relatively simpleContact area	Not specific for MH		
		 µg (Dynamic viscosity of hydrogen) Cv (Heat capacity at constant volume) I (Mean free path) d (Particle diameter) 	 Q_c (Contact area diameter) a (Accommodation coefficient) ε (Porosity, if not constant) 				

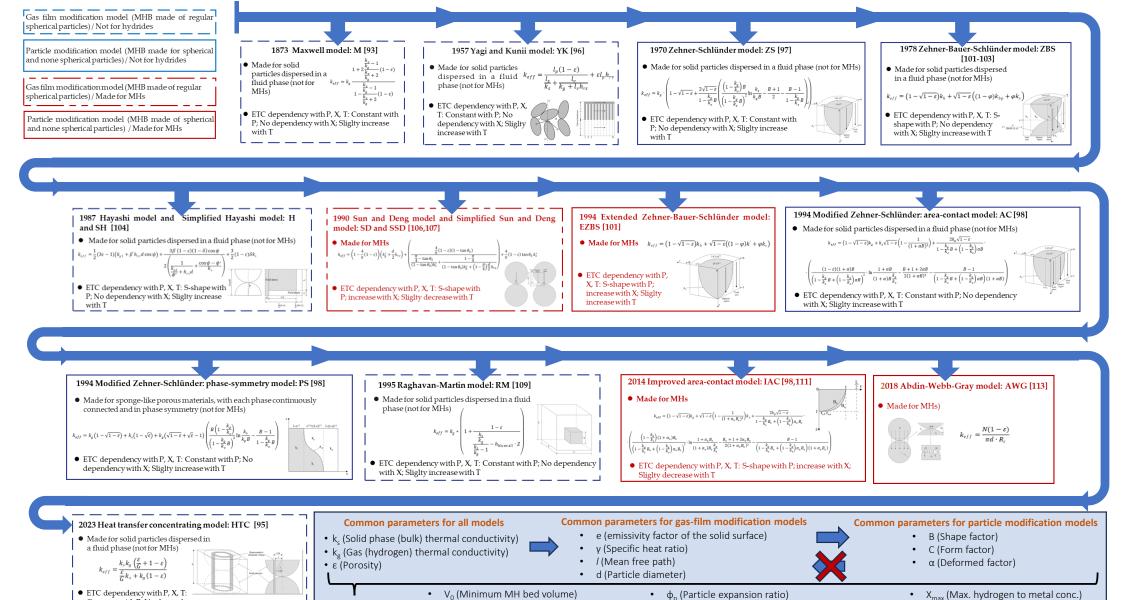
,		$k_{eff} = \frac{1}{2} (3\varepsilon - 1) (k_{g1} + \beta' h_{rv} d \cos \theta)$	$+\frac{\frac{3\beta'(1-\varepsilon)(1-\delta)\cos\theta}{2\left(\frac{1}{\frac{kg_2}{\phi^*}+h_{rs}d}+\frac{\cos\theta-\phi^*}{k_s}\right)}}{\frac{1}{2}(1-\varepsilon)\delta k_s}$	 Made for solid particles dispersed in a fluid phase (not for MHs) Finite contact area between adjacent particles Three parallel paths for heat conduction: one in the fluid area, one in the biphasic region, and one through solid particles 			
3.1.5 Hayashi		Measurable or literature	Hard to measure or to fit	Pros	Cons		
model [43]: H	1987	 k_s (Solid phase (bulk) thermal conductivity) k_g (Gas (hydrogen) thermal conductivity) ε (Porosity, if considered constant) k_{e0} (Effective thermal conductivity at zero pressure) γ (Specific heat ratio) <i>I</i> (Mean free path) d (Particle diameter) 	 • C (emissivity factor of the solid surface) • n (number of contact points for a hemispherical particle surface) • a (Accommodation coefficient) • ε (Porosity, if not constant) 	Contact area Good adaptability to different systems	Not specific for MH Some parameters are hard to get or remain as fitting parameters		
		$k_{eff} = \frac{1}{2} (3\varepsilon - 1)k_{g1} + \frac{3\beta'(1-1)}{2(\frac{\phi^*}{k_{g2}})}$	$\frac{(\varepsilon)(1-\delta)\cos\theta}{(2+\frac{\cos\theta-\phi^*}{k_S})} + \frac{3}{2}(1-\varepsilon)\delta k_S$	 Made for solid particles dispersed i Finite contact area between adjacer Three parallel paths for heat conduction biphasic region, and one through so 	nt particles etion: one in the fluid area, one in the		
		Measurable or literature	Hard to measure or to fit	Pros	Cons		
