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Abstract: Diffusion models have emerged as a powerful class of generative models, achieving state-
of-the-art performance in image, audio, and video synthesis. However, their widespread adoption
is hindered by high computational costs, slow inference times, and memory-intensive training. In
response, numerous techniques have been proposed to enhance the efficiency of diffusion models
while maintaining or improving generation quality. This survey provides a comprehensive review
of recent advances in efficient diffusion models. We categorize these approaches into four key areas:
(1) accelerated sampling methods, which reduce the number of function evaluations required for
inference; (2) efficient model architectures, including lightweight U-Net and transformer variants;
(3) knowledge distillation and model compression techniques, such as progressive distillation and
pruning; and (4) hybrid generative frameworks that integrate diffusion models with alternative
paradigms like GANs and VAEs. Additionally, we discuss open challenges, including the trade-offs
between sampling speed and quality, memory-efficient training strategies, and real-time deployment
on edge devices. We highlight promising research directions, such as adaptive sampling, hardware-
aware optimizations, and self-distilling diffusion models. By providing a structured overview of
efficiency-focused advancements, we aim to guide future research toward making diffusion models
more practical, scalable, and accessible for real-world applications.

Keywords: diffusion models; efficient sampling; model compression; knowledge distillation; gen-
erative modeling; deep learning; hybrid generative models; Latent Diffusion; accelerated inference

1. Introduction

Generative models have witnessed remarkable progress in recent years, with diffusion models
emerging as a dominant framework for generating high-quality synthetic data across various modal-
ities, including images, audio, and video. These models operate by simulating a diffusion process,
where data is gradually transformed into Gaussian noise and then reconstructed through a learned
denoising process [1]. Due to their strong theoretical foundations and empirical success, diffusion
models have outperformed alternative generative approaches, such as Generative Adversarial Net-
works (GANSs) and Variational Autoencoders (VAEs), in terms of sample quality, diversity, and training
stability [2]. As a result, they have been widely adopted in applications such as text-to-image synthesis,
inpainting, super-resolution, molecular generation, and speech synthesis [3]. Despite their impressive
capabilities, diffusion models suffer from significant computational inefficiencies [4]. One of the
primary challenges is the high cost of inference, as generating a single sample requires performing
hundreds or even thousands of forward passes through a neural network. This iterative sampling pro-
cess makes diffusion models orders of magnitude slower than GANs, which can generate samples in a
single forward pass [5]. The high computational demands not only limit real-time applications but also
make it challenging to deploy these models on edge devices with limited resources [6]. Furthermore,
training diffusion models is also resource-intensive, requiring substantial GPU memory and extended
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training times, which restricts accessibility to large-scale organizations with high-performance com-
puting infrastructure [7]. To address these limitations, researchers have explored multiple strategies to
enhance the efficiency of diffusion models [8]. These approaches can be broadly categorized into four
key areas:

*  Accelerated Sampling Techniques: Methods such as improved numerical solvers, stochastic
samplers, and adaptive step-size schedules aim to reduce the number of inference steps while
maintaining sample quality [9].

e  Efficient Model Architectures: Lightweight network architectures, low-rank approximations, and
pruning techniques help reduce memory and computation requirements without significantly
compromising performance [10,11].

¢ Knowledge Distillation and Model Compression: Techniques such as teacher-student training,
distillation of diffusion processes into simpler models, and progressive denoising help create
compact yet effective diffusion models [12].

e  Hybrid and Alternative Frameworks: Combining diffusion models with GANs, VAEs, or implicit
models seeks to leverage the strengths of each approach to achieve both efficiency and high-quality
generation [13].

This survey provides a comprehensive review of recent advancements aimed at improving the
efficiency of diffusion models [14]. We systematically categorize and analyze existing methods, high-
lighting their advantages, limitations, and trade-offs [15]. Additionally, we discuss emerging trends
and potential future research directions in the quest to make diffusion models more computationally
feasible while preserving their generative power. By presenting a structured overview of efficiency-
improving techniques, this survey aims to serve as a valuable resource for researchers and practitioners
working on generative modeling [16]. We hope that our insights will inspire further innovations in the
field, ultimately enabling the broader adoption of diffusion models in practical applications, including
real-time content generation, interactive Al systems, and resource-constrained deployments [17].

