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Article

Massive Wave Solutions to the Einstein-Maxwell
Equations
Álvaro G. López

Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n,
28933 Móstoles, Madrid, Spain; alvaro.lopez@urjc.es

Abstract: We use gauge fixing to derive Proca equation from Maxwell’s classical electrodynamics in
curved spacetime. Further restrictions on the gauge yield the Klein-Gordon equation for scalar bosons.
The self-coupling of electromagnetic fields through spacetime curvature originates the inertia of wave
packets for non-null field solutions, suggesting an electromagnetic origin of mass. We study the weak
field limit of these solutions and prove that the electrovacuum can behave as a charged nonlinear
optical medium.

Keywords: classical electrodynamics; Einstein-Maxwell equations; general relativity; geometrodynamics;
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1. Introduction
Electromagnetic fields pervade spacetime everywhere. However, spacetime curvature is rarely

taken into account when studying classical electromagnetism. In part, this is due to the fact that the
incorporation of Einstein-Hilbert action to classical electrodynamics yields high-dimensional nonlinear
partial differential equations, where exact solutions are scarce and difficult to find [1].

In his seminal paper G. Y. Rainich considered the spacetime curvature produced by electromag-
netic fields, and found a set of four conditions for a Lorentzian manifold to admit an interpretation as
exact non-null electrovacuum solution in general relativity [2]. These conditions were later dubbed
the Rainich conditions [3]. Rainich conditions identify spacetime and the electrodynamic fields, to the
point that the entire theory can be expressed in terms of a scalar field named the complexion, and the geo-
metric properties of spacetime. This idea has lead other authors to “dispense" with the electromagnetic
gauge field and express the dynamics of the electromagnetic fields in terms of purely spatiotemporal
concepts, such as the metric and the Riemann curvature tensor. This unified mathematical framework
is known nowadays as geometrodynamics [3].

However, the inverse function theorem suggests that the reverse theory might be achievable as
well, allowing to express all the spatiotemporal concepts in terms of electromagnetic fields. Such
fields would then be the fabric of spacetime, producing its twist and tension. In this way, Einstein’s
general theory of relativity simply states that the intrinsic geometry of spacetime (e.g. Ricci curvature)
is tantamount to the electromagnetic stress. This line of reasoning suggests that the electromagnetic
gauge field is the fundamental “substance". Then, Einstein’s equation simply expresses the tautological
nature of spacetime, ensuring at the same time the frame independent nature of the physical law that
describes its evolution, and the universal character of such fundamental principle.

It has recently been proved by using the concept of electromagnetic mass [4] that Newton’s laws
can be derived in the macroscopic limit as an approximation to Maxwell’s classical electrodynamics
with sources in flat spacetime [5]. However, in the microscopic realm, extended electrodynamic objects
can experience very violent time-delayed tidal self-forces, arising from the retarded Liénard-Wiechert
potentials. These self-interactions yield nonlinear oscillations with zitterbewegung frequency via the
Hopf bifurcation mechanism [6], generating electromagnetic pilot waves [7], quite similar to those
recently found in hydrodynamic quantum analogs [8].
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In the present work, we derive the typical wave equations used to describe the electrodynamics
of microscopic charged bodies (e.g. the Klein-Gordon equation) from the Einstein-Maxwell equations.
We introduce a new spatiotemporal gauge that decouples the nonlinear partial dynamical equations of
the four-potential as a set of four linear partial differential equations corresponding to vector massive
bosons. In this manner, we provide further evidence that inertia has an electromagnetic origin and
explain at the same time the usefulness of introducing other putative scalar fields to break symmetries
spontaneously [9], mimicking techniques used in the study of superconductivity [10].

2. Maxwell Equation in Curved Spacetime
We now introduce the fundamental nonlinear dynamical equations of the theory and express them

explicitly to draw some general conclusion concerning the potential of Einstein-Maxwell equations
to describe fundamental electrodynamic invariants such as charge and rest mass, in terms of pure
electrovacuum.

2.1. The Lagrangian Density

We consider as the fundamental action of the present field theory Maxwell’s classical electrovac-
uum expressed in an arbitrary coordinate system, and the Einstein-Hilbert action

L =
√
−g

{
1

2κ
R − 1

4
FµνFµν

}
, (1)

where gµν is the metric tensor with signature (+,−,−,−) convention, R is the curvature scalar, Fµν

is the Faraday tensor and κ = 8πG/c4. This Lagrangian density assumes a single gauge field self-
interacting through the curvature of spacetime, allowing light rays to bend as a consequence of its own
energy and stress. This Lagrangian density yields two fundamental dynamical equations [3] for the
gauge field

∇µFµν = 0 (2)

∇µ(∗F)µν = 0, (3)

where the operator ∇µ represents the covariant derivative, which in the present work is represented
by means of the Levi-Civita connection, which preserves the metric tensor and is torsion-free. Here we
have also introduced the Hodge dual tensor ∗F, which can be written as

(∗F)µν =
1
2
√
−gεµνσρFσρ, (4)

expressed in terms of the Levi-Civita symbol εµνσρ. Therefore, Equation (3) can be written as the
Bianchi identity εµνσρ∇νFσρ = 0, as well.

The first equation is the Ampère-Maxwell law, while the latter is the Gauss-Faraday law, both
expressed in curved spacetime. These two equations describe the spatiotemporal evolution of the
electromagnetic fields. They essentially state that such fields have zero covariant divergence, and thus
they cannot be created nor destroyed as a whole, and also that the change in time of the time-like
components generates vorticity of the space-like dual components around the former.

