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Abstract: Intrusion Detection Systems (IDS) are crucial module of cybersecurity which is designed to
identify unauthorized activities in network environments. Traditional IDS, on the other hand, have a
number of problems, such as high rates of inaccurate positives and inaccurate negatives and a lack
of explainability that makes it difficult to provide adequate protection. Furthermore, centralized
IDS approaches have issues with interpretability and data protection, especially when dealing with
sensitive data. In order to overcome these drawbacks, we provide Federated XAI IDS, a brand-new
explainable and privacy-preserving IDS that improves security and interpretability by fusing Federated
Learning (FL) with Shapley Additive Explanations (SHAP). Our approach enables IDS models to be
collaboratively trained across multiple decentralized devices while ensuring that local data remains
securely on edge nodes, thus mitigating privacy risks. The Artificial Neural Network (ANN)-based
IDS is distributed across four clients in a federated setup using the CICIoT2023 dataset, with model
aggregation performed via FedAvg. The proposed method demonstrated efficacy in intrusion detection,
achieving 88.4% training and 88.2% testing accuracy. Furthermore, SHAP was utilized to analyze
feature importance, providing a deeper comprehension of the critical attributes influencing model
predictions. Transparency is improved and the model becomes more dependable and interpretable
thanks to the feature importance ranking that SHAP produces. Our findings demonstrate how well
Federated XAI IDS handles the two problems of explainability and privacy in intrusion detection. This
dissertation accelerates the major establishment in the creation of safe, interpretable, and decentralized
intrusion detection systems (IDS) for contemporary cybersecurity applications by utilizing federated
learning and explainable AI (XAI).

Keywords: Cyber Security; FedXAIIDS(Federated Explainable IDS); Intrusion Detection System(IDS);
XAI(Explainable AI); (SHAP)SHapley Additive Explanaition; ANN

1. Introduction
In the digital age, cybersecurity — the practice of safeguarding frameworks, networks, and

confidential data from unwelcome inspection, distress, emerging cyber hazards as well [1], has become
the essential battle line. Since people, organizations, and governments grow more interconnected and
dependent on digital infrastructure, it is crucial to guarantee data availability, confidentiality, and
integrity. In order to safeguard their valuable assets and lower risks, companies need to proactively
create multilayer protection measures in response to evolving cyber threats. Within the ever-changing
field of cybersecurity, safeguarding private data from a continuously increasing spectrum of cyber
attacks is essential. In order to discover and prevent undesirable activity in network traffic, intrusion
detection systems (IDS) are essential. They are the first line of defense against malicious attacks.
An intrusion detection system (IDS) scans over malicious activity or unauthorized access through
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analysis of traffic dynamics, applications and session behavior, and signature-based features [2]. By
emphasizing anomalies and recognized attack patterns, IDS alerts help organizations promptly address
possible security risks.

In this new age of interconnected world, approximately 50% of startups disclose experiencing
information theft, underscoring the urgency of robust IDS solutions in institutional security frame-
works [3]. The integration of Deep Learning (DL), Machine Learning (ML) along with IDS has acquired
substantial traction due to their superior classification accuracy. Nonetheless, conventional machine
learning-based intrusion detection systems encounter considerable privacy and security vulnerabili-
ties owing to their dependence on centralized data storage and transmission [4]. Additionally, The
challenges of developing effective IDS systems include the substantial quantity of network infor-
mation and the prevalence of imbalanced datasets, where minor yet critical attack types are often
underrepresented [5].

Higher performance in interpreting complicated patterns within network data is made possible
by recent developments in deep learning, especially the adoption of transformer models, which
have showed significant prospects in sequencing frameworks and anomaly discovery[6]. Intrusion
Detection Systems (IDS), which are crucial for locating and preventing existing network intrusions, are
particularly affected by this.

However, there are serious concerns regarding confidentiality, with the use of deep learning-based
IDS frameworks, especially when models are trained using private network traffic data. These issues
can be effectively addressed by Federated Learning (FL), which permits for decentralized coordinated
infrastructure refinement while maintaining the privacy and security of confidential information [7].
This research introduces a federated learning-based intrusion detection system that employs artificial
neural networks as the local-end prediction system and incorporates SHapley Additive Explanations
in order to enhance comprehensibility The decentralized training approach guarantees confidentiality
while facilitating visibility in detecting threats to networks. This piece of literature is the expanded
version of the initial manuscript previously laid out in[8]. Explainable artificial intelligence (XAI) has
significantly enhanced intrusion detection systems (IDS) by providing accountability, understanding,
and integrity in decision-making. Traditional IDS models, particularly those based on deep learning,
frequently function as "black boxes," complicating security analysts’ understanding of their predictions.
SHapley Additive ExPlanations (SHAP) has emerged as a powerful XAI approach, offering feature
attribution scores that elucidate the influence of different input characteristics on the conclusions
of the models. Employing SHAP in Intrusion Detection Systems aids researchers and practitioners
in identifying significant attack patterns, reducing false positives, and enhancing model robustness.
Research, including [9], demonstrates that SHAP provides equitable and consistent feature importance
ratings, making it an ideal method for enhancing the interpretability of IDS. Moreover, SHAP facilitates
feature selection and optimization, hence enhancing generalization and efficiency in IDSs that are
constructed deploying FL, where privacy preservation is paramount [10]. Utilizing SHAP in FL-based
IDS confidentiality security insights while safeguarding raw data, hence maintaining user privacy and
delivering actionable knowledge for cyber defense.

The CICIoT2023 dataset[11], a real-world dataset with contemporary attack types, has been used
for the experiments. The system’s performance and generalizability in a range of intrusion scenarios,
as well as its capacity to identify known and new network threats, has been the main areas of focus.
In addition, the integration of explainable artificial intelligence (XAI) techniques, particularly SHAP,
will provide essential transparency within the IDS framework. This comprehensibality constitutes an
essential towards instilling assurance in AI-driven frameworks, specifically when legal and regulatory
compliance is a factor in the deployment of network security solutions. The new study builds on
the foundations laid by focusing on explainable AI and federated learning, while the earlier work
concentrated on these conventional approaches. The goal is to improve the privacy, efficacy, and
interpretability of IDS solutions. This research builds upon prior work with the CIC_IDS_2018
dataset, where the challenge of imbalanced datasets was addressed by developing an IDS using
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balanced data and exploring unorthodox categorization methods incorporating the Dendritic Cell
Algorithm (DCA) [12]. In order to improve transparency and interpretability and facilitate a more
thorough comprehension of model decisions, explainable artificial intelligence (XAI) approaches must
be incorporated into the IDS framework. By elucidating the reasoning behind certain results, this
transparency contributes to the development of trust in AI-driven frameworks, which is crucial for
fulfilling legal and regulatory obligations.