3.1.5 Simplified Hayashi model	1987	• k _s (Solid phase (bulk) thermal conductivity) • k _g (Gas (hydrogen) thermal conductivity) • ε (Porosity, if considered constant) • k _{e0} (Effective thermal conductivity at zero pressure) • γ (Specific heat ratio) • l (Mean free path) • d (Particle diameter)	 n (number of contact points for a hemispherical particle surface) a (Accommodation coefficient) ε (Porosity, if not constant) 	Contact area Good adaptability to different systems	Not specific for MH Some parameters are hard to get or remain as fitting parameters		
3.1.6 Sun and		$k_{eff} = \left(1 - \frac{4}{\pi}(1 - \varepsilon)\right) \left(k_g^* + r \cdot h_{rv}\right) + \left(\frac{\frac{\pi}{4} - \tan\theta}{\frac{4}{(1 - \tan\theta_0)}}\right)$	$ \left(\frac{\frac{4}{\pi} (1-\varepsilon) (1-\tan\theta_0)}{\frac{1-\frac{\pi}{4}}{(1-\tan\theta_0)k_g^* + (1-\tan\theta_0)k_g^* + (1-\frac{\pi}{4})r \cdot h_{rs}}} \right) + \frac{4}{\pi} (1-\varepsilon) \tan\theta_0 k_s^* $	 Made for MHs Finite contact area between adjacer Three parallel paths for heat conduct biphasic region, and one through so The equation for the hydrogen the pressure) The equation for the solid phase the hydrogen concentration 	etion: one in the fluid area, one in the blid particles nermal conductivity (dependent on		
Deng model	1990	Measurable or literature	Hard to measure or to fit	Pros	Cons		
[46,47]: SD		 k_s (Solid phase (bulk) thermal conductivity) k_g (Gas (hydrogen) thermal conductivity) ε (Porosity, if considered constant) k_{c0} (Effective thermal conductivity at zero pressure) ρ_g (Gas density) I (Mean free path) d (Particle diameter) 	 • C (emissivity factor of the solid surface) • b (Accommodation coefficient) • ε (Porosity, if not constant) 	 Relatively simple Contact area Made for MH 	Some parameters are hard to get or remain as fitting parameters		
3.1.6 Simplified Sun and Deng model [46,47]: SSD		$k_{eff} = \left(1 - \frac{4}{\pi}(1 - \varepsilon)\right)k_g^* + \left(\frac{\frac{4}{\pi}(1 - \varepsilon)}{\frac{\frac{4}{\pi}(1 - \varepsilon)\theta_0}{(1 - \tan\theta_0)k_g}}\right)$	$\frac{(1-\tan\theta_0)}{\frac{1-\frac{\pi}{4}}{s}+(1-\tan\theta_0)k_g^*} + \frac{4}{\pi}(1-\varepsilon)\tan\theta_0 k_s^*$	Made for MHs Finite contact area between adjacer Three parallel paths for heat conduct biphasic region, and one through so The equation for the hydrogen the pressure)	ction: one in the fluid area, one in the blid particles		

