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Abstract: Severe fever with thrombocytopenia syndrome (SFTS) is a viral infection primarily found 

in Asia, with a case fatality rate of about 10%. Despite its increasing prevalence, the underlying 

pathogenic mechanisms remain poorly understood, limiting the development of effective therapeutic 

interventions. We employed an untargeted metabolomics approach using liquid chromatography-

mass spectrometry (LC-MS) to analyze serum samples from 78 SFTS patients during the acute phase 

of their illness. Differential metabolic features between survival and fatal cases were identified 

through multivariate statistical analyses. Furthermore, we constructed a metabolic prognostic model 

based on these biomarkers to predict disease severity. Significant alterations were observed in four 

key metabolic pathways: sphingolipid metabolism, biosynthesis of phenylalanine, tyrosine, and 

tryptophan, primary bile acid biosynthesis, and phenylalanine metabolism. Elevated levels of 

phenylacetic acid and isocitric acid were strongly associated with adverse outcomes and 

demonstrated high discriminatory power in distinguishing fatal cases from survivors. The metabolic 

prognostic model incorporating these biomarkers achieved a sensitivity of 75% and a specificity of 

90% in predicting disease severity. Our findings highlight the pivotal role of metabolic dysregulation 

in the pathogenesis of SFTS and suggest that targeting specific metabolic pathways could open new 

avenues for therapeutic development. The identification of prognostic biomarkers provides a 

valuable tool for early risk stratification and timely clinical intervention, potentially improving 

patient outcomes. 

Keywords: severe fever with thrombocytopenia syndrome; prognostic biomarker; metabolomics;  

LC-MS 

 

1. Introduction 

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused 

by infection with the novel Bunyavirus (SFTSV). This zoonotic disease, primarily transmitted through 
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tick bites, is characterized by high fever, leukopenia, and thrombocytopenia. Severe cases can lead to 

multi-organ failure, hemorrhage, and death. [1–3] Since its initial identification in 2009, the number 

of reported cases has been increasing annually, with a notable prevalence in Asian regions including 

China, Japan, and Korea. [4–7] The disease predominantly occurs from April to October, with a peak 

incidence from May to July. [8] In endemic areas, such as northeastern China and the rural 

mountainous and hilly regions of central and eastern China, [9] the infection rate of this virus ranges 

1% to 3%, with a fatality rate varying between 6% to 30% across different studies, averaging around 

10%. [1,3,7,10,11] Currently, SFTS has emerged as a significant public health concern. In 2017, the 

World Health Organization (WHO) listed SFTS among the global priority infectious diseases.  

Early diagnosis of SFTS is crucial for improving patient outcomes and preventing disease 

transmission. Despite the availability of various PCR techniques for rapid diagnosis, [12,13] there are 

currently no specific drugs or effective vaccines targeting SFTSV. The primary treatment approach 

for SFTSV-infected patients remains symptomatic supportive care and broad-spectrum antiviral 

therapy. [14,15] Therefore, the treatment of SFTS patients remains challenging. Timely intervention 

before the disease progresses to its acute phase can effectively control its progression. Therefore, early 

diagnosis of severe patients is essential, enabling clinical teams to respond quickly, intervene, seize 

the optimal treatment window, enhance patient outcomes, and reduce mortality. Additionally, the 

incomplete understanding of SFTS pathogenesis significantly hinders the development of effective 

treatments and preventive measures. 

Viral infections possess the ability to reprogram host metabolism, creating an environment that 

facilitates their replication and survival. [16,17] Changes in serum metabolites can serve as indicator 

of systemic metabolic alterations driven by persistent viral replication. Metabolomics, a technique 

that captures comprehensive variations in small molecule metabolites within biological fluids, cells, 

and tissues, is regarded as the omics approach most directly linked to disease phenotypes. [18] In 

recent years, the analysis of host serum metabolomics has emerged as a promising tool for elucidating 

host-virus interactions in vivo and identifying diagnostic biomarkers. This methodology has already 

yielded significant insights into the pathogenesis of infections such as SARS-CoV-2 and Dengue virus 

(DENV). [19–21] Several previous studies have investigated metabolite changes in hosts following 

SFTSV infection using metabolomics techniques. For example, Li et al. identified that disruptions in 

the arginine catabolism pathway were linked to platelet homeostasis and T-cell dysregulation 

following SFTSV infection. [22] Zhang and colleagues observed disturbances in tryptophan and 

phenylalanine metabolism in the urine of SFTSV-infected patient. [23] However, research on 

metabolic alterations in SFTS patients is still limited. Moreover, metabolic disorders during disease 

progression form a dynamically evolving network, and studies examining the metabolic status 

throughout the course of SFTS are particularly scarce. Consequently, further investigation into the 

metabolic changes in SFTS patients, including the precise characterization of the subtle differences 

and dynamic trajectories, is essential for elucidating disease mechanisms and developing potential 

therapeutic strategies. 

In this study, we utilized a liquid chromatography-mass spectrometry (LC-MS)-based 

untargeted metabolomics approach to analyze serum samples from 78 SFTS patients (discovery set: 

52 patients, test set: 26 patients) at multiple time points from admission to discharge, as depicted in 

Figure 1. Our primary objective was to comprehensively characterize the metabolic alterations in 

SFTSV-infected patients throughout the entire disease course. To achieve this, we applied tow 

grouping strategies. First, we categorized the patients into survival and fatal groups based on their 

final outcomes. By comparing the serum metabolite profiles between these groups, we aimed to 

unveil the impact of SFTSV on host metabolism, identify abnormal metabolic pathways and 

significantly altered metabolites, and explore the potential pathogenic mechanisms of the virus. 