2. Background

Diffusion models are a class of generative models based on iterative denoising processes, inspired
by non-equilibrium thermodynamics [18]. They have gained significant attention due to their ability
to generate high-quality samples across multiple domains, including images, audio, and 3D data. In
this section, we provide an overview of the fundamental principles of diffusion models, including the
forward and reverse diffusion processes, mathematical formulations, and key developments leading
to their widespread adoption [19].

2.1. Forward and Reverse Diffusion Processes
Diffusion models operate by defining a Markov chain that gradually transforms a data distribution

into a simple prior distribution, typically Gaussian noise [20]. This transformation, known as the
forward process, is formulated as a series of Gaussian transitions:

q(xt | x¢—1) = N (xt; /1 = Bixe—1, BiI), (1)

where x; represents the corrupted data at timestep t, and ; is a variance schedule controlling the noise
level [21]. To generate samples, the model learns to approximate the reverse process, which denoises the
data step by step [22]:

po(xe—1 | xt) = N (xe—1; g (xt, 1), Zo (x, 1)) 2)

The neural network parameterized by 6 predicts either the noise component or the clean data sample,
enabling gradual reconstruction of realistic data from pure noise.
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2.2. Training Objective

Diffusion models are trained by minimizing a variant of the variational lower bound (ELBO),
which can be reformulated as a noise prediction task. The common training objective simplifies to:

Exyet|lle = eo(xi,t)[12], 3)
where € represents the injected noise, and ey is the model’s predicted noise [23].

2.3. Key Variants of Diffusion Models

Several variants of diffusion models have been proposed to improve their effectiveness and

efficiency:

¢  Denoising Diffusion Probabilistic Models (DDPMs): The original formulation, introduced by
Ho et al., demonstrating the capability of diffusion-based generative models [24].

*  Denoising Diffusion Implicit Models (DDIMs): A more efficient variant that enables determin-
istic sampling with fewer steps [25].

*  Score-Based Generative Models (SGMs): Leveraging score matching and stochastic differential
equations to generalize diffusion processes.

¢ Latent Diffusion Models (LDMs): Reducing computational complexity by applying diffusion in
a lower-dimensional latent space instead of pixel space [26].

2.4. Challenges and Computational Bottlenecks
Despite their success, diffusion models suffer from key limitations, including:

¢  Slow Inference: Generating a single sample requires multiple forward passes, making real-time
applications difficult.
e  High Memory Requirements: Large neural networks with deep architectures demand significant

GPU resources [27].

*  Training Complexity: Optimizing diffusion models requires substantial computational power

and time, limiting accessibility [28].

Understanding these challenges is essential before exploring the various efficiency improvements
proposed in recent literature [29]. In the next section, we delve into techniques aimed at accelerating
sampling, reducing model size, and improving overall efficiency while maintaining generation quality
[30].

3. Efficient Diffusion Models

While diffusion models have demonstrated remarkable generative capabilities, their high compu-
tational cost remains a major limitation [31]. Generating high-quality samples requires performing
hundreds or thousands of neural network evaluations, making inference slow and expensive [32]. Ad-
ditionally, training diffusion models is memory-intensive and computationally demanding, restricting
their scalability and deployment in real-world applications [33]. To address these challenges, several
techniques have been proposed to improve the efficiency of diffusion models [34]. These approaches
can be broadly classified into four categories: accelerated sampling methods, efficient model architec-
tures, knowledge distillation and model compression, and hybrid generative frameworks [35]. In this
section, we discuss each of these approaches in detail [36].

3.1. Accelerated Sampling Methods

One of the primary inefficiencies of diffusion models stems from the large number of timesteps
required to generate high-quality samples [37]. Traditional sampling techniques rely on slow iterative
denoising, making them impractical for real-time applications [38]. Various strategies have been
developed to accelerate sampling, including:
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3.1.1. Denoising Diffusion Implicit Models (DDIMs)

Denoising Diffusion Implicit Models (DDIMs) introduce a non-Markovian diffusion process
that enables deterministic sampling [39]. By modifying the reverse diffusion process, DDIMs allow
for significantly fewer sampling steps while maintaining high sample quality. The key idea is to
reparameterize the reverse process to allow direct sampling of intermediate timesteps:

xt = Vaxg + /1 — &e, 4)

where &; is a function of the noise schedule. This formulation allows skipping multiple timesteps,
leading to a substantial reduction in the number of function evaluations [40].