				• The equation for the solid phase thermal conductivity (dependent of hydrogen concentration)			
		Measurable or literature	Hard to measure or to fit	Pros	Cons		
	1990	 k_s (Solid phase (bulk) thermal conductivity) k_g (Gas (hydrogen) thermal conductivity) ε (Porosity, if considered constant) k_e0 (Effective thermal conductivity at zero pressure) ρ_g (Gas density) l (Mean free path) d (Particle diameter) 	 b (Accommodation coefficient) ε (Porosity, if not constant) 	Contact area Made for MH It is simpler than the base model	Some parameters are hard to get or remain as fitting parameters		
		$k_{eff} = \left(1 - \sqrt{1 - arepsilon}\right) k_h + \sqrt{1}$	$(1-\varepsilon)(1-\varphi)k_{bp}+\varphi k_s$	 Made for MHs Finite contact area between adjacer Three parallel paths for heat conduction biphasic region, and one through so The equation for the solid phase hydrogen concentration) The equation for the porosity (dependent) 	ction: one in the fluid area, one in the blid particles thermal conductivity (dependent on		
		Measurable or literature	Hard to measure or to fit	Pros	Cons		
3.1.7 Extended Zehner-Bauer- Schlünder model [95]: EZBS	1994	 k_s (Solid phase (bulk) thermal conductivity) k_g (Gas (hydrogen) thermal conductivity) ε (Porosity, if considered constant) γ (Specific heat ratio) μ_g (Dynamic viscosity of hydrogen) c_v (Heat capacity at constant volume) l (Mean free path) d (Particle diameter) ρ_s (density of the metal) x_{max} (Maximum hydrogen to metal concentration) E (Young's modulus) ν (Poisson's ratio) Γ₀ (initial particle radius) 	 • C (emissivity factor of the solid surface) • a (Accommodation coefficient) • B (Shape factor) • Γ_{c,0} (Initial contact area radius) • ε (Porosity, if not constant) 	Adapted for MH beds Many equations are given for several parameters	Quite complex Some parameters need to be evaluated experimentally		
3.1.8 Modified Zehner- Schlünder: area-	1994	$k_{eff} = \left(1 - \sqrt{1 - \varepsilon}\right) k_g + k_s \sqrt{1 - \varepsilon}$ $\cdot \left(\frac{\left(1 - \frac{k_g}{k_s}\right)(1 + \alpha)B}{\left(1 - \frac{k_g}{k_s}B + \left(1 - \frac{k_g}{k_s}\right)\alpha B\right)^2} \cdot \ln \frac{1 + \alpha B}{(1 + \alpha)B\frac{k_g}{k_s}} - \frac{B^2}{20}\right)$	`	 Made for solid particles dispersed in a fluid phase (not for MHs) Finite contact area between adjacent particles Three parallel paths for heat conduction: one in the fluid area, one in the biphasic region, and one through solid particles 			
contact model		Measurable or literature	Hard to measure or to fit	Pros	Cons		
[45]: AC		$ \begin{array}{ccc} \bullet & k_s \text{ (Solid phase (bulk) thermal conductivity)} \\ \bullet & k_g \text{ (Gas (hydrogen) thermal conductivity)} \\ \bullet & \epsilon \text{ (Porosity, if considered constant)} \\ \end{array} $	 C (Form factor) m (Exponential fitting parameter) B (Shape factor/alternative to C, m, and ε) α (Deformed factor) ε (Porosity, if not constant) 	A reduced number of parameters Contact area	Not specific for MH		