These findings were used to develop a metabolic prognostic model to aid clinicians in the early 

diagnosis of severe cases and improve patient outcomes. Second, we divided the population into 

three stages (stage A, B, C) based on three critical time points in disease progression, focusing on the 

temporal changes in metabolites. From a metabolomics standpoint, we delineated the metabolic 
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features of SFTSV-infected patients as their condition evolved, examined the pathogenic 

characteristics of the virus, and offered novel insights into the infection process and pathogenic 

mechanisms of SFTSV. 

 

Figure 1. Schematic overview of the study design. The study encompassed a total of 78 participants, divided into 

a discovery set of 52 individuals and a test set of 26 individuals. Patients were classified into three clinical stages 

(A, B, and C) according to disease progression, and non-targeted metabolomics analysis was performed on their 

serum samples. Metabolic profiles were compared between patients with survival and fatal outcomes to 

elucidate metabolic reprogramming in severe disease states and identify altered metabolic pathways. A 

metabolic prognostic model, incorporating phenyllactic acid and isocitric acid, was developed using machine 

learning techniques based on the discovery cohort data and subsequently validated in the test set. Longitudinal 

and cross-sectional trends of the prognostic metabolites were analyzed and correlated with clinical data. 
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2. Materials and Methods 

2.1.  Study Population Information 

A total of 78 patients diagnosed with SFTS were enrolled at the Zhongnan Hospital of Wuhan 

University between June 2021 and October 2023. This cohort included 52 patients in the discovery set 

(17 fatal and 37 survival cases) and 26 patients in the test set (7 fatal and 19 survival cases). All patients 

met the diagnostic criteria for SFTS and were confirmed by RT-qPCR detection of SFTSV RNA.1 

Clinical data were retrospectively collected from medical records, following a standardized protocol. 

Clinical outcomes were followed up until February 28, 2024. The study received approval from the 

Medical Ehtics Commitee of Zhongnan Hospital of Wuhan University (approval number:2024046K). 

All procedures involving human participants adhered to the principles outlined in the Declaration of 

Helsinki.  

2.2. Chemicals and Reagents 

Metabolite standards were purchased from Aladdin (Shanghai, China), Meryer (Shanghai, 

China), Energy Chemical Co. (Shanghai, China), J&K (Beijing, China). LC-MS grade formic acid was 

obtained from Aladdin (Shanghai, China). LC-MS grade methanol (MeOH) and acetonitrile (ACN) 

were acquired from Merck (Darmstadt, Germany). Ultrapure water (H2O) was generated using a 

Milli-Q system (Millipore, Bedford, MA, USA). 

2.3. Criteria for Staging Bunyavirus Patients 

In accordance with the Diagnosis and Treatment Guidelines for Severe Fever with 

Thrombocytopenia Syndrome (2023 Edition) issued by the National Health Commission of the 

People’s Republic of China and the National Administration of Traditional Chinese Medicine, [24] 

patients were classified to three clinical stages: the fever stage (A), the organ dysfunction stage (B) 

and convalescence stage (C). A total of 177 specimens were collected from 78 patients across these 

different clinic stages. 

During the fever state (A), characterized by an acute onset, patients typically present with fever 

(body temperature ranging from 38 to 40°C), accompanied by symptoms such as fatigue, loss of 

appetite, nausea, vomiting. Some cases may also exhibit muscle pain and diarrhea, while a few 

individuals may display apathy. Physical examination often reveals enlarged, tender superficial 

lymph node, particularly in the unilateral groin, neck, and armpit area. In more severe cases, these 

lymph nodes may show marked local redness, swelling, warmth, and pain. 

In the stage of multiple organ dysfunction (B), patients may exhibit persistent fever, multiple 

organ dysfunction, extreme fatigue, and worsening gastrointestinal symptoms. In some instances, 

this stage may also be characterized by involuntary shaking of the jaw and limbs along with increased 

muscle tone. Severe cases may manifest as skin ecchymosis, gastrointestinal bleeding, pulmonary 

hemorrhage, irritability, delirium, convulsions, and coma. Some patients may succumb to 

complications such as circulatory failure, respiratory failure, or hemorrhage. 

During the convalescence stage (C), patients’ body temperature returns to normal, clinical 

symptoms gradually subside, and recovery typically occurs with approximately 2 weeks. However, 

the course of the course of SFTS may be prolonged in patients with complications. 

2.4. Serum Sample Collection and Preparation 

The leftover blood samples were collected from patients at admission, during treatment, and 

before discharge. Serum samples were obtained after centrifugation at 1600×g for 10 minutes. The 

serum samples were divided into aliquoted and preserved at −80 °C for subsequent analysis. 

Each serum sample (100 µL) was mixed with 400 µL of pre-chilled methanol (MeOH) for 

extraction and protein precipitation. The mixture was vortexed for 60 seconds, followed by 

incubation at −20 °C for 20 minutes. Subsequently, the samples were centrifuged at 10,000×g for 20 
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minutes at −4 °C. The supernatant was collected, dried under nitrogen, and dissolved in a mixture of 

20 µL of internal standard (N-acyl glycine (C2–C23) standards), [25] and 130 µL of H2O. The mixture 

was vortexed for 3 minutes, and then centrifuged at 10000×g for 10 minutes for LC-MS analysis. Blank 

samples were also processed, replacing serum with 100 µL of H2O and following the same procedure. 

To evaluate analytical precision, quality control (QC) samples were generated by combining 

equal volumes (30 µL) from each serum sample. Serum samples were analyzed in a randomized 

sequence, with QC samples injected every 10 runs throughout the experiment to monitor and ensure 

data accuracy and consistency. 