Finally, the Einstein-Hilbert action yields the well-known Einstein equation, which allows to
relate the dynamics and curvature of spacetime to the energy content of the fundamental field Fµν, in
the form

Gµν =
8πG

c4 Tµν, (5)
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where Gµν = Rµν − Rgµν/2 and Tµν is the electromagnetic stress-energy tensor, which in Belinfante
and Ronsfeld’s symmetrized form [11], can be written as

Tµν =
1

µ0

(
Fµτ Fτ

ν − 1
4

FρσFρσgµν

)
. (6)

Assuming that spacetime is simply connected, Poincaré’s lemma [12] entails to write the Faraday
tensor in terms of the four-potential Aµ, as follows

Fµν = ∇µ Aν −∇ν Aµ. (7)

We shall utilize the four-potential in the forthcoming sections to derive the wave equations of the
present work.

2.2. Apparent Sources

To gain further insight into the structure of Maxwell equations in curved spacetime, we explicitly
write them in terms of the electric and the magnetic fields. This will open a discussion on a possible
origin of electric and magnetic charges from the curvature of spacetime, and also a breaking of the
duality of the electrovacuum, as compared to Maxwell’s electrodynamics in flat spacetime.

The Faraday form F can be written (indexes not summed) as

F = Fµνdxµ ∧ dxν = F0idx0 ∧ dxi + Fijdxi ∧ dxj, (8)

with F0i = Ei/c and Fij = −εijkBk, and where latin indexes denote the spatial components only. When
these components of the Faraday tensor are substituted in Equation (3), we get

∇iBi = 0

∇0Bi + ε
ij
k∇jEk/c = 0. (9)

The first equation deserves comment because, when expressed in terms of the Christoffel symbols γ
µ
νρ,

it shows that, from the point of view of asymptotically flat observers faraway, the fields behave as if
there existed sources. In particular, we have the following equation

∇iBi = ∂iBi + γi
jiB

j = 0, (10)

where indexes are now summed. This equation allows to write the magnetic charge density ρm =

−γi
jiB

j, and suggests the existence of magnetic monopoles [13]. The fact that the curvature of spacetime
can mimic the existence of electromagnetic sources in curved spacetime has recently been suggested in
a generalized formulation of Maxwell’s electrodynamics using quaternions [14].

On the other hand, the Equation (2) can be expressed using the metric compatibility ∇ρgµν = 0
resulting from the Levi-Civita connection, as

gµσgνρ∇µFσρ = 0, (11)

which can be expressed entirely in terms of the electric and magnetic fields, yielding two more
equations. However, these equations are not symmetric in their expression to Equations (9), due to the
appearance of the metric tensor. We can write the set of equations in the form

(gµ0g0i − gµig00)∇µEi/c − gµjg0kεijk∇µBi = 0,

(gµ0gli − gµigl0)∇µEi/c − gµjglkεijk∇µBi = 0, (12)
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where l index is free. Only in the case that we have a diagonal metric, we can write the equations

∇iEi = 0,

∇0Ei/c − ε
ij
k∇jBk = 0. (13)

Again, Equations (13) allows to write the electric charge density ρe = −γi
jiE

j, suggesting that
apparent electric charge distributions can be created from the electrovacuum alone. It is remarkable
that, in general terms, the spacetime curvature can break the duality between electric fields and
magnetic fields. Despite this lack of duality, this is not an impediment to the existence of magnetic
monopoles. Nevertheless, the fundamental duality remains in terms of the Faraday tensor, and the
Maxwell equations can be written simply by stating that the Faraday form and its dual are closed
forms. Mathematically, this can be written as dF = 0 and d(∗F) = 0, where ∗F is the Hodge dual of
Faraday tensor.

The possibility that charges might arise through a purely geometrical and topological mechanism
[15] from the flat spacetime point of view, might prevent the necessity of using complicated unsta-
ble multiply connected topologies in curved spacetimes, such as wormholes [3], or non-orientable
manifolds [16].

2.3. Rainich Conditions

We now introduce Rainich algebraic conditions on the structure of spacetime and the electro-
magnetic complexion, not only for their transcendence concerning electrodynamic theory in curved
spacetime [3], but also because they will be used in the following lines to derive the fundamental wave
equation.

It is immediately proven by taking the trace of Equation (5) that the curvature scalar of the
Einstein-Maxwell theory is zero (R = 0). This means that the total average curvature of spacetime is
null. This equation also implies that Einstein’s equation can be written as

Rµν =
8πG

c4 Tµν, (14)

allowing for a direct identification of geometry and energy content. Equivalently, we can write
T = Tµ

µ = 0, which means that electromagnetic stresses are purely deviatoric in spacetime. Thus,
when a positive pressure develops along some direction of space by concentrating electromagnetic
energy, this pressure must be counterbalanced by negative pressures in the two complementary spatial
directions.

The second Rainich condition simply states that R00 > 0, and it is equivalent to inequality T00 > 0,
implying that the density of electromagnetic energy is positive-definite, and avoiding the complications
that negative energies usually introduce in particle physics [13].