3.1.2. Higher-Order Solvers and ODE-Based Methods

Score-based generative models can be interpreted as solving a stochastic differential equation
(SDE) or an ordinary differential equation (ODE) [41]. Several works have proposed using advanced
numerical solvers, such as:

*  Euler and Heun Methods: Basic numerical solvers that reduce the number of function evaluations
[42].

*  Runge-Kutta Methods: Higher-order solvers that improve accuracy with fewer steps [43].

e  Exponential Integrators: Methods that approximate the evolution of the diffusion process more
efficiently [44].

These techniques reduce the number of sampling steps while maintaining high fidelity in gener-
ated samples.

3.1.3. Latent Diffusion Models (LDMs)

Latent Diffusion Models (LDMs) address computational inefficiencies by applying diffusion in a
lower-dimensional latent space rather than pixel space [45]. This reduces the overall complexity of
the model while preserving high-quality generation [46]. LDMs utilize a pretrained autoencoder to
encode images into a compact representation, where the diffusion process is performed:

zr = /wzg + /1 — we, )

where z; represents the latent representation at timestep ¢ [47]. By operating in the latent space, LDMs
achieve significant speedups with reduced memory consumption [48].

3.2. Efficient Model Architectures

Another approach to improving diffusion model efficiency is designing lightweight neural net-
work architectures that reduce computational overhead [49]. Some key advancements include:

3.2.1. Lightweight U-Net Architectures

Most diffusion models utilize U-Net-based architectures for denoising, but their size and depth
make them computationally expensive [50]. Several modifications have been proposed to optimize
these networks:

¢ Channel Reduction: Using fewer feature channels to decrease memory and computation [51].

*  Depthwise Separable Convolutions: Reducing parameter count while maintaining expressive
power [52].

*  Grouped Convolutions: Improving efficiency by processing different feature groups separately
[53].

3.2.2. Transformer-Based Diffusion Models

Recent research has explored using transformer architectures in place of CNNs for diffusion
models [54]. While transformers offer superior scalability and global receptive fields, they can be
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computationally heavy [55]. Optimized transformer variants, such as sparse attention mechanisms
and low-rank approximations, have been proposed to balance efficiency and performance [56,57].

3.3. Knowledge Distillation and Model Compression

Diffusion models can be made more efficient by compressing large models into smaller, faster
ones. Several techniques have been explored:

3.3.1. Teacher-Student Knowledge Distillation

Knowledge distillation transfers knowledge from a large teacher model to a smaller student model
[58]. This can be done by training the student to match the teacher’s intermediate representations
or final outputs [59]. Distillation-based approaches have successfully reduced model size while
preserving sample quality [60].

3.3.2. Progressive Distillation

Progressive distillation reduces the number of sampling steps by training a student model to
mimic the teacher’s results in fewer steps [61]. This allows for significant speedups without sacrificing
visual fidelity [62].

3.3.3. Quantization and Pruning

Quantization reduces memory and computational costs by representing model parameters with
lower precision (e.g., 8-bit or 4-bit representations) [63]. Pruning removes redundant parameters,
reducing the overall model size [64]. These techniques have been applied to diffusion models to
improve inference efficiency [65].

3.4. Hybrid Generative Models

Combining diffusion models with other generative frameworks has led to novel architectures
that leverage the strengths of each approach [66]. Some notable examples include:

3.4.1. Diffusion-GAN Hybrids

Diffusion models excel in sample quality but are slow, while GANs generate samples quickly
but may suffer from mode collapse [67]. Hybrid models combine diffusion models with adversarial
training to achieve both efficiency and high-quality generation [68].

3.4.2. Variational Diffusion Models

Integrating VAEs with diffusion models enables efficient latent-space generation, reducing com-
putational requirements while retaining expressive power [69].

3.4.3. Score-Based Energy Models

Score-based energy models combine diffusion models with energy-based learning, leading to
improved sampling efficiency and stability [70].
3.5. Summary of Efficiency Improvements

Table 1 provides a summary of the different efficiency improvements and their impact on sampling
speed, memory usage, and model complexity [71].