2.5. LC-MS Analysis 

Serum samples were analyzed using an ultra-high performance liquid chromatography-

quadrupole time-of-flight (UHPLC-Q-TOF) mass spectrometry system. The system consisted of an 

Agilent 1290 Infinity II liquid chromatography system, coupled with an Agilent 6546 Q-TOF mass 

spectrometer (Agilent Technologies, Palo Alto, CA, USA), equipped with an Agilent Jet Stream 

electrospray ionization (ESI, Turbo Ionspray) source. For liquid chromatography separation, an 

ACQUITY UPLCⓇ HSS T3 column (2.1 × 100 mm, 1.8 μm) was employed. The flow rate of mobile 

phase was maintained at 0.4 mL/min, and the column temperature was set at 40°C. The mobile phase 

included 0.1% formic acid in water (v/v, solvent A) and 0.1% formic acid in ACN (v/v, solvent B) for 

both positive and negative ion mode analyses. The gradient program was as follows: 0-1 min, 2% B; 

1-23 min, 2-98% B; 23-25 min, 98% B; 25-25.1 min, 98-2% B; 25.1-30 min, 2% B. 

Mass spectrometry analysis was performed in full scan mode, with the mass-to-charge ratio 

(m/z) range set from 50 to 1000. The acquisition rate was 2.5 spectra per second. The electrospray 

ionization (ESI) parameters were configured as follows: ion transfer tube temperature, 320°C; 

declustering potential, 120 V; spray voltage, 3500 V for positive ion mode and 3000 V for negative ion 

mode; sheath gas flow rate, 11 L/min; sheath gas temperature, 350°C; drying gas flow rate, 8 L/min; 

and nebulizer pressure, 35 psi.  

For MS2 analysis, spectra of different metabolites were acquired using the auto-MS/MS mode. 

The MS scan rate was set at 3 spectra per second, while the MS/MS scan rate was 8 spectra per second. 

MS2 fragment ions were generated through collision-induced dissociation (CID), with collision 

energies of 10, 20, 30, and 45 eV. The intensity threshold was set to 10,000, with a maximum of 6 

precursors analyzed per cycle. Dynamic exclusion was applied with a time of 0.2 minutes. 

2.6. Data Processing 

Raw data were acquired using Agilent 6546 MassHunter Workstation software (version 10.1, 

Agilent Technologies). And the resulting raw files (.d format) were converted to abf format using the 

ABF_Converter tool. Peak detection, deconvolution, alignment, blank subtraction, normalization, 

and additional processing were conducted with MS-DIAL software (version 4.70) to generate 

comprehensive feature lists. To refine the data, redundant ions, such as isotope peaks, adduct ions, 

duplicate peaks, and contaminant ions, were removed using the web-based MS-FLO tool. [26]  

To eliminate metabolites with a high proportion of missing values, the 80% rule was applied, 

retaining only metabolites present in at least 80% of the samples. Missing values were imputed using 

1/5 of the minimum value observed among the remaining metabolites. [27] For metabolites detected 

on multiple platforms, the one with the smallest relative standard deviation (RSD) in QC samples 

was retained. Additionally, only metabolites with an RSD below 30% in QC samples were considered 

for further analysis. To approximate a normal distribution, logarithmic transformation was applied 

to the data prior to statistical analysis 

Metabolite annotation was performed using MS2 spectra acquired in auto-MS/MS mode. The 

annotation process utilized the Global Natural Products Social Molecular Networking (GNPS, 

https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp) and SIRIUS 4.9.15 

(https://bio.informatik.uni-jena.de/sirius/). Significantly altered metabolites were annotated through 

standard confirmation, matching against public MS2 database, and MS/MS interpretation. 
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Annotation levels were classified according to the Metabolomics Standards Initiative (MSI) 

guidelines. [28,29] 

2.7. Statistical Analysis 

Descriptive statistics were performed to analyze the demographic and clinical characteristics of 

the study population. Comparisons between the survival and fatal groups were conducted using chi-

square tests for categorical variables and Wilcoxon rank-sum tests for continuous variables. 

Multivariate statistical analyses, including principal component analysis (PCA) and partial least 

squares discriminant analysis (PLS-DA), were performed using SIMCA 14.1 (Umea, Sweden). Key 

classification variables were identified based on variable importance in projection (VIP) scores 

derived from the PLS-DA model. The reliability and accuracy of the PLS-DA model were assessed 

through 200 permutation tests. 

Metabolic pathway analysis, single-factor analysis, and correlation analysis were performed 

using MetaboAnalyst 5.0 and IBM SPSS 20.0. Volcano plots and box plots were visualized using 

Origin software. Hierarchical clustering heatmaps, pathway analysis plots, and enrichment analysis 

plots were generated using R version 4.1.2 (R Foundation for Statistical Computing, Vienna, Austria). 

Lasso regression analysis was conducted in R to select metabolites for constructing a metabolic 

prognostic model, and model performance was assessed through receiver operating characteristic 

(ROC) curves plotted using the random forest algorithm. 

The random forest model was developed using 20-fold cross-validation on the training set. To 

enhance interpretability and based on prior research, we selected five different machine learning 

models: logistic regression, ElasticNet linear regression, partial least squares discriminant analysis 

(PLS-DA), support vector machine (SVM), and random forest.21 Hyperparameter tuning and feature 

selection for each model were optimized using 20-fold cross-validation combined with a grid search 

approach. Model performance was measured by the area under the receiver operating characteristic 

curve (AUC). Upon optimization, the random forest model demonstrated the highest AUC within 

the cross-validated training dataset. 