Finally, the third Rainich condition diagonalizes the stress-energy tensor by taking its square. It
can be easily demonstrated by considering a locally Minkowskian reference frame and by performing
a Lorentz transformation that

RµρRρν =
1
4

δν
µRρσRρσ. (15)

Again, because of the identity between Ricci curvature tensor and the energy-stress tensor, the same
equation holds for the Tµν. In particular, we recall that

TµνTµν = P2 + Q2, (16)

where the electromagnetic invariants P = FµνFµν/2 and Q = Fµν(∗F)µν/2 have been introduced. Thus,
Equation (16) holds in any reference frame. To recall, these invariants can be written in a locally
Minkowskian reference frame as P = −(E/c)2 + B

2
, and Q = −2E · B.
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These two invariants classify electromagnetic fields as null (Q = P = 0) or non-null when
(Q2 + P2 ̸= 0). When Q = 0 and P ̸= 0, there exists a locally Minkowskian reference frame where
the fields are static, and, therefore, the dual component of a particular component vanishes. Fields
satisfying the Q = 0 condition are known as extremal fields [17]. Finally, when Q ̸= 0, there exists a
locally Mikowskian reference frame where both the electric and the magnetic fields are parallel. This is
precisely the reference frame in which the square of the stress-energy tensor diagonalizes, allowing us
to conceptualize the Faraday tensor as the square root of the stress-energy and, thanks to Rainich’s
conditions, to the square root of Ricci curvature.

To conclude, we briefly comment on the solutions to the Einstein-Maxwell equation as a function
of the complexion field [3]. The complexion α(x) is a scalar field that allows rotation of the electromag-
netic fields when expressed in the complexified Riemann-Siberstein form [18]. In simply connected
spacetimes, the covariant derivative of this field (see Equation (17)) is conservative, meaning that its
integral along a closed path is zero. Defining the Silbestein tensor Fj = Ej + icBj, the corresponding
complexified Faraday tendor Fµν = Fµν + i(∗F)µν can be introduced. It is possible to obtain formal
non-null solutions to the Einstein-Maxwell equations by considering an arbitrary constant Faraday
tensor fµν = fµν + i(∗ f )µν satisfying the extremal condition, and performing a gauge duality rotation
F = e−iαf. It has been shown [3] that the complexion can be computed from spacetime curvature in
the form

αµ = ϵµνσρRη
ν∇σRηρ/Rλτ Rλτ . (17)

Note that by virtue of Equation (14), the complexion can be completely expressed in terms of the
electromagnetic stress-energy tensor. This suggests that Rainich conditions establish an essential
identification between “light" and spacetime. However, the spatial derivative remains in Equation (17),
thus it is worth asking if the spacetime coordinates might be expressed by means of the inverse function
theorem as a function of the electromagnetic fields, at least locally.

3. A Nonlinear Equation
Now we derive a partial differential equation for the connection Aµ. For this purpose, it suffices

to consider the Lie’s commutator of the covariant derivatives of the electromagnetic four-potential Aµ,

[∇µ,∇ν]Aρ = Rµ
νρσ Aσ. (18)

Of importance, we note that the four-potential self-couples through the Riemann curvature tensor,
entailing light self-interactions [5]. By contracting the first and third indexes of Equation (18), we can
express it in terms of the Ricci tensor as

∇µ∇ν Aµ −∇ν∇µ Aµ = Rνσ Aσ. (19)

The latter equation can be simplified by using the Lorenz gauge ∇µ Aµ = 0, yielding

∇µ∇ν Aµ = Rνσ Aσ. (20)

If we now consider Maxwell’s equation ∇µFµν = 0 and expand Faraday tensor in terms of the four-
potential, we get ∇µ∇µ Aν = ∇µ∇ν Aµ. Introducing the Laplace-Beltrami operator □ = ∇µ∇µ, we
have

□Aµ = Rµσ Aσ. (21)

Using the Einstein Maxwell equations, we can write the equation for the four-potential as

□Aµ − 8πG
c4 Tµν Aν = 0. (22)
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Now we recall that the first electromagnetic invariant P = Fρτ Fρτ/2, and introduce the inertia term,
by defining the scalar function (Mc/h̄)2 ≡ 4πG/µ0c4P. If we also introduce the self-coupling inertia
tensor χν

µ = (8πG/µ0c4)Fµτ Fτν and the current jµ = χν
µ Aν, we obtain the equation

□Aµ +

(
Mc
h̄

)2
Aµ = jµ. (23)

The Equation (23) represents an inhomogeneous Proca equation with self-coupling currents [19].
Importantly, we notice that inertia has a tensorial character in the Einstein-Maxwell equations. The
current jµ is nonlinear, since it depends on the field Aµ. It means that the electrovacuum behaves
as a nonlinear optical medium with inertia. We stress the fact that inertia arises as a consequence
of electromagnetic self-interactions and that the scalar component is a fundamental invariant of
electrodynamics. Thus, in the present theory, it is unnecessary to introduce ad hoc fields to produce the
mass of vector bosons.

4. Gauge Fixing
We now show that, by choosing an adequate spatiotemporal gauge, we can decouple Equa-

tion (23), setting the self-current jµ to zero. It is important to bear in mind that the complete gauge
transformations involve both the spacetime coordinates, as well as the electromagnetic potential. Thus
the set of gauge transformations in the Einstein-Maxwell equations can be written as

xµ = x′µ + ξµ, Aµ = A′
µ +∇′

µΛ, (24)

where four coordinate gauge fields ξν have been introduced for the coordinate transformation, and
the scalar Λ field for the electromagnetic. The fields A′

µ and ∇′
µΛ appearing in Equation (24) are

evaluated at x. If ξµ is assumed sufficiently small, we can use the Lie covariant derivative, what yields
the complete transformation of the gauge potential as

Aµ = A′
µ + ξν∇′

ν A′
µ + A′ν∇′

νξµ + ξν∇′
ν∇′

µΛ +∇′νΛ∇′
νξµ, (25)

where the fields in Equation (25) are now written as a function of x′. Under these transformations, the
metric turns into

gµν = g′µν +∇′
µξν +∇′

νξµ. (26)