This research attempts to tackle important network security issues by designing and deploying a
sophisticated Intrusion Detection System (IDS) that integrates Explainable Artificial Intelligence (XAI),
Federated Learning (FL), and Machine Learning (ML). This study aims to achieve the following goals:

1. To assess the efficacy of an Intrusion Detection System utilizing cutting-edge Machine Learn-
ing methodologies, Federated Learning for decentralized training, and Explainable Artificial
Intelligence for enhanced interpretability and transparency.

2. To minimize computational overhead by utilizing Federated Learning, which allows decentralized
data processing and eliminates the need for central data aggregation.

3. To reduce the dangers of single points of failure and centralized data breaches by implementing a
distributed, node-based architecture in Federated Learning.

4. To ensure the reliability and trustworthiness of IDS predictions by employing Explainable AI,
which provides insights into model decisions and fosters greater user trust in automated systems.

This research work has been structured in the following manner: Section-2 highlights relevant research
on XAI, Federated Learning, and IDS. Section-3 details the proposed methodology, including model
architecture and SHAP-based interpretability. Section-4 discusses the experimental setup, along with
results and analysis. Section-5 discusses key findings, and Section-6 finishes with contributions and
future study directions.

2. Literature Review
This sections analyzes a number of significant research works that paved the way for the proposed

framework. The growing popularity popularity of Internet of Things(IoT) networks has generated
considerable security concerns, prompting the creation of effective IDSs. Recent improvements in FL
represents a viable approach, facilitating decentralized learning while safeguarding data privacy. This
section examines current research initiatives that combine FL with DL.

Table 1. A tabular representation of the FL-based infrastructure and its corresponding challenges.

Authors FL technique used
(Yes/No) Framework

Sinh-Ngoc et al. [13] No Employed CNN architecture for the categorization.

Kanimozhi et al. [7]. No The applied classifiers for detecting network assaults include NB, K-Nearest Neighbor, RF,
Adaboost with Decision Tree, SVM, and ANN. These classifiers specifically target the detection
of Botnet network assaults.

Bertoli et al. [14] Yes Constructed a multilayered autonomous FL architecture that integrates an autoencoder with
an energy flow classifier, enabling enhanced feature extraction and classification performance
while maintaining privacy in a distributed learning environment.

Toldinas et al. [15] No The initial processing technique that combines a predetermined number of network flow fea-
ture records. Three independent ML methodologies: , Federated transfer learning, Traditional
transfer learning, and Federated learning were used on NIDS employing deep learning for
image classification.

Markovic et al. [16] Yes Implemented a Federated Learning (FL) model that utilizes the shared model incorporating RF,
enabling learning across multiple consumers collaboratively while safeguarding the privacy
of informations.

Lazzarini et al. [17]. Yes Developed a IDS incorporating FL, a shallow ANN as the regional framework and FedAvg as
the aggregation method.
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Torre et al. [18] initiated an IDS built on FL adopting a 1D Convolutional Neural Network
(CNN) to secure IoT networks. This framework enhances privacy through Diffie–Hellman Key
Exchange, Dynamic Security, and Homomorphic Cryptography. Almadhor et al. [19] introduced a
Federated Deep Neural Network (FDNN) for detecting and preventing Distributed Denial-of-Service
(DDoS) integrating Explainable Artificial Intelligence (XAI) in IoT networks. Their methodology
employed FDNNs trained across three client devices over multiple rounds without sharing raw data.
Furthermore, XGBoost was used with SHapley Additive ExPlanations (SHAP) for selecting features,
which improved model comprehensibility This method successfully preserved robustness, scalability,
and confidentiality while obtaining high detection accuracy. To further optimize FL-based IDSs,
Alsaleh et al. [20] offered a semi-distributed FL model that clusters IoT devices and assigns a cluster
head to reduce communication overhead. The model incorporated Bidirectional LSTM (BiLSTM),
Long Short-Term Memory (LSTM), and Wasserstein Generative Adversarial Networks (WGAN) to
enhance intrusion detection, particularly focusing on DDoS attacks in scenarios with scarce resources.
Their evaluation implementing CICIoT2023 dataset revealed BiLSTM as the most efficient model due
to its optimized size. Testing on, WUSTL-IIoT-2021, Edge-IIoTset, and BoT-IoT, further confirmed its
superior detection accuracy. An unorthodox Secure and Authenticated structure built on Federated
Learning-employing Blockchain (SA-FLIDS) was initiated by Bensaid et al. [21] to enhance security in
advanced healthcare systems that are enabled by fog-IoMT. Experimental results using CICIoT2023
and EdgeIIoTset datasets demonstrated the framework’s strong resilience against adversarial attacks
while preserving confidentiality of the data and deducting the expenses of communication. Sun et
al. [22] addressed the dilemma of attack class dispersion in FL-based IDSs by proposing FedMADE, an
adaptive collaborative framework. FedMADE groups IoT gadgets based on the trends on the traffic
and incorporates local approaches according to their significance to entire evaluation. This approach
significantly improved the accuracy of minority attacks classification to 71.07% compared to existing
FL methods for non-IID data. Additionally, FedMADE exhibited robustness against poisoning attacks
while incurring only a 4.7% latency overhead (5.03 seconds per iteration) contrasting with FedAvg,
without uploading computational weigh on IoT gadgets. These research works collectively underlines
the efficacy of FL-based IDSs in intensifying cybersecurity within IoT networks. The combination of
deep learning simulations, privacy-preserving techniques, and blockchain technology shows great
promise for protecting modern IoT systems. However, issues such as communication overhead, data
disparity, and adversarial resilience remain critical areas for further research and optimization.

Deep Learning (DL) and Machine Learning (ML) have become foundational approaches for con-
structing IDS, significantly improving network confidentiality by spotting various attacks, anomalies
as well. Several ML techniques are widely used for their robustness and efficiency. Support Vector
Machine (SVM) is valued for handling high-dimensional data, while Decision Tree (DT) offers sim-
plicity and interpretability. Random Forest (RF), an association of decision trees, amplifying efficacy
and deduces overfitting. Naïve Bayes (NB) provides probabilistic classification with efficiency in large
datasets, and K-Nearest Neighbor (KNN) excels in instance-based learning for classification tasks.
In DL, CNN are highly efficient at pooling out complex hierarchical patterns from structured data,
while Gradient Boosting (GB) and another updated version of GB, Extreme Gradient Boosting (XGB)
iteratively improve weak learners for superior predictive performance. These techniques [13,23,24]
have demonstrated considerable success in advancing IDS capabilities. However, evolving cyber
threats pose ongoing challenges, including scalability, real-time detection, and addressing imbalanced
data, which require further research and innovation to enhance future IDS frameworks.