3. Results 

3.1. Clinical Features of Study Population 

We first described the clinical indicators of the survival and fatal groups across the three stages 

(Table S1) to understand their characteristics at different stages of the disease. Due to the difficulty of 

collecting clinical data for fatal cases at stage C, information from this stage is not presented in the 

table. The analysis revealed that at stages A and B, fatal patients exhibited: (1) higher viral loads; (2) 

elevated levels of serum aspartate transaminase/alanine transaminase (AST/ALT), blood urea 

nitrogen (BUN), creatinine, lactate dehydrogenase (LDH), high-sensitivity troponin I (HSTNI), and 

activated partial thromboplastin time (APTT), indicating the presence of multi-organ damage in 

severe cases. 

As stage B represents a critical period of disease progression, we performed statistical analyses 

to further investigate differences at this stage. To account for potential confounding by age and sex, 

we compared their distributions between the groups and found no significant differences in age (p = 

0.45) or sex (p = 0.25). As illustrated in Figure 2, fatal patients at stage B demonstrated the following 

notable features: (1) significantly higher levels of viral load, AST, interleukin-6 (IL-6), LDH, HSTNI, 

BUN, creatinine, and cystatin C, further underscoring the prevalence of multi-organ damage in 

severe cases (Figure 2a-i); (2) prolonged activated partial thromboplastin time (APTT) and thrombin 

time (TT), as well as increased D-dimer (DD) concentrations, suggesting activation of the coagulation 

system and a hypercoagulable state during the progressive phase (Figure 2j-l). Similarly, in the test 

set, no significant differences were found in age (p = 0.07) or sex (p = 0.19), and the clinical features 

demonstrated comparable distribution patterns (Table S2). 
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Figure 2. Clinical characteristics of stage B patients in the discovery set. p values were calculated using two-

sided Mann–Whitney U test. Abbreviations: AST, aspartate aminotransferase; ALT/AST, aspartate transaminase 

/ alanine transaminase; APTT, activated partial thromboplastin time; BUN, Blood urea nitrogen; HSTNI, high-

sensitivity troponin I; IL6, Interleukin-6; LDH, creatinine, lactate dehydrogenase; TT, thrombin time. 

Based on the preceding analysis, we further investigated the dynamic changes in the survival 

group across different stages to reveal the trends in clinical characteristics during the recovery 

process (Figure 3). The findings revealed: (1) In the convalescence stage (stage C), viral load decreased 

significantly (Figure 3a); (2) Lymphocyte counts were at their lowest in stage A, with over half of the 

cases below the normal range, followed by gradual recovery (Figure 3b); (3) Platelet counts were at 

their lowest in stage A but increased significantly with disease improvement, resolving the platelet 

crises (Figure 3c); (4) Serum AST and creatinine levels were markedly elevated at stage A and 

significantly decreased by stage C (Figure 3d,e). In contrast, patients in the fatal group consistently 
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exhibited high viral loads, severe thrombocytopenia, and persistent liver and kidney dysfunction 

throughout the disease course, with no apparent improvement. 

 

Figure 3. Clinical characteristics of survival cases in the discovery set. p values were calculated using two-sided 

Mann–Whitney U test. Abbreviations: AST, aspartate aminotransferase. 

3.2. Untargeted Metabolomics Analysis of Patients with Severe Fever with SFTS 

A metabolomics analysis was conducted on 118 serum samples collected from 52 patients in the 

discovery cohort with SFTS using untargeted LC-MS-based metabolomics. This analysis identified 

1,255 metabolic features in positive ion mode and 1,106 in negative ion mode. To assess the overall 

accuracy of the analysis, PCA was performed on the detected features. The PCA score plots 

demonstrated tight clustering of the QC samples in both ion modes (Figure 4a), indicating good 

reproducibility of the LC-MS analysis and confirming the accuracy and reliability of the obtained 

metabolomic data. 
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Figure 4. Reprogrammed serum metabolic landscape of SFTS patients. Identification of differential serum 

metabolomic profiles in SFTS patients at stage A (blue), B (pink), and C (green) in the discovery set. PCA (a) and 

PLS-DA (b) analyses indicate grouping patterns. The tight clustering of QC samples (gray points) in both positive 

and negative ion modes confirm the accuracy and reliability of the data. (c) Heatmap of serum metabolites in 

the fatal and survival groups at stage A, B, and C. Red denotes higher concentrations, while purple signifies 

lower concentrations, with more pronounced metabolite differences evident at stage B compared to stage A, as 

highlighted by the red box. (d) The PLS-DA model of serum metabolomics data distinguishes between the fatal 

(teal) and survival (purple) groups at stage B. (e) A volcano plot of metabolites detected in the fatal and survival 

groups at stage B shows significantly different metabolites in red (upregulated) and blue (downregulated), while 

others are shown in gray. 

3.3. Exploratory Analysis of Grouping 

Through the application of orthogonal partial least squares discriminant analysis (PLS-DA) and 

permutation testing, we successfully visualized and validated the differences in metabolites among 

the three stages (stage A, B, and C). As shown in Figure 4b, the PLS-DA model indicates grouping 

patterns across the three stages. The robustness of the PLS-DA model was further confirmed by 200 

permutation tests (Figure S1A), demonstrating no overfitting and good discriminative ability. 

Furthermore, the samples from the three stages were divided into six independent groups based 

on patient outcomes (survival or fatal). Hierarchical clustering heatmap revealed minimal metabolic 

differences between survival and fatal groups at stage A, which became markedly pronounced at 

stage B and further intensified at stage C (Figure 4c), This pattern prompted us to hypothesize that 

survivors may begin showing signs of metabolic recovery as early as stage B, whereas fatal cases 

exhibit ongoing deterioration. The distinct metabolic profiles observed at stage B suggest it may 

represent a critical turning point for prognostic differentiation. Consequently, we sought to explore 

the metabolic changes at stage B, the distinctions between survival and fatal cases, and the potential 

of these differences as therapeutic targets. By applying the PLS-DA model to analyze the survival 

and fatal groups at stage B, a clear separation was observed (Figure 4d). And the model was validated 

as robust through 200 permutation tests (Figure S1B). Moreover, volcano plots revealed marked 
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serum metabolic dysregulation in the fatal group (Figure 4e), with several metabolites exhibiting 

significant upregulation or downregulation trends (p < 0.05, FC > 1.2). 