Finally, we have to use the covariant Lie derivative again to obtain the transformation of the Faraday
tensor under the complete set of gauge transformations. It yields the transformation

Fµτ = F′
µτ + ξν∇νF′

µτ +∇µξνF′
ντ +∇τξνF′

µν. (27)

If we now start back again with the full Einstein-Maxwell equations for the four potential without
gauge-fixing, we have

□Aµ −∇µ∇ν Aν +

(
Mc
h̄

)2
Aµ = χν

µ Aν, (28)

In Appendix A it is shown that the self-current χν
µ Aν = 0 can be turned off by an appropriate choice

of the spatiotemporal gauge. Additionally, by choosing the adequate gauge for the electrodynamic
field, i.e., one for which ∇ν Aν = 0, we get □Λ′= −∇′ν A′

ν, and the following decoupled four non-
homogeneous system of first order nonlinear partial differential equations reveal

□Aµ +

(
Mc
h̄

)2
Aµ = 0. (29)

This is precisely Proca equation in curved spacetime, since the Laplace-Beltrami operator involves
curvature of spacetime, and therefore the solutions to these equations are still nonlinear, depending on
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Einstein’s equation to completely solve the spacetime metric. Thus, apart from photons, other gauge
bosons with mass can be obtained from the electrovacuum. As we can see, the mass of these solutions
arises as a consequence of the non-null character of the electrodynamic fields through the spacetime
curvature. This means that the “photon” mass is produced by an imbalance between the size of the
magnetic and the electric fields, as compared to null fields. Certainly, very strong fields are required
to obtain masses as high as typically seen in gauge vector bosons. Using values of the Z electroweak
neutral boson, we have

MZc2 =

√
c2h̄2

2
8πG
µ0c4 Fρτ Fρτ =

√
4πh̄2G

µ0c2 (B2 − (E/c)2) ≈
√

4πG
µ0

h̄
c
⟨|B|⟩. (30)

Thus, assuming that most of the energy is in the core of the wave-packet, we would get a magnetic-
dominated field with intensity

⟨|B|⟩ ∽
√

µ0

4πG
MZc3

h̄
∽ 1055T. (31)

If such intense magnetic fields were achievable by means of a nonlinear feedback process, we can
expect that the size of the boson (neglecting spacetime curvature) as a wave-packet must be in the scale

lP ∼
(

µ0MZc2

B2

)1/3

∼ 10−35. (32)

The size of a Z boson wave-packet can be thus estimated at the Planck length, but being made
of electromagnetic field, it is reasonable that their spatiotemporal properties cannot be empirically
detected, not only because the size of the wave-packets is at the Planck scale, but because the field
configuration would be modified by the “external” fields of the apparatus. Certainly, if particles are
solitons within the Einstein-Maxwell theory, they must be contextual [20].

Apart from spin one solutions, spinless bosons can be obtained by considering Aµ = (ϕ, Ai) with
Ai = 0, what yields the spin zero field

□ϕ +

(
Mc
h̄

)2
ϕ = 0. (33)

Then, the gauge transformation xµ = x′µ + ξµ, Aµ = A′
µ +∇′

µΛ acquires an additional restriction

A′
i = −∇′

iΛ, and we have the following gauge equation □Λ′= −∇′0 A′
0+∇′ i∇′

iΛ, where here A′
µ and

∇′
µΛ are evaluated at x. In is immediate to obtain the Schrödinger equation in the non-relativistic limit

from Equation (26). In addition, Equation (26) suggests that the wave function is a true electromagnetic
wave, as originally proposed by D. Bohm [21], and not just a probabilistic entity. In turn, it also implies
that classical mechanics can be considered as a ray optics approximation to the Einstein-Maxwell
equations valid when the intensity of the fields in the electrovacuum is small and these fields are
slightly inhomogeneous, allowing us to express solutions in terms of locally plane waves, as described
by the Hamilton-Jacobi equation [22]. However, in general, we must insist that the wave packets
present inertia as a consequence of self-coupling, specially those related to particles, which here are
considered as light pulses.

Interestingly, we can write the second contribution of the electrovacuum stress-energy tensor as

T(vac)
µν = −Λ(x)gµν, (34)

where Λ(x) = P(x)/2µ0 has been introduced. This scalar field should not be confused with the gauge
transformation appearing in Equation (24), but perhaps it may be identified with the cosmological
constant. If this is correct, then dark energy might be plain electromagnetic energy arising from
non-null fields, dominated by magnetic fields over electric, so that the expansion of the universe is
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ensured by the Hubble flow. The value of Λ is very small, of the order 10−52, which means that the
electromagnetic fields are currently slightly more magnetic. Nevertheless, note that, strictly speaking,
Λ(x) is a scalar field and not a constant, and can change sign along its evolution, since the other
contribution implies ∇µT(vac)

µν ̸= 0, allowing the universe to expand or contract in space, depending
on its dynamical state. This speaks in favor of cyclic cosmologies beyond the actual creation ab nihilo
paradigm [23].

5. Weak Field Solutions
We now investigate the weak field limit of the Einstein-Maxwell equations by introducing a

perturbative framework, and by solving the equations up to first order. The main purpose is to show
once more that non-null fields produce self-coupling currents, and to compute the dependence of
these currents of the gauge field to first order approximation. This will entail further discussion of the
electrovacuum as a nonlinear optical medium.