Apart from traditional techniques, bio-inspired frameworks have been quite effective for IDS.
Though there have been fewer works in this genre, some have proved the significance of bio-inspired
techniques, particularly in anomaly detection. In article [25], a bi-layer structure, with the initial
stage eliminates recursive patterns incorporating RF-based methodology (RF-RFE) and optimization
approaches that are inspired from biological style, is employed in the following layer. In article [26],
the support vector machine was optimized using Whale Optimization (WO), Grey Wolf Optimization
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(GWO), and Firefly Optimization (FO) algorithms. However, the detection rates of the irregularities
by the optimized methodologies did not demonstrate optimal efficiency. In article [27], a novel
combination of Deep Learning and the Dendritic Cell Algorithm (DeepDCA) was integrated into the
framework alongside a Neural Network that normalises itself (SNN). However, the implementation
utilized a relatively outdated and less diverse dataset.

In addition to traditional methods, FL has become a popular architecture for developing Intrusion
Detection Systems (IDS), offering distributes training without allowing access to original data. Various
studies have explored different FL-based approaches, including RF-based federated learning [16],
shallow Artificial Neural Networks (ANN) with FedAvg for aggregation [17], CNN and RNN [28],
and combinations of Multi-Layer Perceptron (MLP) with CNN [29]. Euclides et al. introduced
the CICIoT2023 dataset, which has been widely used in experiments involving ML algorithms for
classification [11]. Notable studies include [30], which proposed a convoluted structure depending
on LSTM for attack detection, and Fray et al., who explored DL models with different stages and
functions that activates the model [31]. Maryam et al. deployed unbiased ML algorithms for detecting
irregularities and [32], emphasizing fairness and accuracy in model predictions. These efforts highlight
the evolution of IDS using FL and advanced machine learning techniques.

3. Methodology
In this section of the article will represent the methodology of the entire research work. This

section highlights the research approach, encompassing dataset compilation, data analysis, prior
processing, and the proposed framework.

The sections includes the architectural depiction of the proposed framework in the Figure 3. The
illustration depicts the process of a federated learning model. It specifies the procedure of initialising a
server, disseminating the global framework to local end nodes, changing the model regionally, and
transmitting revisions back to the server. The server subsequently incorporates the updates with
the Federated Averaging (FedAvg) mechanism. The diagram illustrates the allocation of models and
upgrades to features between the server and remote nodes, where multiple users (Client-1, Client-2,
Client-3, and Client-4) utilise their datasets to enhance the effectiveness of the models. The remainder
of this section will proceed to explore the suggested framework in in greater depth.

3.1. Dataset Compilation

In this work, the CICIoT2023 [11] data set was used for the proposed model. The dataset was
created to meet the growing demand for reliable security analytics applications in real-world IoT
contexts. The experimental setup comprises of a complete IoT architecture with 105 networked devices
that simulate a genuine operational environment. Within this network, 33 different cyberattacks were
carried out, each meticulously planned to mirror the changing threat landscape of IoT security. In order
to provide diversity and authenticity in attack situations, compromised IoT devices were intentionally
used as hostile entities, attacking other IoT devices in the network. The dataset encompasses a wide
range of harmful activities, with the goal of serving as a standard for the research community in
developing and assessing intrusion detection and mitigation solutions. The assault diversion is shown
in the Figure 1.
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Mirai-Based
attacks

DDoS
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Web-Based
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Brute Force
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CICIoT2023

Figure 1. Pictorial representation of the experimented dataset with the attack categories.

The recorded attacks are systematically categorized into seven major classes, each representing a
fundamental aspect of IoT security threats:

I. Distributed Denial of Service (DDoS): Large-scale flooding assaults meant to harm mul-
tiple IoT gadgets simultaneously to exhaust computational resources and disrupt network
availability.

II. Denial of Service (DoS): Single-source attack tactics designed to overwhelm a specific IoT
device, making it unresponsive to valid queries.

III. Reconnaissance (Recon): Passive and active network scanning techniques are used to obtain
information on vulnerable IoT devices, services, and network setups.

IV. Web-based Attacks: Exploitation of IoT web interfaces using security holes in IoT web
interfaces, including SQL infiltration, command insertion, and cross- website scripting to gain
unauthorized access.

V. Brute Force Attacks: Systematic password-guessing attacks targeting IoT authentication
mechanisms to compromise credentials and gain illicit control over devices.

VI. Spoofing Attacks: Identity forging techniques, such as ARP and IP spoofing, are used to mas-
querade as legitimate IoT organizations in order to eavesdrop or manipulate communications.

VII. Mirai-based Attacks: Malware-driven attacks use the Mirai botnet to exploit vulnerabili-
ties in IoT device security, allowing for large-scale infections and subsequent coordinated
cyberattacks.

This dataset is a crucial asset for cybersecurity research, allowing for the creation and testing of
advanced machine learning models, intrusion detection systems, and anomaly detection approaches
designed specifically for IoT security applications.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 March 2025 doi:10.20944/preprints202503.1902.v1

https://doi.org/10.20944/preprints202503.1902.v1


7 of 21

3.2. Data Investigation & Pre-Processing

In this level of the suggested approach, the dataset is thoroughly inspected if the data are in
eligible format to use. In order to get an impactful work, the datasets were pre-processed in several
steps. The details of the pre-processing is visually represented in the Figure 2 as well as described
below,

Figure 2. Detailed steps of data preparation for the proposed experiment.

3.2.1. Data Cleaning

Proper handling of missing values is important because they could result in errors during model
building. Missing rows or columns had been either removed. If the input data contains the same thing
multiple times, this can skew the learning outcome. Duplicate values were checked and removed from
the dataset.

3.2.2. Data Type Correcting

In order to ensure precise calculations, inconsistent data types (e.g., numeric columns erroneously
saved as strings) were transformed to their correct formats.

a. Data Standardizing : Standardizing the data is a transformation process that increases the
integrity and quality of the data that you can use in future calculations. For this study, we
used Z-index standardization 1. This method normalizes the data to have zero mean and unit
variance.