3.4. Significantly Altered Differential Metabolites 

Based on the results from the exploratory analysis of the groups, we focused on the metabolic 

differences between the survival and fatal cases, examining how significant differential metabolites 

change during disease progression. We selected differential metabolites between the survival and 

fatal groups at stage B. Applying the criteria of VIP values > 1.0 from the PLS-DA model and the 

multiple criteria of FC > 1.2 and p < 0.05 from the volcano plot, we identified 413 significantly altered 

metabolites. Specifically, 199 and 214 metabolites showed significant changes in positive and negative 

ion modes, respectively. Among the significantly changed metabolites, 170 were upregulated (53 

from the positive ion mode; 117 from the negative ion mode), and 243 were downregulated (146 from 

the positive ion mode; 97 from the negative ion mode). 

Eighty-eight metabolites were annotated (Table S3), with 24 identified using standard 

compounds (level 1) and 57 matched against public databases based on MS2 spectra (level 2), and 7 

metabolites classified based on MS2 spectra data (level 3).Using the ClassyFire chemical classification 

system, these metabolites were categorized into seven superclasses: lipids and lipid-like molecules 

(75%), organic acids and derivatives (18%), organic oxygen compounds (3%), organoheterocyclic 

compounds (2%), benzenoids (1%), nucleosides, nucleotides, and analogues (1%), organonitrogen 

compounds (1%), and phenylpropanoids and polyketides (1%). Notably, lipids and lipid-like 

molecules constituted the majority of the differential metabolites. Further subclassification of lipid 

molecules revealed glycerophospholipids (31%), fatty acids (25%), steroids and steroid derivatives 

(13%), triglycerides (2%), and sphingolipids (1%). These findings indicate a greater and structurally 

diverse range of differential metabolites in fatal SFTS cases compared to those who recovered (Figure 

5a). 

Among the 88 annotated significantly altered metabolites, 50 exhibited an upregulated trend, 

while 38 showed a downregulated trend. As shown in Figure 5b, lipids and lipid-like molecules were 

the top two superclasses for both upregulated (60.4%) and downregulated (89.5%) trends, followed 

by organic acids and derivatives (up 22.9%, down 7.9%). Hierarchical clustering analysis (Figure S2) 

revealed pronounced differences in the levels of annotated metabolites between the survival and fatal 

groups. Representative metabolites, such as lysophosphatidylcholine (LPC), showed a significant 

downregulation in the fatal group compared to the survival group, whereas bile acids and 

lysophosphatidylethanolamine (LPE) exhibited a noticeable upregulation trend (Figure S2). These 

changes may be related to the interaction mechanisms between SFTSV and the host. 

To elucidate the relationship between these significantly altered metabolites and the metabolic 

state of SFTS patients, we utilized the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

database and MetaboAnalyst 5.0 for metabolic pathway analysis. This approach helped  us 

investigate metabolites related to metabolic pathways and physiological changes in the patients’ 

serum. Our analysis revealed four major metabolic pathways that were significantly altered (p < 0.05): 

sphingolipid metabolism, the biosynthesis of phenylalanine, tyrosine, and tryptophan, primary bile 

acid biosynthesis, and phenylalanine metabolism (Figure 5c).  

Additionally, the enrichment analysis indicated that several metabolites associate SFTS are 

closely linked to the pathogenesis of various human diseases (Figure 5d), such as sepsis and dengue 

fever. This suggests that these metabolites likely participate in metabolic disruptions during disease 

states. 
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Figure 5. Analysis of differential serum metabolites. (a) Distribution of serum metabolites across super- and sub-

classes in the discovery set. (b) Super classes of metabolites significantly upregulated (red) and downregulated 

(blue) in the fatal group compared to the survival group. (c) Pathway analysis of significantly different 

metabolites between the fatal and survival groups according to the KEGG pathways. (d) Human disease states 

associated with SFTS-related metabolites based on previously published metabolomics data. 

3.5. Selection and Evaluation of Potential Biomarkers 

The significant changes in differential metabolites between the survival and fatal groups, as 

shown in the hierarchical clustering plot (Figure 4c), suggest the potential to establish a metabolic 

prognostic model. This model aims to predict disease severity from early metabolic profiles, assisting 

in clinical identification of severe cases and improving prognosis. We focused on the top 15 

significantly different metabolites in the hierarchical clustering plot and further selected 8 potential 

biomarkers through lasso regression analysis. These include phenyllacetic acid, sphingosine-1-

phosphate, isocitric acid, indole-3-lactic acid, phenylalanine, LysoPC(P-18:0/0:0), palmitoylcarnitine, 

and gulonic acid. 

To further verify the correlation of these selected metabolites with SFTS pathogenesis and 

disease outcomes, we examined the concentration trends of these metabolites in the survival and fatal 

groups. We also explored the dynamic changes of these serum metabolites during disease 

progression in patients who ultimately recovered and were discharged. As shown in Figure 6a, 

phenylacetic acid, isocitric acid, indole-3-lactic acid, phenylalanine, and gulonic acid concentrations 

were significantly lower in the survival group compared to the fatal group, and they gradually 

decreased during recovery (Figure 6b). Conversely, sphingosine-1-phosphate, LysoPC(P-18:0/0:0), 

and palmitoylcarnitine concentrations were higher in the survival group (Figure 6a) and increased 

during the recovery process (Figure 6b). Additionally, at all three stages of disease progression, the 

concentrations of gulonic acid , indole-3-lactic acid, isocitric acid, phenylacetic acid, and 

phenylalanine remained lower in the survival group compared to the fatal group, while sphingosine-

1-phosphate, LysoPC(P-18:0/0:0), and palmitoylcarnitine were consistently higher in the survival 

group (Figure S3). This consistent trend throughout the disease course indicates that the selected 

metabolites accurately reflect metabolic changes following SFTS infection and have significant 

predictive value. 

