

Review

Not peer-reviewed version

Challenges in Toxicological Risk Assessment of Environmental Cadmium Exposure

[Soisungwan Satarug](#) *

Posted Date: 12 April 2025

doi: 10.20944/preprints202504.0933.v1

Keywords: cadmium; benchmark dose; dose-response; eGFR; NOAEL; threshold-based risk assessment

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Challenges in Toxicological Risk Assessment of Environmental Cadmium Exposure

Soisungwan Satarug

Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia; sj.satarug@yahoo.com.au

Abstract: Dietary exposure to a high-dose cadmium (Cd) $\geq 100 \mu\text{g}/\text{day}$ for at least 50 years or a lifetime intake of Cd $\geq 1 \text{ g}$ causes severe damage to kidneys and bones. Alarmingly, however, exposure to a dose of Cd between 10 and 15 $\mu\text{g}/\text{day}$ increases worldwide prevalence of non-communicable diseases, including chronic kidney disease (CKD), non-alcoholic fatty liver disease, fragile bones, diabetes, and cancer. Because such a low-dose Cd exposure, results in urinary Cd excretion rates $< 1 \mu\text{g}/\text{g}$ creatinine, it has cast considerable doubt on a “tolerable” Cd exposure of 58 $\mu\text{g}/\text{day}$ for a 70 kg person, while questioning a threshold level at urinary Cd excretion rate at 5.24 $\mu\text{g}/\text{g}$ creatinine. The present review addresses many unmet challenges in a threshold-based risk assessment for Cd. Special emphasis is given to the benchmark dose (BMD) methodology to estimate the Cd exposure limit that aligns with a no-observed adverse effect level (NOAEL). Reported results of BMDL modeling of Cd exposure levels using different nephrotoxicity endpoints are summarized to identify the most sensitive sign on which exposure guidelines should be based. It also aims to demonstrate that a health-protective exposure guideline for Cd should employ the most recent scientific research data, and the dose-response curves, constructed from an unbiased exposure indicator, and clinically relevant adverse effects such as proteinuria and a decrease in estimated glomerular filtration rate. These are signs of developing CKD and its progression to end stage, when dialysis or a kidney transplant is required for survival.

Keywords: cadmium; benchmark dose; dose-response; eGFR; NOAEL; threshold-based risk assessment

1. Introduction

The conventional toxicological risk assessment for any health hazardous substance is reliant on dose-response curves, constructed from series of experimentation, which typically involves daily administration of 4-5 different doses for 90 days, referred to as sub-chronic exposure conditions in humans [1-5]. The dose-response curves are used to define the lower bound “no observed adverse effect level” (NOAEL) and the upper bound “lowest observed adverse effect level” (LOAEL) from which a point of departure (POD) is established. Subsequently, the POD value forms a basis to estimate health guidance values, which presently are known as a minimal risk level (MRL), a toxicological reference value (TRV), tolerable weekly intake (TWI), tolerable monthly intake (TMI) and a reference dose (RfD) [1-6]. These different terms create unnecessary confusions and stumble blocks.

The NOAEL value derived from experimental animal dosing regimens is the highest dose tested that produces a statistically insignificant effect, compared to controls. In some instances, this NOAEL value is translated to benchmark dose (BMD) with an inclusion of uncertainty factors to compensate for species differences and human variability [1]. Notably the BMD approach has now been applied to human population data from which the benchmark dose limit (BMDL) value is identified and employed as a replacement of the experimental NOAEL [1-5]. This BMDL methodology overcomes

the shortcomings of traditional dosing experiments, which requires a compensation for animal-to-human extrapolation.

The POD-based health guidance values; MRL, TRV, TWI, TMI, and RfD all rely on the premise that a threshold level of exposure exists, below which an adverse effect can be discernable [1]. In effect, an exposure level derived from the most sensitive endpoint would be protective against all other adverse effects [1]. A notable limitation is that threshold-based risk assessment is not applicable to cancer endpoints [1,5]. An evaluation of the carcinogenic risk of a suspected entity involves different dosing regimens and an observation over a life-span such as a two-year rodent/murine bioassay [7–9].