We consider the perturbative parameter ε = 8πG/µ0c4. This allows to write the Einstein-Maxwell
equations for the four potential Wµ as

□Wµ −∇µ∇νWν + εµ0TµσWσ = 0. (35)

We now develop in the perturbative parameter ε all the relevant fields of the theory, including the
four potential, and restricting all the results to first order1. We now write the four-potential, the metric
tensor and the stress-energy tensor as

Wµ = Aµ + εBµ, (36)

gµν = ηµν + εhµν, (37)

µ0Tµν = tµν + εsµν. (38)

Then, to zero order, Equation (35) yields the equation

□Aµ − ∂µ∂ν Aν = 0, (39)

where now □ is the D’Alembertian in flat spacetime. If an appropriate flat spacetime Lorenz gauge is
chosen ∂νWν = 0 for the electrodynamic fields, then we must have that all the perturbative terms satisfy
∂ν Aν = ∂νBν = 0. This can be demonstrated by expanding perturbatively the gauge transformation.
This yields the basic equations for flat spacetime electrovacuum

□Aµ = 0. (40)

Thus, as long as the energy of the fields is weak enough, we can neglect spacetime curvature
and consider transversal waves without self-impedance, as is commonly done in macroscopic optics
and Maxwell classical electrodynamics. However, if the energy is high enough, what can arise as a
self-focusing feedback process at small scales or at cosmological scales, we obtain further corrections
and the assumption that light consists of transversal waves is not completely right [14].

To compute the first order correction of Maxwell electrodynamics in the weak field limit [24], we
must consider the following relation δ

µ
ρ = gµνgνρ and, expanding in series the metric tensor according

to Equation (37), we get the inverse metric gµν = ηµν − hµν. Concerning the determinant of the metric,
it can be written to first order as |g| = εµνγρηµ0ην1ηγ2ηρ3 = ε + εh, where is the traced perturbed metric
tensor h = hµ

µ. Using these two equations, we get the Laplacian

∇µ∇µ = ηµν∂µ∂ν − ε∂µ

(
hµν − 1

2
ηµνh

)
∂ν − εhµν∂µ∂ν. (41)

1 The present identities are all written up to O(ε2), but the order approximation is omitted for simplicity in the notation.
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As it is frequently done when studying weak fields [24], we introduce the deviatoric tensor
h̄µν = hµν − ηµνh/2, yielding

∇µ∇µ = ηµν∂µ∂ν − ε∂µ h̄µν∂ν − εhµν∂µ∂ν. (42)

Using Equations (35)-(38), and expressing the Christoffel symbols as γνσ = εΓνσ to first order, we get

□Bµ + hµν∂µ∂ν Aµ − ∂µ h̄µν∂ν Aµ − ∂µ(Γν
νσ Aσ) + tµσ Aσ = 0. (43)

If we conveniently choose now as spatiotemporal gauge the Lorenz gauge ∂µ h̄µν = 0, we obtain

□Bµ + hµν∂µ∂ν Aµ − ∂µ(Γν
νσ Aσ) + tµσ Aσ = 0. (44)

To express the solution directly in terms of the metric and the zeroth order electromagnetic potential
Aµ, we first solve for hµν using Einstein’s equation. For this purpose, we compute the symbols, that
can be written in the form

Γσ
µν =

1
2

ησρ(∂νhµρ + ∂µhρν − ∂ρhµν), (45)

yielding the contracted symbols Γµ
µσ = (∂σh)/2, and leading to the equation

□Bµ − hρσ∂ρ∂σ Aµ − ∂µ(∂σhAσ)/2 + tµσ Aσ = 0. (46)

This equation can be written as a conventional Maxwell equation by defining the four-current density
Jµ = hρσ∂ρ∂σ Aµ + ∂µ(∂σhAσ)/2 − tµσ Aσ, as follows

□Bµ = Jµ. (47)

The weak zeroth-order electromagnetic waves carry energy, and this energy curves spacetime.
Then, this curvature acts as a current that drives high-order components of the field. This can produce
self-resonances, intensifying the fields in specific regions of spacetime. The ultimate limits to these
resonant phenomena must be imposed by the nonlinear nature of these self-currents.

We now compute the Riemann tensor in perturbative series, which (absorbing the perturbative
parameter) we define as follows

Rσ
ρµν = ∂µΓσ

νρ − ∂νΓσ
µρ. (48)

If we now consider the previous equations for the Levi-Civita connection, we get the first order
Riemann tensor as

Rσ
ρµν =

1
2

ηστ(∂µ∂ρhντ + ∂µ∂νhτρ − ∂µ∂τhνρ − ∂ν∂ρhµτ − ∂ν∂µhτρ + ∂ν∂τhµρ), (49)

which allows to compute the Ricci tensor

Rρν =
1
2
(∂ρ∂σhσ

ν + ∂ν∂σhσ
ρ −□hνρ − ∂ν∂ρh) (50)

and this, finally, provides the scalar of curvature

R = ∂ρ∂σhρσ −□h. (51)

But now note that the first Rainich condition imposes R = 0, which is only possible if each component
of the perturbative expansion is exactly zero. We now write down the Einstein’s equations Rµν −
ηµνR/2 = tµν. Substitution of spacetime tensors in Einstein equation yields

∂ρ∂σhσ
ν + ∂ν∂σhσ

ρ −□hνρ − ∂ν∂ρh − ηµν∂ρ∂σhρσ + ηµν□h = 2tµν. (52)
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Now, since we have the gauge condition on h̄µν, it can be proven that h̄µν = hµν − hηµν/2, implying
that h̄ = h − hηµνηµν/2 and therefore h̄ = −h. Thus we can invert by considering hµν = h̄µν − h̄ηµν/2 .
This, in turn leads to hν

µ = h̄ν
µ − h̄δν

µ/2. Replacing in Einstein’s equation and expanding the parentheses,
after some algebraic manipulations, we obtain