To validate the reliability of potential biomarkers, we performed metabolomics analysis on 

serum samples from 26 SFTS patients in the test set. The results showed that the trends for 7 

metabolites—phenylacetic acid, isocitric acid, indole-3-lactic acid, phenylalanine, gulonic acid, 

sphingosine-1-phosphate, and LysoPC(P-18:0/0:0)—were consistent with the discovery set (Figure 
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S4), while palmitoylcarnitine was not. Therefore, the former 7 metabolites were retained. 

Subsequently, based on the metabolite profiles of the survival and fatal groups at stage B, we trained 

and optimized metabolic prognostic models using five machine learning approaches: logistic 

regression, elastic net linear regression, PLS-DA, SVM, and random forest. These models were then 

used to predict outcomes using data from stage A and validated on the test set. The AUC values for 

individual metabolites are presented in Table S4. Based on the combined performance of metabolites 

in the discovery and test sets, individual metabolites were selected and combined, as shown in Table 

S5. Our findings indicated that phenylacetic acid and isocitric acid performed best in cross-validation 

of the random forest model, achieving an AUC of 0.84, sensitivity of 75%, and specificity of 74% in 

the discovery set (Figure 6c); and an AUC of 0.85, sensitivity of 75%, and specificity of 90% in the test 

set (Figure 6d). This model outperformed other combinations and was more streamlined, thus 

selected as the final prognostic model. According to multivariate regression analysis reported in the 

literature, older age, BUN levels, and APTT are independent risk factors for fatal outcomes.[30] We 

conducted a comparative ROC analysis between these risk factors and the prognostic model. The 

metabolite modle achieved an AUC of 0.85, outperforming age (AUC = 0.76), BUN levels (AUC = 

0.65), and APTT (AUC = 0.78) (Figure S5). Further analysis revealed that patients who eventually died 

had significantly higher scores using this model than those who recovered and were discharged, 

indicating its effectiveness in differentiating disease severity and predicting outcomes to some extent 

(Figure S6). 

3.6. Correlation Analysis with Clinical Information 

Previous studies have identified poor prognostic factors for SFTS, such as high serum viral RNA 

load, elevated levels of lactate dehydrogenase (LDH) and aspartate aminotransferase (AST), 

prolonged activated partial thromboplastin time (APTT), and increased interleukin-6 (IL-6). [3,31–34] 

We assessed the correlation between phenylacetic acid and isocitric acid with these clinical indicators 

(Figure 6e). Phenylacetic acid concentration showed a significant positive correlation with viral load 

in patients (r = 0.71), suggesting that elevated phenylacetic acid levels might be associated with poor 

prognosis. Moreover, phenylacetic acid demonstrated significant positive correlations with several 

markers, including LDH (r = 0.600), IL-6 (r = 0.65), and high-sensitivity C-reactive protein (hs-CRP) (r 

= 0.60), indicating a possible link between increased phenylacetic acid and myocardial damage, which 

is a critical factor in patient mortality due to cytokine storm. [35] Further analysis indicated significant 

correlations between phenylacetic acid and coagulation indicators (Table S6), such as positive 

correlations with APTT (r = 0.67), thrombin time (TT, r = 0.57), and D-dimer (DD, r = 0.47), and a 

negative correlation with platelet count (PLT, r = -0.55). This suggests that impaired coagulation 

function and thrombocytopenia may be associated with elevated phenylacetic acid levels, indicating 

a potential link with coagulation abnormalities. Based on these associations, it can be speculated that 

high phenylacetic acid concentrations might correlate with clinical deterioration. Data also showed 

(Figure 6a,b) that phenylacetic acid levels were significantly higher in the fatal group than in the 

survival group, with a gradual decrease observed during the recovery process. 

Metabolomics studies have shown that the tricarboxylic acid (TCA) cycle is notably affected in 

patients who develop sepsis following trauma compared to healthy controls, with significant changes 

in intermediate metabolites, particularly isocitric acid, [36] suggesting interference in energy 

metabolism. Normal liver and kidney function heavily relies on balanced energy metabolism. Thus, 

disruption of the TCA cycle may be linked to impaired hepatic and renal functions. Our analysis 

further demonstrated significant positive correlations between isocitric acid concentrations and 

hepatic and renal function indicators, including AST/ALT ratio (r = 0.41), serum creatinine (CREA, r 

= 0.39), and cystatin C (CYSC, r = 0.40). As liver and kidney function indicators deteriorated, isocitric 

acid concentrations increased, indicating that elevated isocitric acid may be closely related to liver 

and kidney impairment. Data also showed (Figure 6a,b) that isocitric acid levels were significantly 

higher in the fatal group than in the survival group, with a gradual declined observed during the 

recovery process. 
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These results suggest that the elevated levels of our predictor metabolites, phenylacetic acid and 

isocitric acid are associated with poor prognosis in SFTS patients. Consequently, these two 

metabolites can distinguish between patients who recover and those who experience fatal outcomes. 