Table 1. Comparison of different efficiency improvements for diffusion models.

Method Speedup | Memory Reduction | Quality Trade-off
DDIMs High Low Minimal
Latent Diffusion Models High High Minimal
Transformer-Based Models | Medium Medium Variable
Knowledge Distillation High High Some
Hybrid Generative Models | Medium Medium Variable
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In the next section, we discuss open challenges and future research directions in improving the
efficiency of diffusion models [72].

4. Open Challenges and Future Directions

Despite significant progress in improving the efficiency of diffusion models, several challenges
remain [73]. Many of the existing acceleration techniques introduce trade-offs, such as reduced sample
quality, increased training complexity, or loss of flexibility [74]. In this section, we highlight key open
challenges and potential future research directions that can further enhance the efficiency, scalability,
and applicability of diffusion models [75].

4.1. Balancing Speed and Sample Quality

One of the most critical challenges in efficient diffusion models is the trade-off between sampling
speed and output quality [76]. While methods such as DDIMs and higher-order solvers reduce the
number of sampling steps, they may introduce artifacts or loss of fine details [77]. Future research
could explore adaptive sampling techniques that dynamically adjust step sizes based on sample
complexity, ensuring high-quality outputs while minimizing computational cost [78].

4.2. Memory-Efficient Training Strategies

Training diffusion models remains highly resource-intensive, often requiring high-end GPUs
with large memory capacities. Techniques such as gradient checkpointing, low-precision training (e.g.,
mixed-precision or 8-bit training), and efficient tensor operations could be further explored to reduce
memory footprint. Additionally, distributed training strategies tailored for diffusion models could
help scale training to larger datasets without excessive resource requirements.

4.3. Lightweight Model Architectures

While efforts have been made to design more efficient U-Net and transformer architectures, there
is still room for improvement [79]. Future work could investigate:

¢ Neural Architecture Search (NAS) for discovering optimal architectures that balance efficiency
and performance [80].

*  Sparse and low-rank models to reduce the number of parameters while preserving expressive
power [11].

¢  Modular diffusion networks that adapt dynamically based on computational constraints [81].

Developing novel architectures tailored for mobile and edge-device deployment remains an open
challenge [82].

4.4. Fast and Adaptive Sampling Methods

Existing accelerated samplers often rely on fixed schedules and step sizes, which may not be
optimal for all data distributions [83]. Future research could focus on:
e  Adaptive step-size solvers that adjust the number of steps dynamically during sampling.
*  Neural samplers that learn efficient sampling trajectories conditioned on the target distribution
[84].
e  Hybrid samplers combining stochastic and deterministic steps for improved trade-offs [85].
These approaches could further reduce inference time while maintaining or even improving
sample quality [86].

4.5. Efficient Conditional Diffusion Models

Many real-world applications, such as text-to-image generation (e.g., Stable Diffusion) and
controllable synthesis, require conditioning mechanisms [87]. However, incorporating conditioning
signals often increases model complexity [88]. Future directions could include:

e  Efficient cross-attention mechanisms for reducing the cost of conditioning inputs [89].
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*  Sparse and structured conditioning to optimize memory and computation usage.
*  Multi-modal conditioning that balances flexibility and efficiency [90].

Improving conditional diffusion models could make them more practical for applications like
real-time interactive generation [91].

4.6. Self-Distillation and Online Learning

Current distillation methods require training a separate student model, which adds extra overhead
[92]. Self-distillation techniques, where a model distills its knowledge progressively during training,
could be a promising direction [93]. Additionally, online learning frameworks that allow diffusion
models to adapt to new data distributions without full retraining could improve efficiency in dynamic
environments.

4.7. Hybrid Generative Frameworks

While diffusion models have shown superior sample quality compared to GANs and VAEs,
combining them with other generative paradigms could lead to more efficient models [94]. Future
research could explore:

* Diffusion-GAN hybrids that leverage adversarial training for faster sampling [95].
*  Energy-based diffusion models that integrate energy-based learning to improve stability [96].
* Latent-variable diffusion models that operate in more compact representation spaces [97].

These hybrid approaches could bridge the gap between efficiency and high-quality generation
[98].