∂ρ∂σ h̄σ
ν + ∂ν∂σ h̄σ

ρ −□h̄µν − ηµν∂ρ∂σ h̄ρσ = 2tµν. (53)

Now, by remembering the gauge previously chosen, we get

□h̄µν = −2tµν. (54)

In this manner, we have obtained the expression of the metric computed from the electromagnetic
stress energy tensor

h̄µν = −2
∫ tµν(tr, x′ − x)

|x − x′| d3x′. (55)

Finally, once we compute hµν from these solutions, we can obtain the field

Bµ =
∫ Jµ(tr, x′ − x)

|x − x′| d3x′. (56)

This solves completely the entire problem to the first order. It remains to prove that the equation
∂ρ∂σhρσ −□h = 0 is self-consistent. This equation implies ∂ρ∂σ

(
h̄ρσ − ηρσ h̄

)
/2 +□h̄ = 0, which gives

the equation ∂ρ∂σ h̄ρσ +□h̄/2 = 0. But this certainly holds, since h̄ = 0 as a consequence of the first
Rainich condition, and the Lorenz gauge. This implies that, in the Einstein-Maxwell setting with weak
fields, we have the equivalence between the Lorenz gauges for the first order correction to the metric
∂µhµν = 0 and the gauge condition of its deviatoric tensor.

Note how the metric certainly obeys a Maxwell equation, what justifies the name gravitoelec-
tromagnetism to the first order approximation of the theory. In fact, the Einstein-Maxwell equations
imply that gravity has an electromagnetic origin [5]. Using the Green’s function, we finally obtain the
following equation of the metric tensor

hµν = −2
∫ tµν(tr, x − x′)

|x − x′| d3x′. (57)

Thus, in order to solve the Einstein-Maxwell equations in the weak field limit, we need to evaluate in
the first place tµν = Fτ

µ Fτν − Fστ Fστηµν/4, with the Maxwell tensor to zeroth order. Once we have the
stress-energy tensor of electromagnetic waves, then solve the previous integral if possible, and finally
compute the first order of the four-potential, recalling the current four-density

Jµ = hρσ∂ρ∂σ Aµ − µ0tµσ Aσ, (58)

which has been simplified taking into account the h = 0 condition. This result completes our calcula-
tions.

6. Gravitoelectromagnetic Waves
We now turn our attention to particularly simple solutions to the Einstein-Maxwell electrovacuum

in the weak field limit. Specifically, we focus on electromagnetic pulses with an arbitrary shape. We
show that there is an essential difference between null and non-null fields, i.e., the latter can produce
sources and self-couple through spacetime curvature, while the former cannot. This gives preeminence
to non-null solutions, since they can allow to create non-dispersive waves, in principle.
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6.1. Null Fields

We begin by studying a null electromagnetic pulse with an arbitrary shape, but confined in certain
region of the space. In the Lorenz gauge, we can write the solution to the zeroth order equation in the
form

Aµ(x) = aµ f (k · x), (59)

where f (x) → 0 when |x| → ∞, and a a spacelike vector. Again, in the Lorenz gauge we get kµaµ = 0,
and because the solution solves Maxwell’s equations, we have the dispersion relation kµkµ = 0. We
can now compute the Faraday tensor to zero order as

Fµν = (kµaν − kνaµ) f ′(k · x). (60)

This implies that the solutions are certainly null, since we have P = FµνFµν/2 = (kµaν − kνaµ)(kµaν −
kνaµ)[ f ′(k · x)]2/2 = 0. Thus the zeroth order solutions posses no inertia, as it is frequently attributed
to the photon. Using Equation (60), we can compute the stress-energy tensor to zeroth order, which is

tµν = Fτ
µ Fτν = −aτaτkνkµ[ f ′(k · x)]2. (61)

The latter equation allows to compute the metric. If we introduce the density function ρ(x) =
f ′2(x), and define the scalar field

Φ(x, t) =
∫

ρ(k0tr, kx′)
|x − x′| d3x′. (62)

We appreciate that the pulse becomes the charge density of a scalar potential. The result is that the
metric of spacetime is

hµν(x, t) = 2a2Φ(x, t)kνkµ. (63)

Note that the metric is symmetric, as expected. From this non-stationary spacetime metric we can verify
that, as previously claimed, we certainly have h = 0. We can now compute the current and obtain,
using aµkµ = kµkµ = 0, that its value is zero for planar electromagnetic waves Jµ = 0, what means that
Bµ is again a solution of Maxwell equations.

This result is of great relevance, since it shows that null solutions cannot self-couple and imply that
weak planar waves are transversal, at least to first order. It is worth asking if higher order corrections
can stabilize these solutions, preventing or, at least, slowing their dispersion. However, as we show
below, there exist other solutions, as for example more complicated wave-packet solutions, which
are not necessary null (e. g. electromagnetic knots [25]). Thus, the first order component is also a
plane wave Bµ(x) = bµg(q · x), and the principle of superposition holds for null solutions to first order.
Importantly, we note that it is the electromagnetic waves that produce the gravitational waves, and
that the concept of a purely gravitational wave is non-physical [5], since for that purpose one would
have to empty the electrovacuum, which is impossible, as we know from the Casimir effect [26].