Z =
X − µ

σ
(1)

Here:

• Z denotes the standardised merit,
• X signifies the initial data instance,
• µ represents the mean value of the data,
• σ indicates the standard deviation of the results.
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b. Categorical Encoding : Any machine learning algorithm requires numerical input to perform
mathematical operations, so categorical encoding converts categorical data, which contains
arbitrary labels or discrete components, into a numerical format. For the encoding technique,
we used label encoding in this study. Unlike one hot encoding, label encoding preserves the
ordinal nature of categorical variables, allowing for interaction between dummy variables while
providing meaningful numeric representation of the synonyms. Treats Categorical Features
as a variable to keep the categorical variables interpretability and thus helps in efficient data
processing

z zz
z

1. Server initialization

2. Distributing the server model to
local nodes

3. Adapting the server architecture's
feature on the local end

4. Sending the local architectures'
feature updates to the the server

5. Integrating the local feature
updates using fedavg

Server Model Distribution
Local model feature updates

Local Nodes Dataset

Loading the data

Client-1 Client-2 Client-3 Client-4

Figure 3. Proposed architectural diagram of FedXAIIDS.

3.2.3. Class-Conversion

A robust representation of class conversion is essential in machine learning, as it simplifies
the model derived from complex datasets, enhances model performance, and facilitates improved
interpretability. The data is simplified and expedited for training due to consolidating classes, which
aggregates like assault types. This approach addresses data imbalance by integrating minor attack
types into a more significant segment. Moreover, it decreases bias and enhances generalization.
Simulataneousy, it aligns with purpose of real-world intrusion detection and increaases the significance
of cyber-security. CICIoT2023 was classified into, Benign, DDoS, DoS, Mirai, Recon and Other.

3.2.4. Dataset Splitting

At the last step of pre-processing, the selected data sets are partitioned into two segments. One
part is training, consuming 80 percentage of the data and another part is evaluation test, consuming 20
percentage of the data.
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3.3. Proposed Framework

Our extensive research work experimented with both ML and DL models with two different
datasets. We have implemented explainable DL model on CICIoT2023 dataset. The description of the
models are given below.

x

Load Dataset

Model Evaluation

Classifying attacks 

Data Preprocess Test Data

Train Data 

ANN integrated with
SHAP

Local Model Training

Figure 4. Visual representation of local architecture.

I FedXAIIDS: The proposed Federated Learning (FL) model for intrusion detection leverages
a distributed architecture, incorporating the devices attached to the local end. These gadgets
regionally implement the frameworks on their particular dataset. Later the computing device
at the server end integrates these trained schemes. For this study, the CICIoT2023 dataset was
distributed across four clients to simulate a federated environment. The following stages define
the operation of the proposed model:

(a) Initialization : In FL, initialization implies the procedure of establishing the initial
universal model prior to the commencement with instruction across various client
endpoints. A centralised computer establishes a global architecture and disseminates
it to all collaborating peers. Upon acquiring the global framework each client initiates
local training utilising their specific data.

(b) Local Model Training : Locally model development in FL denotes the proce-
dure whereby every collaborating client (e.g., smartphone or tablet edge nodes) au-
tonomously trains a replica of the global framework on its own dataset prior to transmit-
ting updates to the central server. Every client develops a distinct ANN architecture and
explains its results utilising SHAP. ANN is modelled after the architecture of the human
brain, utilising layers of interconnected neurones. In this work, the ANN framework is
fabricated as following:

i. Input Layer : The input layer in an Artificial Neural Network (ANN) with 64
neurons represents the 64 features of the dataset, where each neuron processes a
corresponding feature. Using the activation strategy of ReLU 2,

f (X) = max(0, X) (2)

, it passes only positive values, ensuring efficient learning and faster convergence.
Each feature has calculated weighted inputs, while making negative inputs be
0. Due to its simplicity and non-linearity, ReLU allows for sparse activation
and, therefore, scalability, making it suitable for more complicated tasks such as
intrusion detection.

ii. Dropout Layer : Two dropout layer with a fifty percent reduction in rate helps to
reduce over fitting by randomly adjusting fifty percent of the units used for input
to zero throughout each training iteration.This technique minimises reliance on
single neurones, allowing the network to learn more robust properties.

iii. Hidden Layer : The model has two hidden layers to improve learning and
feature abstraction. The first hidden layer is made up of 128 neurones with
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ReLU activation, which allows the network to record complicated patterns
using non-linear transformations. The second hidden layer has 64 neurones and
uses ReLU activation to reduce dimensionality while retaining abstraction for
better computational efficiency. This layered structure strikes a compromise
between learning capacity and processing speed, allowing for deeper pattern
identification and more effective generalisation.

iv. Output Layer : The layer that is designed to provide outcomes, contains six
neuronal cells, each corresponding to one of the six categories of interest in
the classifying task. The activation function of softmax is employed, trans-
forming the output into the distribution of probabilities among every category.
The softmax function guarantees the sum of probabilities is 1 and enables the
model to simply make the most likely class prediction and give more probability
to whatever output is more relevant, which makes it popular for multi-class
classification problems.

v. Loss Function : This framework employs a loss function approach that is know
as categorical cross-entropy, quantifying the disparity between the one-hot
actual label distribution and the projected distribution of probabilities. This
method is used where there is multi-class classification, and it punishes when
the prediction is neither close to the labels nor close to the class by solving a
loss of negative log likelihood of the actual class. Preventing this loss can help
tune the model so it is more left-leaning or right-leaning, which improves its
accuracy, resulting in predicted probability aligning better to actual labels.

vi. Optimizer : This model employs an optimizing techniques of Adam with a
primary learning ratio of 0.001 to take advantage of momentum and adaptation
rates for improved training. Adam adapts the learning rates for each individual
parameter, which leads to quicker convergence and resilient performance across
different types of issues, making it frequently employed in deep learning models.

(c) Global Aggregator : The centralised computer consolidates modifications to the model
from each client to formulate a unified framework utilising Federated Averaging (Fe-
dAvg) 3. This method involves the server systematically calculating a weighted average
of the clients’ model parameters (weights) according to the magnitude of their local
data. FedAvg enhances the global model by integrating varied local insights while
maintaining data privacy, establishing it as a fundamental technique in FL [33]. The
calculation as follows [33],

θ(t+1) =
K

∑
k=1

nk
N

θ
(t)
k (3)

where:

• θ(t+1) represents the new global model parameters,
• K denotes the number of participating clients,
• nk is the number of local training samples for client k,
• N = ∑K

k=1 nk is the total number of training samples across all selected clients,

• θ
(t)
k represents the locally updated model parameters from client k at round t.