3.1.9 Modified Zehner- Schlünder:	1994	$k_{eff} = k_g(1 - \sqrt{1 - \varepsilon}) + k_s(1 - \sqrt{\varepsilon}) + k_g(\sqrt{1 - \varepsilon})$	$\frac{1-\varepsilon+\sqrt{\varepsilon}-1\left(\frac{B\left(1-\frac{k_g}{k_s}\right)}{\left(1-\frac{k_g}{k_s}B\right)^2}ln\frac{k_s}{k_gB}-\frac{B-1}{1-\frac{k_g}{k_s}B}\right)}{1-\frac{k_g}{k_s}B}$	 Made for sponge-like porous materials, with each phase continuously connected and in phase symmetry (not for MHs) Three parallel paths for heat conduction: one in the fluid area, one in the biphasic region, and one through solid particles 		
phase-symmetry		Measurable or literature	Hard to measure or to fit	Pros	Cons	
model [45]: PS		k _s (Solid phase (bulk) thermal conductivity)	B (Shape factor, alternative to ε)	A small number of parameters	Not specific for MH	
		kg (Gas (hydrogen) thermal conductivity)	• ε (Porosity, if not constant)	1	•	
		ε (Porosity, if considered constant)				
3.1.10 Raghavan- Martin model [49]: RM	1995	$k_{eff} = k_g \left(1 + -\frac{1}{\frac{k}{k_g}}\right)$	$\frac{1-\varepsilon}{\frac{k_{S}}{k_{g}}} - h_{Maxwell} \cdot Z$	Made for solid particles dispersed in a fluid phase (not for MHs) There is no finite contact area between adjacent particles		
		Measurable or literature	Hard to measure or to fit	Pros	Cons	
		$ullet$ k_s (Solid phase (bulk) thermal conductivity)	A ₀ (Fitting parameter)	Simple	Not specific for MH	
		$ullet$ $k_{ m g}$ (Gas (hydrogen) thermal conductivity)	A ₁ (Fitting parameter)	A reduced number of parameters	-	
		ε (Porosity, if considered constant)	• ε (Porosity, if not constant)			
		$k_{eff} = \left(1 - \sqrt{1 - \varepsilon}\right) k_g + \sqrt{1 - \varepsilon} \left(1 - \frac{\left(1 - \frac{k_g}{k_s}\right)(1 + \alpha_a)B_a}{\left(1 - \frac{k_g}{k_s}B_a + \left(1 - \frac{k_g}{k_s}\right)\alpha_aB_a\right)^2} \cdot \ln \frac{1 + \alpha_a B_a}{(1 + \alpha_a)B_a \frac{k_g}{k_s}} - \frac{B_a + \alpha_a B_a}{2(1 + \alpha_a)B_a \frac{k_g}{k_s}}$	$\frac{1}{(1+\alpha_{a}B_{a})^{2}} k_{s} + \frac{2k_{g}\sqrt{1-\varepsilon}}{1-\frac{k_{g}}{k_{s}}B_{a} + \left(1-\frac{k_{g}}{k_{s}}\right)\alpha_{a}B_{a}} \cdot \frac{1+2\alpha_{a}B_{a}}{+\alpha_{a}B_{a})^{2}} - \frac{B-1}{\left(1-\frac{k_{g}}{k_{s}}B_{a} + \left(1-\frac{k_{g}}{k_{s}}\right)\alpha_{a}B_{a}\right)(1+\alpha_{a}B_{a})}\right)$	 Made for MHs Finite contact area between adjacent particles Three parallel paths for heat conduction: one in the fluid area, on biphasic region, and one through solid particles Equations for particle deformation during cycles are included The equation for the hydrogen thermal conductivity (dependently hydrogen viscosity, specific heat capacity at constant pressurement free path, so on temperature and pressure) The equation for the porosity (dependent on hydrogen concentration) 		
3.1.11 Improved		Measurable or literature	Hard to measure or to fit	Pros	Cons	
area-contact	2014	$ullet$ k_s (Solid phase (bulk) thermal conductivity)	a (Accommodation coefficient)	Detailed	Complex	
model [50]: IAC		• £0 (Initial porosity)	α ₀ (Initial deformed factor)	Made for MHs	A high number of parameters	
		$ullet$ d_0 (Initial particle diameter)	B ₀ (Initial shape factor)		• Some parameters are hard to	
		• l (Mean free path)	• α_a or B_a (Shape factor after the expansion)		get or remain as fitting parameters	
		 γ (Specific heat ratio) 	• P _{eq} (Equilibrium pressure)		parameters	
		• µ (Dynamic viscosity)	Rp (Reacted fraction at the beginning of the plateau) ε (Porosity, if not constant)			
		• C _p (Heat capacity at constant pressure)	& (Porosity, if not constant)			
		• V ₀ (Minimum MH bed volume)				
		V ₁ (Maximum MH bed volume) V ₂ (MH bed volume at the end of the cycle)				
		• ψ_2 (MH bed volume at the end of the cycle) • ψ_p (Particle expansion ratio)				
3.1.12 Abdin- Webb-Gray model [102]: AWG	2018	$k_{eff}=rac{1}{2}$	$V(1-arepsilon) = \pi d \cdot R_C$	Made for MH bes The contact between two particles scale regions: the macro-gap and the Four thermal resistances are involved the perfect contact between particle (Rs), and that of the interstitial gas Many of the parameters are solid many of the parameters are solid many of the parameters.	red: that of the gas (RG), related to s (RL), that related to micro-contacts contained in the micro-gaps (Rg)	