We compute the Rainich conditions. The Ricci tensor, according to Equations (50) and (63), can be
written as

Rρν = a2(kσkν∂ρ∂σΦ(x, t) + kσkρ∂ν∂σΦ(x, t)− kρkν□Φ(x, t)). (64)

Since ∂µhµν = 0, we should have the relation

DkΦ(x, t) = 0, (65)

which holds, indeed, since f (k · x). This, in turn, yields

Rρν = −εa2kρkν□Φ(x, t), (66)
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where the perturbative parameter has been reintroduced. More accurately, since □Φ(x, t) = ( f ′(x))2

by the very definition of Φ, for R00 we get

R00 = −εa2k2
0[ f ′(k · x)]2, (67)

thus we have positive energy density T00 > 0 in conformity to the second Rainich condition (note that
a is space-like and a2 < 0 in the present signature). On the other hand, the second order scalar yields

RρνRρν = 2ε2a4(kσkν∂ν∂σΦ(x, t))2 = 2ε2a4(D2
k Φ(x, t))2 = 0. (68)

The square of the stress energy tensor is effectively degenerate, and the complexion is not well defined
for null Riemann tensors. Therefore, the agenda proposed by Misner and Wheeler [3] cannot be carried
out in this case.

6.2. Non-Null Fields

We can also consider more complicated wave-packets, by assuming that f is some harmonic
function and using Fourier’s theorem. Starting with the four potential

Aµ(x) =
∫

aµ(k) f (k · x)d4k. (69)

Then, the Faraday tensor is written as

Fµν =
∫
(kµaν(k)− kνaµ(k)) f ′(k · x)d4k. (70)

Now, we can consider the invariant

P =
1
2

∫
((a′ · a)(k · k′)− (k · a′)(a · k′)) f ′(k · x) f ′(k′ · x)d4kd4k′. (71)

Because now the wave packet is non-null in general, they can present inertia, what implies that we can
get more interesting physical phenomena. The stress energy tensor is far more complicated, indeed. It
can be written as

tµν = −
∫ (

a′νaµ +
1
4
(a′ · a)ηµν

)
(k · k′) f ′(k · x) f ′(k′ · x)d4kd4k′

−
∫ (

k′νkµ +
1
4
(k′ · k)ηµν

)
(a · a′) f ′(k · x) f ′(k′ · x)d4kd4k′

+
∫ (

kµa′ν +
1
4
(a′ · k)ηµν

)
(a · k′) f ′(k · x) f ′(k′ · x)d4kd4k′

+
∫ (

k′µaν +
1
4
(k′ · a)ηµν

)
(k · a′) f ′(k · x) f ′(k′ · x)d4kd4k′. (72)

If we now define the scalar potential

Φk,k′(x) = 2
∫ f ′(k0tr, k · x′) f ′(k0tr, k′ · x′)

|x − x′| d3x′, (73)
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the metric inherits four components as well

hµν(x, t) =
∫ (

a′νaµ +
1
4
(a′ · a)ηµν

)
(k · k′)Φk,k′(x)d4kd4k′

+
∫ (

k′νkµ +
1
4
(k′ · k)ηµν

)
(a · a′)Φk,k′(x)d4kd4k′

−
∫ (

kµa′ν +
1
4
(a′ · k)ηµν

)
(a · k′)Φk,k′(x)d4kd4k′

−
∫ (

k′µaν +
1
4
(k′ · a)ηµν

)
(k · a′)Φk,k′(x)d4kd4k′. (74)

This metric is far more complicated, but topologically interesting cases can be explored (e.g. the curved
spacetime of an electromagnetic knot). In fact, now we have

Jµ(x, t) = −
∫

aµ(k)hρσ(x, t)kρkσ f (k · x)d4k − µ0

∫
tµσ(x, t)aσ(k) f (k · x)d4k. (75)

where the harmonic nature of f has been used. This means that when we have wave packets of light in
spacetime, there is a self-current that can act as a source or sink of field. These equations suggest that,
from the point of view of a background planar observer, the fields can diverge or converge, as if there
existed sources, even though there are none. Importantly, we must stress that these sources extend
all over the space, and thus we can have typical phenomena appearing in materials, as for example
longitudinal wave components [27].

7. Discussion and Conclusions
We have derived the fundamental equations describing the relativistic dynamics of vector and

scalar bosons from Einstein-Maxwell electrodynamics. The question arises about the possibility to
extend the present formalism to fermions. Certainly, a different gauge can be proposed transforming
Equation (23) into a Dirac-like equation in the form γ

ρν
µ ∇ρ Aµ − (mc/h̄)δρ

µ Aρ = 0. However, we shall
pursue this goal more carefully in forthcoming works, since complications in the resulting gauge
require a more detailed analysis, and it is not clear to the author to what extent the tetrad formalism in
the Newman-Penrose form [28,29] might be necessary to exactly identify the Ricci’s rotation coefficients
with Dirac γµ matrices.

It is important to stress the fact that the principle of superposition does not rigorously hold in
the Einstein-Maxwell equations due to the spacetime curvature, as originally claimed by Y. Rainich
[2]. However, in some circumstances, whenever the Proca gauge transformation exists, an appropriate
gauge fixing allows to decouple fields in curved space (as long as we are allowed to neglect the metric
in the Laplace-Beltrami operator, which might be appropriate under many circumstances, but not in
general). In general, the Einstein-Maxwell equations suggest that light can bend its own rays through
the curvature of spacetime, producing self-focusing and self-diverging effects. In turn, this capacity of
light to act as its own lens through spacetime curvature might concentrate great amounts of energy
in spacetime. On the other hand, more energy implies more curvature; thus we should not reject the
possibility that feedback generates unexpected high intrinsic curvature in spacetime [2].