(d) Explainable AI (XAI) Integration : Explainability is critical for understanding complex
machine learning models. SHAP is a model-agnostic approach that provides local
interpretability by assigning importance values to individual features. In this study,
the Python library of SHAP was used to calculate SHAP values for a test trial subset.
Kernel SHAP, suitable of explaining deep learning models, was employed to inter-
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pret predictions and ensure efficient, representative interpretability of the CICIoT2023
dataset [9].

4. Experimental Result
The research experiment was conducted on a portable computer with the configuration features

of, Core i5 processor, 4GB main memory, 2.4GHz CPU momentum, and running Microsoft Windows
11. The programming environment utilized Jupyter Notebook and Kaggle Notebook, both with Python
3. Furthermore, the Colab at Google acted as a program framework for conducting the experiment.

4.1. Evaluative Metric

The properties employed for the suggested framework in this investigation include precision,
accuracy, recall, alongside F1-score.
ACCURACY : The metric that indicates how frequently an ML approach correctly projects an outcome
is known as Accuracy. The division of the number of correct predictions by the total estimation
quantity, is implemented to evaluate the accuracy.

ACCURACY =
TP1 + TN2

FP3 + TP + FN4 + TN
(4)

RECALL : The capacity to identify all pertinent instances within the dataset is termed as Recall. It
is defined as the ratio of actual positives to the total of true positives and false negatives in the genre of
mathematics.

RRCALL =
TP

FN + TP
(5)

PRECISION : the metric that represents the efficacy of an ML approach is known as Precision. It
reflects the accuracy of the algorithms’ positive predictions. It is the ratio of genuine successes to the
total number of positive projections.

PRECISION =
TP

FP + TP
(6)

F1-SCORE : the balanced average of accuracy and recall is termed as F1-SCORE. Accuracy and Recall
are aggregated into a single statistics in order to enhance the comprehension of the efficacy of the
suggested framework.

F1 − SCORE =
2 × RECALL × PRECISION

PRECISION + RECALL
(7)

LOSS : A function called a loss function is a formula of algebra that quantifies the variance between
the envisioned results derived from the computerised model and the actual target values. The loss
function evaluates the degree to which the forecasts of the model align with the factual information.

Loss = −
n

∑
i=1

C

∑
c=1

yi,c log(ŷi,c) (8)

4.2. Prior Experiment

In both Model-A and Model-B, the first layer was meant to extract 20 attributes from the dataset’s
original 79. This layer was crucial in determining the value of various traits and choosing the most
significant ones.

The Deep Component Analysis (DCA) layer in the prior two experimental models refined these
features by reducing the 39 retrieved features to ten. This phase improves the ability of the framework
to concentrate on the most important elements, hence increasing overall performance and efficiency.
The third model, on the other hand, took a completely different strategy. Rather than a two-stage
feature extraction, 15 features were recovered directly from the dataset’s 79 original attributes. This
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direct extraction simplifies the model but may lead to differences in feature interpretability and
performance compared to the more refined multi-stage process of initial two models.
After the feature extraction process, the models proceed to learning and evaluation using the classifiers
discussed in the previous section. It is evident that first framework successfully acquired knowledge of
categories of assaults during the learning session, achieving a remarkable learning percentage of 100%.
Even the testing phase performance is incredible with a 100% detection rate, showing that the model is
extremely accurate and resilient to intrusions. Similar to the previous models, the third framework is
extremely efficient with a 100% learning and assessment rate, reflecting its accuracy and reliability
in identifying diverse classifications attacks. The images, Figures 5, 6, and 7, depict the results of our
previous research employing precision, recall, and F1-score, correspondingly. Here, we can see that
although this model has a slightly lower success of 99% in both the learning and assessment elements,
it is still admirable. Although marginally less effective than Models A and B, Model-C maintains a
high level of accuracy and remains a competitive choice for intrusion detection. The reason behind
to switch to our current study is that the previous experiment demonstrated a high probability of
overfitting issue of the frameworks as well as the inefficient data quality as the experimented dataset
was published quite a long time ago.
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Figure 5. Precision Graph of Experiment-1.
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Figure 6. Recall Graph of Experiment-1.
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Figure 7. F1-Score Graph of Experiment-1.
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4.3. FedXAIIDS

The envisioned infrastructure built on FL was allocated among four end-users along with the global
framework. The findings have been assembled from the local ends utilizing the aggregator strategy
of FedAvg. The resultant products produced during the testing cycles are illustrated in Figure 9. The
suggested method has an 88.4% achievement rate during the training session and an 88.2% achievement
rate during the testing session. SHAP was employed in order to clarify the significance of the attributes
on the anticipated output. Figure 10 illustrates the influence of the characteristics during both the training
and testing sessions utilising SHAP. The attributes are represented on the Y- axis ranking from high
influence to low influence. The SHAP data are represented on the X-axis . Each dot depicted in the
illustration indicate each data of integrated feature. In this context, red signifies a larger importance, while
blue denotes the opposite. The illustrated components exert a greater influence on our IDS compared to
the other dataset characteristics.

The Figure 8, depicts the accuracy trends of a federated learning model across many clients
over a number of repetitions. The horizontal axis depicts the quantity of repetitions, indicating the
advancement of training, and the vertical-axis represents accuracy in percentage, representing the
model’s performance. Every curve in the figure displays an individual client, showcasing how their
respective models improve over time. The accuracy deviations could be attributed to differences in
data distributions, local model updates, or computing resources. The graph illustrates the converging
behavior of federated learning, demonstrating whether all clients attain equal performance levels or
if there are differences because of disparities in data or system-related constraints. This approach is
important in federated learning because it helps evaluate model consistency across clients, discover
potential fairness issues, and ensure that no client suffers a large disadvantage during training. The
detected trends can also be used to inform optimization tactics, such as modifying learning rates,
enhancing aggregation approaches, and dealing with straggler effects.
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Figure 8. Accuracy trends of federated learning clients over 5 iterations.
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Figure 9. Accuracy Graph of Training and Testing phase of FedXAIIDS.
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Figure 10. Graph representation of SHAP interpretation.
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5. Discussion
The results of this study facilitate multiple promising avenues for the advancement of Intrusion