 

Figure 6. Prediction of disease severity in SFTS patients using machine learning. (a) Boxplots showing the 

intensities of potential biomarkers in the fatal and survival groups of SFTS patients (time point B). The inset 

highlights the intensities of the final selected prognostic biomarkers in both groups. (b) Boxplots illustrating the 

longitudinal progression of potential biomarkers across disease stages (A, B, C). The inset highlights the 

intensities of the final selected prognostic biomarkers at each stage. Box limits represent the quartiles of each 

sample group. Receiver operating characteristic (ROC) curves of the metabolic prognostic model on the training 

(c) and testing (d) set. (e) Heatmap of correlation coefficients between prognostic biomarkers and clinical 

parameters. The colors in the heatmap represent the positive (represented by red) or negative correlation 

(represented by blue). Abbreviations: WBC: white blood cell; RBC: red blood cell; HGB: hemoglobin; PLT: 

platelet; HCT: hematocrit; RDW: red cell distribution width; MPV: mean platelet volume; AST/ALT: aspartate 

transaminase / alanine transaminase; TBIL: total bilirubin; A/G: albumin/globulin ratio; TBA: total bile acid; SOD: 

superoxide dismutase; BUN: blood urea nitrogen; CREA: creatinine; CYSC: cystatin C; CKMB-IM: creatine 

kinase-MB Isoenzyme; hsCRP: high-sensitivity C-reactive protein; GGT: gamma-glutamyl transferase; IL6: 

interleukin; ApoA: apolipoprotein A; LDH: lactate dehydrogenase; HSTNI: high-sensitivity troponin I; PT: 

prothrombin time; PTTA: partial thromboplastin time activated; APTT: activated partial thromboplastin time; 

TT: thrombin Time; FIB: fibrinogen; DD: D-dimer. 
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4. Discussion 

Our study aims to analyze the impact of SFTSV on host metabolism from a metabolomics 

perspective, focusing on clinical outcomes and the progression of the disease. By comparing patients 

who succumbed to the disease with those who improved, we identified potential abnormal metabolic 

pathways. These pathways provide insights into the pathophysiological changes and mechanisms of 

SFTS, which could lead to the identification of potential therapeutic targets. Metabolites that exhibit 

significant changes during disease progression may reflect patient status and could be used to 

construct metabolic prognostic models for disease outcomes. 

Metabolomics analysis of 52 SFTS patients revealed significant differences between the survival 

and fatal groups, identifying four key differential metabolic pathways: sphingolipid metabolism; the 

biosynthesis of phenylalanine, tyrosine, and tryptophan; primary bile acid biosynthesis; and 

phenylalanine metabolism, all of which experience severe metabolic disruptions.  

Sphingolipid metabolism emerges as an important pathway in distinguishing between survival 

and fatal SFTS patients, especially given the significant decrease in sphingosine-1-phosphate (S1P) 

and notable increase in D-sphingosine observed in fatal cases. S1P is essential for regulating of 

vascular function,[37] and its decreased levels may indicate a disruption in the balance of vascular 

homeostasis. Endothelial dysfunction induced by viral infection has been strongly linked to a higher 

risk of mortality, especially in patients experiencing severe hemorrhagic complications.[38]  The 

reduction of S1P in fatal cases suggests its involvement in a vicious cycle of endothelial dysfunction, 

a phenomenon also observed in diseases like sepsis and dengue fever.[39] Additionally, the strong 

positive correlation (r = 0.68) between S1P and high-density lipoprotein (HDL) suggests that HDL 

levels may partially reflect S1P levels and disease status. Furthermore, in patients who eventually 

recovered, we observed a gradual rebound in S1P levels. Therefore, therapeutic strategies aimed at 

increasing circulating S1P levels or enhancing its signaling may represent new options for stabilizing 

patient conditions. 

Phenylalanine metabolism is a critical metabolic pathway in SFTS disease. [23] Our data indicate 

that levels of phenylalanine, phenylacetic acid, and hydroxyphenylacetic acid are significantly 

elevated in fatal cases, while they gradually decline in those who recover. Phenylalanine is primarily 

metabolized in the liver, and inflammation or liver dysfunction may reduce its metabolic rate, leading 

to elevated phenylalanine levels in the body. Clinical data support this hypothesis, as liver function 

in fatal cases was significantly worse than in those who recovered, and metabolites of phenylalanine 

showed significant correlations with liver function. Additionally, impaired liver function could 

hinder the conversion of phenylalanine to tyrosine, [40] resulting in the accumulation of phenylacetic 

acid and hydroxyphenylacetic acid. Similar phenomena have been observed in other infectious 

diseases, such as COVID-19 and sepsis, where elevated phenylalanine levels are closely related to 

disease severity. [41,42] Thus, the phenylalanine metabolic pathway may be involved in SFTSV 

invasion and lethal mechanisms. 

Bile acid metabolism pathways exhibit significant dysregulation in SFTS patients. Bile acids, 

essential steroid compounds synthesized by the liver, were found at higher concentrations in fatal 

cases compared to those who recovered (Figure S2), with levels gradually decreasing as patients 

improved. The liver, as one of the primary sites for SFTSV replication, [43] becomes impaired, leading 

to disruptions in bile secretion and excretion. Concurrently, systemic inflammation might damage 

the biliary system, causing cholestasis and elevated serum bile acid levels. The higher bile acid levels 

in fatal cases compared to those who recovered are associated with worsening liver dysfunction, 

supporting this hypothesis. 

Previous literature has suggested that certain bile acids, such as chenodeoxycholic acid (CDCA), 

glycochenodeoxycholic acid (GCDCA), taurochendeoxycholic acid (TCDCA), and taurodeoxycholic 

acid (TDCA), are significantly elevated in survival cases and may exert protective effects by inhibiting 

inflammatory responses. [44] However, our data differ from some studies, [45,46] showing that bile 

acids continue to increase in fatal cases, a phenomenon also observed in severe COVID-19 cases 

where elevated bile acids correlate with disease severity. We speculate that bile acids may have anti-
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inflammatory effects in the early stages of the disease, but as the disease progresses, damage to the 

liver and biliary system impedes normal bile metabolism, leading to bile acid accumulation in the 

blood and further exacerbating hepatocellular damage.  