A fundamental reflection concerns the nature of the photon and bosons in general. If nonlinear
effects can prevent three-dimensional electromagnetic wave-packets to disperse, they might allow to
create stable perturbations traveling in spacetime (i. e. photons and other type of solitary waves), as
opposed to wave-packets in three-dimensional flat spacetime, which tend to disperse. This would
explain photons as wave-packet solutions of Einstein-Maxwell equations, probably related to the
so-called geons [30]. The present formalism can be used to study the stability of pulses that in flat
spacetime tend to disperse. This could explain bosons as optical wave-packets, self-sustained by
spacetime curvature. Non-dispersive pulses require specific conditions in the source current Jµ, and it
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is well known that some types of nonlinear materials can counterbalance dispersion effects. The same
might be true for the electrovacuum [31].

To conclude, the fact that the Einstein-Maxwell equations are nonlinear suggests the possibility
that fundamental particles are electromagnetic solitons [15]. In particular, and bearing in mind that
the wave-particle duality has been explained theoretically in terms of classical zitterbewegung [20],
the author would like to propose that the electron could be a spinorial breathing solution to the
Einstein-Maxwell equations. We note that any non-null solution to the Einstein-Maxwell equations
presents inertia, which comes from the self-coupling of the electrodynamic fields. This conforms with
recent findings on the electromagnetic origin of mass [5]. More simply put, inertia might be a force
of self-induction due to Faraday’s law and self-interactions of light through spacetime curvature
[5]. The electromagnetic origin of inertia is perfectly compatible with classical electrodynamics
and the principle of relativity, and misunderstandings frequently attributed to the 4/3 problem
regarding an incompatibility between electromagnetic mass and the principle of special relativity
have been rigorously clarified [32]. Here we have shown that this is even more pertinent in the
framework of general relativity. Summarizing, the present work suggests that the remaining properties
of fundamental particles, charge and spin, should also be related to the geometric nature of the gauge
field configurations of the electrodynamic field that constitutes them [15].

Acknowledgments: The author is profoundly indebted to the “Quantum mechanics foundations & nature of time"
group and also to the “Zitter Institute" (https://www.zitter-institute.org) for endless and fruitful discussions
about the possibility of electrodynamic gauge fields and solitons as a foundation of particle physics. He also
would like to thank professor Jose Luis Trueba Santander for deep discussions on the concept of electromagnetic
knot and topological electromagnetism.

Appendix A. Gauge Transformation
In this section we write explicitly the gauge transformation of the self-coupling current appearing

in Equation (23) of the manuscript. We have the gauge transformation

χν
µ Aν = Fµτ gτρgνσFρσ Aν

=
(

F′
µτ + ξν∇′νF′

µτ +∇′
µξνF′

ντ +∇′
τξνF′

µν

)(
g′τρ +∇τξρ +∇ρξτ

)
·

(
F′

ρσ + ξν∇′νF′
ρσ +∇′

ρξνF′
νσ +∇′

σξνF′
ρν

)(
g′νσ +∇νξσ +∇σξν

)
·

(
A′

ν + ξλ∇′
λ A′

ν+A′λ∇′
λξν + ξλ∇′

λ∇′
νΛ +∇′λΛ∇′

λξν

)
.

(A1)

If we now carefully group all the terms with the same number of derivatives, we can set the self-
coupling current to zero, as long as the following differential equation holds

Uµ(ξ) = Vρσ
µ (ξ)∇ρξσ + Wτρνσ

µ (ξ)∇τξρ∇νξσ+

Xτρασλν
µ (ξ)∇τξρ∇αξσ∇λξν + Yτρασλνβη

µ (ξ)∇τξρ∇αξσ∇λξν∇βξη+

Zτρασλνβηγζ
µ (ξ)∇τξρ∇αξσ∇λξν∇βξη∇γξζ ,

(A2)

where the tensors Zτρασλνβηγζ
µ (ξ), Yτρασλνβη

µ (ξ), Xτρασλν
µ (ξ), Wτρνσ

µ (ξ), Vρσ
µ (ξ) and Uµ(ξ) are polynomi-

als of the gauge field ξ. These tensors depend on first order covariant derivatives of the electromagnetic
gauge field Aµ, as well. Just as an example, the tensor Uµ(ξ) is equal to

Uµ(ξ) =
(

F′
µτ + ξν∇′νF′

µτ

)
g′τρ

(
F′

ρσ + ξν∇′νF′
ρσ

)
g′νσ(A′

ν + ξλ∇′
λ A′

ν + ξλ∇′
λ∇′

νΛ
)
. (A3)

The remaining tensors are computed in a similar fashion, but do not provide any further insight
into our argument, and are thus omitted because they are intrincante. In this manner, we can dis-
pense with the self-coupling tensor, as long as the existence and uniqueness theorems of solutions
to the system of four partial differential equations for the gauge appearing in Equation (A2) hold.
Some fundamental considerations are deserved in this regard. Firstly, we note that this is a set of
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four nonlinear first-order coupled partial differential equations. The derivatives appear coupled in
polynomial form. By the implicit function theorem [33], except for a hypersurface in tangent space,
we can express the four coupled equations as four decoupled equations in which the derivatives
of the spatiotemporal gauge with respect to time ∂ξµ/∂t are written as a nonlinear function of the
remaining spatial derivatives. Then, the nonlinear Cauchy-Kovalevskaya theorem [34] ensures the
uniqueness and existence of solutions in some domain around the origin of tangent space, assuming
that the A′

µ potentials are analytic functions. Thus, these solutions must exist in specific regions of
spacetime, as we know from experience. Whenever these conditions do not hold, we cannot expect
the related wave equation to represent a particular field configuration and, in this manner, different
gauge configurations might yield different types of fields, depending on the existence of solutions of
a particular gauge. This fact might explain the convenience of introducing many different fields in
fundamental theories of particle physics.
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