Detection Systems (IDS). Notwithstanding the remarkable outcomes attained with the proposed Feder-
ated Learning (FL) framework, the scalability of these models in extensive, heterogeneous contexts
continues to offer a significant issue. Future research may concentrate on enhancing federated learning
methodologies to accommodate larger datasets, fluctuating network conditions, and immediate threats.
This necessitates improving the effectiveness of model aggregation and exploring edge computing
solutions to mitigate latency and bandwidth challenges. The existing methodology can be enhanced
by investigating hybrid models that integrate various classifiers, perhaps incorporating deep learning
frameworks, to augment detection precision, resilience, and adaptation to emerging attack vectors. The
incorporation of explainable AI (XAI) methodologies, such as SHAP, has enhanced model transparency;
nevertheless, the development of more advanced techniques could yield even more comprehensive and
accessible insights, aiding security analysts in interpreting and responding to the system’s decisions
more effectively. Moreover, although the federated approach provides robust privacy-preserving
features, supplementary techniques like differential privacy or secure multi-party computation could
be integrated to enhance security without undermining the system’s performance. Mitigating the
persistent issue of class imbalance in real-world datasets is a vital area for enhancement, with sophisti-
cated data augmentation tactics and semi-supervised learning methodologies offering avenues for
improved model training in data-deficient contexts. Furthermore, the real-time implementation of
these IDS systems is essential, particularly in dynamic networks, where the capacity to evolve as well
as to react to emerging threats instantaneously is crucial. This necessitates the integration of online
learning techniques and the development of adaptive models that progress in tandem with evolving
assault patterns. Ultimately, the incorporation of these sophisticated IDS methodologies with current
cybersecurity frameworks, including SIEM systems and firewalls, could augment their efficacy within
a comprehensive security ecosystem, facilitating an integrated detection and response mechanism.
Further exploration of these research domains indicates that the integration of federated learning,
explainable artificial intelligence, and sophisticated feature refinement techniques offers significant
potential for developing robust, scalable, and transparent intrusion detection system solutions that can
more effectively safeguard distributed networks against an expanding array of cybersecurity threats.

The findings in the Table 2 show that FedXAIIDS is effective in addressing major intrusion
detection concerns, particularly in terms of privacy preservation, explainability, and decentralized
learning. While the recommended framework attained training efficacy of 88.4% and testing efficacy
of 88.2% on the CICIoT2023 dataset, which is lower than some centralized approaches, its advan-
tages in security, interpretability, and real-world applicability make it a superior choice for modern
cybersecurity frameworks. FedXAIIDS, unlike standard IDS models, uses Federated Learning (FL)
to ensure that sensitive network data is dispersed across edge devices. This considerably decreases
the danger of data breaches and ensures compliance with severe privacy requirements such as GDPR
(General Data Protection Regulation). While other high-accuracy models rely on centralized datasets
(e.g. Adamova et al. [100% accuracy] and Saadouni et al. [99.83% accuracy]), they compromise
data privacy by requiring data aggregation at a central location [34]. Most existing models prioritize
accuracy but lack interpretability, making them unsuitable for real-world security operations where
decision transparency is crucial. FedXAIIDS integrates SHAP to rank feature importance, allowing
cybersecurity professionals to understand attack patterns rather than treating the IDS as a black box. In
contrast to high-accuracy systems (e.g. Saadouni et al. and Gulzar et al.) [35,40], which do not explain
why specific attacks are categorized, FedXAIIDS delivers reliable insights, allowing for speedier and
more informed decision-making. Traditional IDS models perform well on particular datasets, but they
frequently suffer in real-world dynamic situations. FedXAIIDS, with its federated learning architecture,
learns continually from remote sources, allowing it to adapt to new attack patterns. Centralized models
such as Ji et al. (98.27% accuracy) rely on static datasets, making them vulnerable to zero-day attacks
and adversarial manipulations [38]. Despite lower accuracy, FedXAIIDS surpasses traditional IDS in
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security resilience. It reduces single points of failure, a significant risk in centralized architectures,
and integrates smoothly with SIEM systems and firewalls to improve threat detection capabilities.
Future advancements, such as distinct confidentiality and safe collective manufacturing, will increase
its robustness. While FedXAIIDS does not achieve the highest accuracy, its balance of security, privacy,
explainability, and adaptability makes it a more practical and scalable IDS solution for real-world
deployment. Future advances in federated model aggregation, machine learning with adaptive fea-
tures, and hybrid deep learning have the potential to significantly improve its detection performance,
driving it to the forefront of next-generation IDSs.

Table 2. Comparison of the evaluation of Experiment-2 with current studies on CICIoT2023.

Ref Year Federated
Learning
applied

Method Dataset Performance Metrics (Accu-
racy)

A. Adamova
et al.

2025 Yes The methodology employs
Federated Learning (FL) to
enhance IoT security by pre-
dicting violations as well as
instantaneous evaluation of
their cruciality, evaluated on
SQL injection and brute force
attacks.

CICIOT2023 100% accuracy in predicting
SQL injection attacks and
98.25% accuracy for brute
force attacks [34].

R. Saadouni et
al.

2025 No It incorporates transfer learn-
ing with the beforehand-
trained infrastructure
of VGG16 for capturing
features, along with an
optimizer known as Binary
Greylag Goose Optimiza-
tion (BGGO) for feature
selection, and a Random
Forest classifier for attack
detection [35].

CICIOT2023 99.41% accuracy for mul-
ticlass classification and
99.83% for binary classifica-
tion

H. Chen et al. 2025 No The proposed architecture
boosts intrusion recognition
in IoT environments utilizing
synaptic structures transfor-
mation from 1D to 3D. Ad-
ditionally, imbalance catego-
rization issue is mitigated im-
plement a unique strategy for
calculating loss. The exper-
iment was executed on CI-
CIDS2017, and CICIoT2023.

CIC_IDS_2017, CI-
CIOT2023

demonstrated a 88.48% on CI-
CIDS2017 and a 97.69% on CI-
CIoT2023. [36].

J. J. Shirley et
al.

2025 No The proposed methodology
integrates an Autoencoder
(AE) for feature extraction
and dimensionality reduc-
tion with a Feedforward Neu-
ral Network (FNN) for in-
trusion classification in IoT
networks. A bi-layer bal-
ancing scheme boosts iden-
tification of minority attacks
categories, while the AE-
FNN fusion improves accu-
racy and adaptability to dy-
namic threats [37].

CICIOT2023 99.55% accuracy in binary
classification and 90.91% in
multiclass classification.