				 The equation for the hydrogen thermal conductivity (dependent on the hydrogen mean free path, so on temperature and pressure) The equation for the porosity (dependent on hydrogen concentration) 			
		Measurable or literature	Hard to measure or to fit	Pros	Cons		
		$ \begin{array}{c} \bullet k_s \; (\text{Solid phase (bulk) thermal conductivity}) \\ \bullet k_{g,ref} \; (\text{Gas (hydrogen) thermal conductivity at reference pressure)} \\ \bullet \epsilon_0 \; (\text{Initial porosity}) \\ \bullet d_0 \; (\text{Initial particle diameter}) \\ \bullet \gamma \; (\text{Specific heat ratio}) \\ \bullet V_0 \; (\text{Minimum MH bed volume}) \\ \bullet V_1 \; (\text{Maximum MH bed volume}) \\ \end{array} $	$ \begin{array}{ll} \bullet & d_v \text{ (Mean indentation diagonal depth)} \\ \bullet & C_1 \text{ (Vickers microhardness coefficient 1)} \\ \bullet & C_2 \text{ (Vickers microhardness coefficient 2)} \\ \bullet & E' \text{ (Effective Young's modulus)} \\ \bullet & \sigma_R \text{ (Surface roughness)} \\ \bullet & \alpha_{T1} \text{ (Thermal accommodation coefficient 1)} \\ \bullet & \alpha_{T2} \text{ (Thermal accommodation coefficient 2)} \\ \bullet & P_{eq} \text{ (Equilibrium pressure)} \end{array} $	 Detailed Made for MHs Interesting mechanical approach 	 Complex A high number of parameters Some parameters are hard to get or remain as fitting parameters 		
		$ \begin{array}{ccc} \bullet & V_2 \text{ (MH bed volume at the end of the cycle)} \\ \bullet & Pr \text{ (Prandtl number)} \\ \bullet & \varphi_p \text{ (Particle expansion ratio)} \end{array} $	• Rp (Reacted fraction at the beginning of the plateau) • ϵ (Porosity, if not constant)				
3.1.13 Heat		$k_{eff} = \frac{k_s k_s}{\frac{\varepsilon}{G} k_s}$	$\frac{g\left(\frac{\varepsilon}{G}+1-\varepsilon\right)}{+k_g(1-\varepsilon)}$	 Made for solid particles dispersed in a fluid phase (not for MHs) Only one not-negligible path for heat conduction, that in the biphasic region 			
transfer	2023	Measurable or literature	Hard to measure or to fit	Pros	Cons		
concentrating model [91]: HTC		$ullet$ k_s (Solid phase (bulk) thermal conductivity)	• ε (Porosity, if not constant)	Simple	Not made for MHs		
model [91]: HIC		$ullet$ k_g (Gas (hydrogen) thermal conductivity)		A reduced number of parameters			
		• ε (Porosity, if considered constant)					
		• d (Particle diameter)					