4.8. Hardware Optimization and Deployment
Efficient deployment of diffusion models on real-world hardware remains an open challenge [99].

Future directions could include:

®  Custom hardware accelerators optimized for diffusion-based generative models [100].
¢  Optimization for mobile and edge devices through model compression and pruning [101].
e  Efficient inference frameworks such as TensorRT, ONNX, and specialized AI chips [102].

Optimizing diffusion models for hardware efficiency could significantly expand their applicability.

4.9. Theoretical Understanding of Efficiency in Diffusion Models

Most efficiency improvements have been driven by empirical findings rather than theoretical
insights [103]. A deeper theoretical understanding of diffusion processes, sampling dynamics, and
optimization techniques could guide the development of more principled and generalizable efficiency
improvements [104]. Key research directions include:

*  Understanding the fundamental speed limits of diffusion-based sampling [105].

e  Mathematical analysis of sampling trajectories and optimal noise schedules [106].

¢  Connections between diffusion models and other generative paradigms for theoretical unifica-
tion [107].

Developing a stronger theoretical foundation could lead to more efficient and interpretable
diffusion models [108].

4.10. Summary of Future Directions

Table 2 summarizes key open challenges and future research opportunities [109].
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Table 2. Summary of open challenges and future research directions in efficient diffusion models.
Challenge Potential Research Directions
Sampling Speed vs [110]. Quality Adaptive solvers, learned step sizes, hybrid samplers
Training Efficiency Gradient checkpointing, mixed-precision, distributed training
Model Architecture NAS, sparse networks, efficient transformers
Conditional Diffusion Optimized attention, sparse conditioning, multi-modal inputs
Distillation and Learning Self-distillation, progressive training, online adaptation
Hybrid Generative Models GAN-diffusion hybrids, energy-based models, latent-space diffusion
Hardware and Deployment AT accelerators, mobile optimization, inference frameworks
Theoretical Foundations Optimal sampling theory, diffusion-GAN connections

Addressing these challenges will be crucial for making diffusion models more practical, scalable,
and efficient [111]. In the next section, we conclude our survey with a summary of key findings and
final thoughts [112].

5. Conclusion

Diffusion models have emerged as a powerful class of generative models, capable of producing
high-quality samples across various domains, including images, audio, and video [113]. Their theo-
retical foundations, training stability, and expressive capabilities have made them a dominant choice
for generative modeling [114]. However, their practical deployment remains challenging due to high
computational costs, slow inference times, and memory-intensive training requirements [115]. In this
survey, we explored various approaches aimed at improving the efficiency of diffusion models [116].
We categorized these methods into four major areas: (1) accelerated sampling techniques, (2) efficient
model architectures, (3) knowledge distillation and model compression, and (4) hybrid generative
frameworks. Accelerated sampling methods, such as DDIMs, higher-order solvers, and latent diffu-
sion models, have significantly reduced the number of function evaluations required for generation
[117]. Lightweight architectures and transformer-based diffusion models have provided alternative
ways to optimize computational efficiency [118]. Knowledge distillation, pruning, and quantization
techniques have enabled compression of large diffusion models into smaller, faster variants [119].
Finally, hybrid approaches that integrate diffusion models with GANs, VAEs, or energy-based methods
have demonstrated promising results in improving both efficiency and sample quality [120]. Despite
these advancements, several challenges remain open [121]. The trade-off between sampling speed
and generation quality continues to be a major bottleneck, requiring more adaptive and theoretically
grounded approaches [122]. Training diffusion models efficiently remains an expensive process, and
further research into memory-efficient training techniques and distributed learning strategies is neces-
sary [123]. Moreover, optimizing diffusion models for real-time deployment on mobile devices, edge
computing systems, and specialized hardware accelerators is an exciting research direction that could
expand their practical usability [124].

Looking forward, the field of efficient diffusion models is rapidly evolving, with new techniques
emerging at a fast pace. Advances in theoretical understanding, novel architectural designs, and
improved training paradigms will continue to push the boundaries of what is possible with diffusion-
based generative models. We hope that this survey serves as a valuable resource for researchers and
practitioners, inspiring further innovations that make diffusion models more accessible, scalable, and
efficient.
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