R. Ji et al. 2025 No The proposed methodology
introduces a hybrid intrusion
detection approach for Cyber-
Physical Systems (CPSs), in-
tegrating AdaBoost and RF
atechniques to leverage the
advantages of not only bag-
ging but also boosting tech-
niques [38].

CICIOT2023 accurateness of 98.27%, with
recall, precision, and F1-score
all at 0.98, a false detection
rate of 0.0006, along with a
testing time of 0.1563 seconds
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Sabrina et al. 2025 Yes The methodology proposes
a secure gradients exchange
algorithm for distributed in-
trusion identification in 6G
environments, using FL, safe-
guarded multi-party process-
ing, as well as blockchain
to ensure privacy. The
model, combining CNN1D
and multi-head attention.

CICIOT2023 accuracy of 79.92%, 77.41%
identification percentage,
and 2.55% of false detection
rate [39].

Qawsar et al. 2025 Yes The methodology intro-
duces a hybrid learning
infrastructure for identifying
violations in IIoT environ-
ments, integrating CNN,
LSTM, GRU, and Capsule
Networks (CN) [40].

CICIoT 2023 and
UNSW_NB15

accuracy of 99.82% on CI-
CIoT 2023 and 95.55% on
UNSW_NB15

Damián et al. 2025 No The methodology presents
a Federated Learning-based
IDS using a 1D CNN for
detecting violations in IoT
infrastructures, incorpo-
rating privacy techniques
like Differential Privacy,
Diffie–Hellman Key Ex-
change, and Homomorphic
Encryption [18].

TONIoT, IoT23, Bo-
TIoT, CICIoT2023,
CICIoMT2024,
RTIoT2022, and
Edge-IIoT

The model achieved an
estimated accurateness of
97.31%, across the various
datasets [].

Ahmad et al. 2024 Yes This study proposes using
Federated Deep Neural Net-
works (FDNNs) and Explain-
able AI (XAI) to diagnose and
mitigate DDoS assaults in IoT
environments, ensuring pri-
vacy through federated learn-
ing. By integrating XGBoost
with SHAP for feature selec-
tion [19].

DDoS-ICMP_Flood
, DDoS-UDP_Flood
, DDoS-TCP_Flood
, DDoS-
PSHACK_Flood ,
DDoS-SYN_Flood ,
DDoS-RSTFINFlood
, DDoS-
SynonymousIP_Flood
, DoS-UDP_Flood ,
DoS-TCP_Flood , and
DoS-SYN_Flood.

the model achieved 99.78%
accuracy

JiaMing et al. 2025 Yes NIDS-FGPA combines feder-
ated learning with Paillier en-
cryption for secure training
and uses GSA to optimize
updates and reduce over-
head. A 2D-CNN-BiGRU
model handles incomplete
data.

Edge-IIoTset and CI-
CIoT2023

Edge-IIoTset and CICIoT2023
datasets exhibit accurateness
of 94.5% and 99.2%, corre-
spondingly [41].

FedXAIIDS 2025 Yes Federated XAI
IDS(FedXAIIDS) uses
Federated Learning (FL)
and SHAP for a privacy-
preserving, explainable
IDS. An ANN is distributed
across four federated clients,
aggregated with FedAvg on
CICIoT2023.

CICIOT2023 SHAP enhances interpretabil-
ity, and the model achieved
88.4% training and 88.2% test-
ing accuracy, balancing secu-
rity, privacy, and trustworthi-
ness.

6. Conclusion
This research introduces Federated XAI IDS, a novel explainable and privacy-preserving intrusion

detection system (IDS) that effectively addresses the key limitations of traditional IDS, including
high inaccurate positive detection and inaccurate negative detection percentage, lack of interpretabil-
ity, as well as data privacy concerns. By leveraging Federated Learning (FL) and Shapley Additive
Explanations (SHAP), our approach ensures that IDS models can be collaboratively trained across
multiple decentralized devices while preserving data privacy by keeping sensitive information on
local edge nodes. This decentralized paradigm mitigates security risks associated with centralized
approaches, making it a commendatory solution for modern network circumstances. The proposed IDS
framework utilizes an Artificial Neural Network (ANN) distributed across four federated clients, with
model aggregation performed using FedAvg on the CICIoT2023 dataset. The output highlighted the
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efficiency of this approach, achieving 88.4% training accuracy and 88.2% testing accuracy. Additionally,
SHAP was incorporated to analyze feature importance, providing a transparent perspective of the
most significant attributes influencing model predictions. The ability to rank and interpret feature
significance enhances model trustworthiness and supports cybersecurity professionals in making
informed decisions. Though our accuracy is lower than other current studies, SHAP analysis ensured
the efficiency our result. Our findings demonstrate that the Federated XAI IDS successfully tackles
two critical challenges in intrusion detection: explainability and privacy preservation. By integrating
federated learning with explainable AI (XAI), this work offers a scalable, interpretable, and secure IDS
solution suited for modern cybersecurity applications, particularly in scenarios where sensitive data
cannot be centrally shared. Moreover, by promoting more open and responsible intrusion detection
framework, the proposed architecture advances the field of reliable AI-driven security solutions.
Promising direction for investigation comprise investigating sophisticated federated aggregation tac-
tics, integrating adaptive learning methodologies, and refining model performance in various network
contexts. Furthermore, realistic implementation and assessment in extensive, diverse networks will
confirm the resilience and applicability of our methodology. We may move closer to a cybersecurity
environment that is more safe, considerate of privacy, and interpretable by further improving and
developing federated explainable AI-based IDS solutions.

Abbreviations
This document employs the following abbreviations:

IDS Intrusion Detection System
FL Federated Learning
XAI eXplainable AI
AI Artificial Intelligence
SHAP SHapley Additive exPLanation
ML Machine Learning
DL Deep Learning
ANN Artificial Nueral Network
FedXAIIDS Federated Explainable IDS
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
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approach for network intrusion detection using multistage deep learning image recognition. Electronics 2021,
10, 1854.

16. Markovic, T.; Leon, M.; Buffoni, D.; Punnekkat, S. Random forest based on federated learning for intrusion
detection. In Proceedings of the IFIP international conference on artificial intelligence applications and
Innovations. Springer, 2022, pp. 132–144.

17. Lazzarini, R.; Tianfield, H.; Charissis, V. Federated learning for IoT intrusion detection. Ai 2023, 4, 509–530.
18. Torre, D.; Chennamaneni, A.; Jo, J.; Vyas, G.; Sabrsula, B. Toward Enhancing Privacy Preservation of a

Federated Learning CNN Intrusion Detection System in IoT: Method and Empirical Study. ACM Transactions
on Software Engineering and Methodology 2025, 34, 1–48.