Receptors for bile acids, namely FXR and TGR5, have recently gained considerable attention in 

the scientific community. [47,48] FXR not only regulates metabolic balance and maintains gut barrier 

integrity but also directly modulates the immune system. [49] Clinically, drugs like obeticholic acid 

(OCA) have been used to activate FXR, reducing bile acid synthesis and mitigating excessive immune 

responses. [50] Controlling the abnormal elevation of bile acids might aid in the recovery of SFTS 

patients. The significant differences in bile acid levels among patients with different outcomes 

suggest that studying bile acid-related signaling pathways could provide new therapeutic targets for 

SFTS. 

Lipid metabolism plays a crucial role in the progression of SFTS. Studies show that various 

lysophosphatidylcholines (LPCs) tend to decrease in fatal cases while gradually increasing in 

recovering patients; conversely, lysophosphatidylethanolamines (LPEs) rise in fatal cases and 

decrease in those who recover (Figure S2). LPC, an important phospholipid derivative, is associated 

with the progression of various diseases, including sepsis and liver cirrhosis, and is closely linked to 

increased mortality risk. [51,52] LPE, on the other hand, tends to elevate in inflammatory, metabolic, 

and infectious diseases; LPC is primarily derived from phosphatidylcholine (PC), while PC derives 

from phosphatidylethanolamine (PE). [53] Therefore, it is hypothesized that more PE is converted to 

LPE, resulting in decreased PC and consequently reduced LPC and increased LPE levels. 

LPC plays a crucial role in combating viral infections by activating macrophages, promoting the 

phagocytosis of viral particles and infected cells, [54] and exhibiting anti-platelet aggregation 

properties. Studies have shown that LPC regulates platelet aggregation via serum phospholipase and 

exhibits a dose-dependent inhibitory effect. [55] This anti-platelet aggregation function is particularly 

important in SFTS patients. Previous literature has suggested that SFTS patients suffer from arginine 

deficiency, which affects the L-arginine/nitric oxide synthase/nitric oxide pathway in platelets, 

leading to their excessive activation and reduction. [22] As LPC levels decrease, its anti-platelet 

aggregation effect weakens, making patients more susceptible to abnormal platelet activation due to 

arginine deficiency, potentially leading to adverse outcomes. In patients who show improvement, 

the rise in LPC levels may help restore this anti-platelet function. Therefore, supplementing LPC 

might represent a novel therapeutic strategy to improve the prognosis of SFTS patients. 

The tryptophan metabolism pathway is closely implicated in the pathophysiology of SFTS. Prior 

studies have highlighted a significant elevation of kynurenine, a critical metabolite derived from 

tryptophan, in the urine of SFTS patients compared to healthy controls, with markedly higher 

concentrations observed in fatal cases relative to survivors. [23] These changes may lead to excessive 

cytokine levels, potentially initiating a cytokine storm that increases the risk of mortality in patients. 

Our findings also demonstrate that serum kynurenine levels are significantly higher in fatal cases 

compared to those who recover, and longitudinal analysis shows that kynurenine levels gradually 

decrease in improving patients, consistent with disease stabilization. The variation in kynurenine 

levels may provide a potential biomarker for prognostic assessment in SFTS and further supports the 

critical role of the tryptophan metabolism pathway in disease progression and lethal mechanisms. 

Based on significant differences in metabolite profiles, we developed a prognostic model for the 

severity of SFTS. Through rigorous screening, phenyllactic acid and isocitric acid were identified as 

key predictor metabolites, demonstrating an impressive area under the curve (AUC) of 0.85 in a 

random forest model applied to the test set. This model exhibited a sensitivity of 75% and specificity 

of 90% (Figure 6c), surpassing other combination of metabolites. These two metabolites were found 

to exhibit abnormal elevation in SFTS patients, with a more pronounced effect observed in those who 

succumbed (Figure 6a), indicating a close association with the metabolic state following viral 

infection. Due to their ease of detection and strong potential for clinical application, phenyllactic acid 

and isocitric acid serve as valuable references for early intervention and prognostic evaluation. 
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5. Conclusions 

In summary, this study utilized non-targeted serum metabolomics to reveal the comprehensive 

metabolic profile of SFTS patients. By comparing longitudinal and cross-sectional data, we explored 

the metabolic alterations in fatal SFTS cases and constructed a metabolic prognostic model. Our 

findings indicate significant alterations in several metabolic pathways in fatal cases, including 

sphingolipid metabolism, biosynthesis of phenylalanine, tyrosine, and tryptophan, primary bile acid 

biosynthesis, and phenylalanine metabolism. These significant metabolic changes may offer new 

targets for the diagnosis and treatment of SFTS, such as S1P, LPC, and bile acids. The metabolic 

prognostic model could aid in the early clinical diagnosis of severe cases, facilitating rapid and 

effective treatment. 
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serum of SFTS patients; Table S4. The performance of single biomarkers; Table S5. The performance of the 

biomarker combination models; Table S6. Associations between prognostic biomarkers and patient parameters; 

Figure S1. Cross-validation plot with a permutation test repeated 200 times of the PLS-DA score plot; Figure S2. 

A hierarchical clustering heatmap of 88 annotated differential serum metabolites comparing the fatal and 

survival groups in SFTS patients; Figure S3. Comparison of metabolic profile at three stages of disease 

progression in SFTS patients; Figure S4. The trends of potential biomarkers in the test set of patients; Figure S5. 

ROC curves for Age, BUN, and APTT; Figure S6. The patient scores derived from the metabolic prognostic model 
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