Table S1. Summary of the models with the central equation, brief description, parameters and advantages and disadvantages.


Name	Solid material	Fluid	Parameters		Valu	ues		T-P exp. range	
				LaNi5-air		Fe-air		T (K)	P (bar)
	• LaNi ₅	• Air	• k _s	• 12.5 W/(m·K)		• 79 W/(m·k	()		
3.1.1 Maxwell	• Fe		• k _g	• 0.0258 W/(m·K)		• 0.0258 W/	(m·K)		1.01325
model [42]: M			• ε	• 0.468-0.669		• 0.546-0.68	1	293.15	
	k _{eff} ranges	1	• Exp.	• 0.1187-0.2288 W/(m·K)			317 W/(m·K)		
	(Exp. to model deviation	> 50 %)	• Model	• 0.0637-0.1127 W/(m·K)			900 W/(m·K)		
				Iron sphere-air	Porcelain	granule-air	Cement clinker-air	T(K)	P (bar)
	• Iron sphere	• Air	• k _s	• 52.3 W/(m·K)	• 1.63 W/(m	·K)	• 1.98 W/(m·K)		
	Porcelain cylinder		• k _g	• 0.0211-0.0696 W/(m·K)	• 0.0211-0.0	696 W/(m·K)	• 0.0211-0.0696 W/(m·K)		
3.1.2 Yagi and	Porcelain granule		• ε	• 0.4	• 0.43	, ,	• 0.5		
Kunii model [92]:	Cement clinker		• 1 _p	• 11 mm	• 6 mm		• 2.6 mm	100.15	
	 Insulating fire brick 		• 1 _s	• 11 mm	• 6 mm		• 2.6 mm	423.15-	1.01325
YK	Raschig ring		• 1 _v	• 0.374 mm	• 0.24 mm		• 0.12 mm	1123.15	
			• e	Not reported	Not reporte	ed	Not reported		
	k _{eff} ranges	1	• Exp.	• 0.707-3.85 W/(m·K)	• 0.519-1.39		• 0.384-0.889 W/(m·K)		
	(Exp. to model deviation	< 15 %)	• Model	• 0.806-3.40 W/(m·K)	• 0.511-1.42		• 0.362-0.807 W/(m·K)		
				Bronze-water	Bro	nze-air	Aluminium-air	T (K)	P (bar)
	Glass	• Water	• k _s	• 117 W/(m·K)	• 117 W/(m·	K)	• 218 W/(m·K)		, ,
3.1.3 Zehner-	Stainless steel	• Glyce	• k _g	• 0.623 W/(m·K)	• 0.0268 W/		• 0.0268 W/(m·K)		
Schlünder model	Urea-formaldehyde	rol	• C	• 1.25	• 1.25	(111 11)	• 1.25		
	Bronze	• Air	• m	• 10/9	• 10/9		• 10/9	308.15	Not
[44]: ZS	Aluminium	1 111	• E	• 0.4	• 0.39		• 0.41		indicated
	k _{eff} ranges		• Exp.	• 4.61 W/(m·K)	• 1.23 W/(m·K)		• 3.89 W/(m·K)		
	(Exp. to model deviation <	80 %)	• Model	• 7.32 W/(m·K)	• 0.628 W/(1	m·K)	• 0.706 W/(m·K)		
				LaNi _{4.7} Al _{0.3} -H ₂			HWT 5800-H ₂	T(K)	P (bar)
	• LaNi _{4.7} Al _{0.3}	• Ar	• k _s			• 12 W/(m·k			
	(not activated) • He		• kg	• 0.18 W/(m·K)		• 0.18 W/(m	• 0.18 W/(m·K)		,
		• N ₂	• C	• 1.4		• 1.4			
	• HWT 5800		• m	• 10/9		• 10/9			
21.77			• ε	• 0.531		• 0.445			
3.1.4 Zehner-	(not activated)		• γ	Not reported		Not reporte	ed		
Bauer-Schlünder			• μ _g	• Not reported • Not		Not reporte	Not reported		
model [95-97]:			• c _v	Not reported Not reported		Not reporte	ed	293.15	10-5-100
ZBS			• <i>l</i>	Not reported		Not reporte	ed		
			• e	Not reported		Not reporte	ed		
			• d	• 36 μm		• 50 μm			
			• d _c	• 0.1548 μm		• 0.075 μm			
			• a	• 0.5		• 0.5			
	k _{eff} ranges		• Exp.	• 0.00426-1.34 W/(m·K)		• 0.00454-1.	` ,		
	(Exp. to model deviation <	30 %)	• Model	• 0.00339-1.10 W/(m·K)		• 0.00593-1.			
				Activated alumina-H ₂		eads-H ₂	Lead balls-H ₂	T (K)	P (bar)
3.1.5 Hayashi	Glass beads	• He	• k _s	• 0.455 W/(m·K)	• 1.035 W/(r		• 34.9 W/(m·K)		
model [43]: H	Lead balls	• H ₂	• k _g	Not reported	Not reported		Not reported	288.15-	0.0133-
and	Activated alumina	• N ₂	• k _{e0}	• 0.00814 W/(m·K)	• 0.0174 W/	(m·K)	• 0.0464 W/(m·K)	288.15-	1.013
and	Cylindrical PVC resin	• Ar	• ε	• 0.404	• 0.4		• 0.42	273.13	1.015
		• C ₃ H ₆	• γ	Not reported	Not reporte	ed	Not reported		