19. Almadhor, A.; Altalbe, A.; Bouazzi, I.; Hejaili, A.A.; Kryvinska, N. Strengthening network DDOS attack
detection in heterogeneous IoT environment with federated XAI learning approach. Scientific Reports 2024,
14, 24322.

20. Alsaleh, S.; Menai, M.E.B.; Al-Ahmadi, S. A Heterogeneity-Aware Semi-Decentralized Model for a
Lightweight Intrusion Detection System for IoT Networks Based on Federated Learning and BiLSTM.
Sensors 2025, 25, 1039.

21. Bensaid, R.; Labraoui, N.; Ari, A.A.A.; Saidi, H.; Emati, J.H.M.; Maglaras, L. SA-FLIDS: secure and
authenticated federated learning-based intelligent network intrusion detection system for smart healthcare.
PeerJ Computer Science 2024, 10, e2414.

22. Sun, S.; Sharma, P.; Nwodo, K.; Stavrou, A.; Wang, H. FedMADE: Robust Federated Learning for Intrusion
Detection in IoT Networks Using a Dynamic Aggregation Method. In Proceedings of the International
Conference on Information Security. Springer, 2024, pp. 286–306.

23. Al-Imran, M.; Ripon, S.H. Network intrusion detection: an analytical assessment using deep learning and
state-of-the-art machine learning models. International Journal of Computational Intelligence Systems 2021,
14, 200.

24. Arslan, R.S. FastTrafficAnalyzer: An efficient method for intrusion detection systems to analyze network
traffic. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 2021, 12, 565–572.

25. Tonni, Z.A.; Mazumder, R. A Novel Feature Selection Technique for Intrusion Detection System Using
RF-RFE and Bio-inspired Optimization. In Proceedings of the 2023 57th Annual Conference on Information
Sciences and Systems (CISS). IEEE, 2023, pp. 1–6.

26. Haque, N.I.; Khalil, A.A.; Rahman, M.A.; Amini, M.H.; Ahamed, S.I. Biocad: Bio-inspired optimization
for classification and anomaly detection in digital healthcare systems. In Proceedings of the 2021 IEEE
International Conference on Digital Health (ICDH). IEEE, 2021, pp. 48–58.

27. Aldhaheri, S.; Alghazzawi, D.; Cheng, L.; Alzahrani, B.; Al-Barakati, A. DeepDCA: novel network-based
detection of IoT attacks using artificial immune system. Applied Sciences 2020, 10, 1909.

28. Rashid, M.M.; Khan, S.U.; Eusufzai, F.; Redwan, M.A.; Sabuj, S.R.; Elsharief, M. A federated learning-
based approach for improving intrusion detection in industrial internet of things networks. Network 2023,
3, 158–179.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 March 2025 doi:10.20944/preprints202503.1902.v1

https://doi.org/10.20944/preprints202503.1902.v1


21 of 21

29. Liu, W.; Xu, X.; Wu, L.; Qi, L.; Jolfaei, A.; Ding, W.; Khosravi, M.R. Intrusion detection for maritime
transportation systems with batch federated aggregation. IEEE Transactions on Intelligent Transportation
Systems 2022, 24, 2503–2514.

30. Yaras, S.; Dener, M. IoT-Based Intrusion Detection System Using New Hybrid Deep Learning Algorithm.
Electronics 2024, 13, 1053.

31. Becerra-Suarez, F.L.; Tuesta-Monteza, V.A.; Mejia-Cabrera, H.I.; Arcila-Diaz, J. Performance Evaluation
of Deep Learning Models for Classifying Cybersecurity Attacks in IoT Networks. In Proceedings of the
Informatics. MDPI, 2024, Vol. 11, p. 32.

32. Khan, M.M.; Alkhathami, M. Anomaly detection in IoT-based healthcare: machine learning for enhanced
security. Scientific Reports 2024, 14, 5872.

33. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep
networks from decentralized data. In Proceedings of the Artificial intelligence and statistics. PMLR, 2017,
pp. 1273–1282.

34. Adamova, A.; Zhukabayeva, T.; Mukanova, Z.; Oralbekova, Z. Enhancing internet of things security against
structured query language injection and brute force attacks through federated learning. International Journal
of Electrical & Computer Engineering (2088-8708) 2025, 15.

35. Saadouni, R.; Gherbi, C.; Aliouat, Z.; Harbi, Y.; Khacha, A.; Mabed, H. Securing smart agriculture networks
using bio-inspired feature selection and transfer learning for effective image-based intrusion detection.
Internet of Things 2025, 29, 101422.

36. Chen, H.; Wang, Z.; Yang, S.; Luo, X.; He, D.; Chan, S. Intrusion detection using synaptic intelligent
convolutional neural networks for dynamic Internet of Things environments. Alexandria Engineering Journal
2025, 111, 78–91.

37. Shirley, J.J.; Priya, M. An Adaptive Intrusion Detection System for Evolving IoT Threats: An Autoencoder-
FNN Fusion. IEEE Access 2025.

38. Ji, R.; Selwal, A.; Kumar, N.; Padha, D. Cascading Bagging and Boosting Ensemble Methods for Intrusion
Detection in Cyber-Physical Systems. Security and Privacy 2025, 8, e497.

39. Sakraoui, S.; Ahmim, A.; Derdour, M.; Ahmim, M.; Namane, S.; Dhaou, I.B. FBMP-IDS: FL-based blockchain-
powered lightweight MPC-secured IDS for 6G networks. IEEE Access 2024.

40. Gulzar, Q.; Mustafa, K. Enhancing network security in industrial IoT environments: a DeepCLG hybrid
learning model for cyberattack detection. International Journal of Machine Learning and Cybernetics 2025, pp.
1–19.

41. Wang, J.; Yang, K.; Li, M. NIDS-FGPA: A federated learning network intrusion detection algorithm based on
secure aggregation of gradient similarity models. PloS one 2024, 19, e0308639.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 March 2025 doi:10.20944/preprints202503.1902.v1

https://doi.org/10.20944/preprints202503.1902.v1

	Introduction
	Literature Review
	Methodology
	Dataset Compilation
	Data Investigation & Pre-Processing
	 Data Cleaning
	Data Type Correcting 
	Class-Conversion 
	Dataset Splitting 

	Proposed Framework

	Experimental Result
	Evaluative Metric
	Prior Experiment
	FedXAIIDS

	Discussion
	Conclusion
	References