3.1.5 Simplified Hayashi model [43]: SH	k _{eff} ranges (Exp. to model deviation < 20 ^o low ranges for activated alu		• d • n • e • l • a • Exp.	 0.23 mm Not reported Not reported Not reported ≈ 0.5 0.00225-0.331 W/(m·K) 0.00500-0.322 W/(m·K) 		ed ed	 1.1 mm Not reported Not reported Not reported ≈ 0.5 0.0549-1.81 W/(m·K) 0.0555-1.75 W/(m·K) 		
	10 W Tanges for activated and	111111111111111111111111111111111111111			MINi4 5N	/Ino 5-H2		T (K)	P (bar)
3.1.6 Sun and Deng model [46,47]: SD and 3.1.6 Simplified Sun and Deng model [46,47]: SSD	• MlNi _{4.5} Mn _{0.5}	• H ₂	 k_s k_g k_{e0} ε e d ρ_g l a b Exp.	MlNi _{4.5} Mn _{0.5} -H ₂ • Not reported • Not reported • Not reported • Not reported • 0.9 • 25 µm • Not reported				313.15- 333.15	1-40
	k _{eff} ranges (Exp. to model deviation <	5 %)	Exp.Model	• 0.714-1.29 W/(m·K) • 0.754-1.27 W/(m·K)					
				LaNi _{4.7} Al _{0.3} -H ₂			HWT 5800-H ₂	T (K)	P (bar)
3.1.7 Extended Zehner-Bauer- Schlünder model [95]: EZBS	• LaNi4.7Al _{0.3} • HWT 5800 k _{eff} ranges (Exp. to model deviation <		 k_{s,0} k_g ε₀ C m γ μ_g c_v l e r_{c,0} r₀ a E ν ρ_s X_{max} Exp. Model 	 11.2 W/(m·K) 0.18 W/(m·K) 0.531 0.445 1.4 10/9 Not reported 0.5 μm 0.5 Not reported Not reported Not reported Not reported Not reported Not reported 1.82wt% 0.566-1.36 W/(m·K) 		ed ed ed ed ed ed ed ed	193.15- 413.15	10-4-100	
				Bronze-water	Bron	ze-air	Aluminium-air	T(K)	P (bar)
3.1.8 Modified Zehner-Schlünder: area-contact model [45]: AC	 Glass Stainless steel Urea-formaldehyde Bronze Aluminium keff ranges (Exp. to model deviation < 	• Water • Glyce rol • Air	 ks kg C m ε α Exp. 	• 117 W/(m·K) • 0.623 W/(m·K) • 1.25 • 10/9 • 0.42 • 0.002 • 4.61 W/(m·K)	• 117 W/(m· • 0.0268 W/ • 1.25 • 10/9 • 0.42 • 0.002 • 1.23 W/(m	(m·K)	• 218 W/(m·K) • 0.0268 W/(m·K) • 1.25 • 10/9 • 0.42 • 0.002 • 3.89 W/(m·K)	308.15	Not indicated

			• Model	• 4.62 W/(m·K)	• 1.50 W/(m	·K)	• 2.56 W/(m·K)		
3.1.9 Modified Zehner-Schlünder: phase-symmetry model [45]: PS	-	-	 ks kg B or ε	No comparison to experim	ental data			T (K)	P (bar)
				LaNi47Alo3	·H2		HWT 5800-H ₂	T (K)	P (bar)
3.1.10 Raghavan- Martin model [49]! RM	[artin model [49]] \bullet HWT 5800 \bullet 8 \bullet 0.531		• 11.2 W/(n • 0.18 W/(n • 0.445 • 1/3 • 0.25 • 0.167-1.0 • 0.101-1.0	n·K) n·K) 77 W/(m·K)	193.15- 413.15	0.01-60			
	ranges for for HWT 5800-H ₂)				LaNis	5-H ₂		T (K)	P (bar)
3.1.11 Improved area-contact model [50]: IAC	• LaNis	• H ₂	 ks ε0 α0 B0 αa φp φabs* φdes* Peq RP d0 1 γ a μ cp * φabs and φα Exp. 	 0.273 0.168 0.84 From known PCI ~13.3 (read from PCI at 15 μm Not reported Not reported 0.3 Not reported Not reported are given in place of V₀, V₁ 0.494-1.07 W/(m·K) 	Not reported Not reported \sim 0.03 (from a graph of α_a vs φ_{abs}) 0.273 0.168 0.84 From known PCI \sim 13.3 (read from PCI at 333.15 K) 15 μm Not reported Not reported 0.3 Not reported				1-100
	(Exp. to model deviation	< 15 %)	• Model	• 0.570-1.01 W/(m·K)					
3.1.12 Abdin- Webb-Gray model [102]: AWC	• LaNis • LaNi _{4.7} Al _{0.3}	• H ₂	 ks kg,ref ε0 d0 dv C1 C2 E' σR Pr αT1 αT2 γ 	LaNis-H ₂ • 2 W/(m·K) • 0.167 W/(m·K) • 0.5 • 12 μm • 29.37 μm • 7.3 GPa • -0.27 • Not reported • 0.12 μm • 0.6 • 0.69 • 0.83 • 1.4		LaNi _{4.7} Al _{0.3} -H ₂ ** • 12.5 W/(m·K) • 0.18 W/(m·K) • 0.531 • 5 μm • 31.11 μm • Not reported • 1.4		293.15- 303.55	P (bar)

				 9.87 An equation fitting exp. data is reported Might be got from the same equation 0.243 0.168 0.84 are given in place of V₀, V₁ and V₂, which can at parameters are taken from [98], but the most of 			
	keff ranges • Exp. • 0.0433-1.93 W/(m·K) • 0.0577-1.06 W/(m·K) • 0.0490-1.04 W/(m·K)						
	low ranges for LaNi ₅ -H	12)		Not active LaNi _{4.7} Al _{0.3} -H ₂	Not active HWT 5800-H ₂	T (K)	P (bar)
3.1.13 Heat transfer concentrating model [91]: HTC	 Al₂O₃ Steel Si SiC Cr Al Fe LaNi₅ LaNi_{4.7}Al_{0.3} (not active) HWT 5800 (not active) 	 Air Ar He N2 H2 	 ks kg ε d 	• 12.5 W/(m·K) • 0.18 W/(m·K) • 0.531 • 6 µm	• 12 W/(m·K) • 0.18 W/(m·K) • 0.445 • 50 μm	293.15	10 ⁻⁵ -100
	k _{eff} ranges (Exp. to model deviation <	22 %)	Exp.Model	• 0.881 W/(m·K) • 0.7758 W/(m·K)	• 1.28 W/(m·K) • 0.9945 W/(m·K)		

Table S2. Experimental and model-calculated ETC values and parameters for different hydride forming and non-forming materials under different atmospheres, temperature and pressure conditions.

Figure S1. Summary of the ETC models: Classification, ETC dependence on P, T, and X, and common parameters.

V₁ (Maximum MH bed volume)

V₂ (MH bed volume at the end of the cycle)

• P_{eq} (Equilibrium pressure)

• R_P (Reacted fraction at the beginning of the plateau)

• E'(Effective Young's modulus, just AWG)

• σ_R (Surface roughness, just AWG)

Specific Parameters

for MHB models

Constant with P; No dependency

with X; Sliglty increase with T