The present review has its focus on a metal contaminant cadmium (Cd), which is found in most foodstuffs [10–13], tobacco smoke, and airborne particle pollution [14,15]. An extremely slow excretion rate means that Cd is retained within cells of nearly all tissues and organs in the body [16,17]. Concerningly, Cd is a designated cancer-causing agent in humans; epidemiological studies have linked increased risks of developing cancer in the lung, kidney, pancreas, breast, and liver to chronic Cd exposure [7–9,18]. These data are in line with the two-year bioassay that revealed Cd as a multi-tissue carcinogen [7]. Furthermore, the ability of Cd to induce non-tumorigenic human cells to undergo malignant transformation has been unambiguously demonstrated [18,19].

The first objective of this review is to discuss current health guidance values derived for environmental Cd exposure, and highlight their shortcomings and inadequacy to protect human health. It reiterates a total imprecision in measuring exposure and/or adverse outcomes, which biases dose-response relationships toward the null [20], and consequently leading to an underappreciation of the health effects of Cd by a large magnitude or even a miss. The second objective is to illustrates non-differential errors imposed to dataset, when the urinary excretion of Cd (E_{Cd}), an indicator of body burden, is adjusted to creatinine excretion (E_{Cr}). These errors can be eliminated by normalizing E_{Cd} to creatinine clearance (C_{Cr}), the surrogate of functioning nephrons. It accentuates a continuing effort to identify the most sensitive non-cancer endpoint to be used as a basis to formulate a meaningful health guideline value for Cd exposure. As a third objective, it provides fundamental and practical knowledges on BMD methodology and together with a summary of reported BMD modeling results and their interpretation.

2. Existing Dietary Cd Exposure Guidelines

This section provides health guidance values for exposure to Cd in the diet together with exposure threshold levels that have been estimated. Because nearly all food types contain Cd as a contaminant, exposure to Cd is through a normal human diet [10–13] and foods which are consumed frequently in a large quantity, like staples, contribute the most to total amount of Cd consumed [11].

Consumption of rice heavily contaminated with Cd is a known cause of “*itai-itai*” disease with severely damaged kidneys and bones as its dominant pathologies, leading to multiple bone fractures due to osteoporosis and osteomalacia [21,22]. These Cd-induced pathologies have been replicated in ovariectomized cynomolgus monkeys [23], which mimicked the female preponderance feature of the toxicity of a high-dose Cd ($\geq 100 \mu\text{g}/\text{day}$ for 50 years or longer). Consequently, kidneys and bones have been employed as the critical targets for Cd toxicity for which permissible exposure and threshold levels have been determined [24].

Table 1. Exposure guidelines for Cd in the diet based on kidney and/or bone effects.

Target/ Endpoint	Tolerable Intake/Exposure Threshold Level	Reference
Kidneys, $\beta_2\text{M}$ excretion rate $\geq 300 \mu\text{g/g}$ creatinine.	A tolerable intake level of $0.83 \mu\text{g}/\text{kg}$ body weight/day ($58 \mu\text{g}$ per day for a 70 kg person). A cumulative lifetime intake of 2 g . Assumed Cd absorption rate of 3–7%. Threshold level of $5.24 \mu\text{g}/\text{g}$ creatinine.	JECFA [25]

Kidneys, $\beta_2\text{M}$ excretion rate $\geq 300 \mu\text{g/g}$ creatinine.	A reference dose of $0.36 \mu\text{g/kg}$ body weight per day ($25.2 \mu\text{g}$ per day for a 70 kg person) Threshold level of $1 \mu\text{g/g}$ creatinine	EFSA [26,27]
Kidneys, $\beta_2\text{M}$ and NAG excretion rates	A tolerable intake level of $0.28 \mu\text{g/kg}$ body weight per day; $16.8 \mu\text{g/day}$ for a 60 kg person. Threshold levels for the $\beta_2\text{M}$ and NAG effects were 3.07 and $2.93 \mu\text{g/g}$ creatinine, respectively. An average dietary Cd exposure in China was $30.6 \mu\text{g/day}$.	Qing et al. 2021 [28]
Bones, Bone mineral density	A tolerable Cd intake of $0.64 \mu\text{g/kg}$ body weight per day. Threshold level of $1.71 \mu\text{g/g}$ creatinine.	Qing et al. 2021 [29]
Bones, Bone mineral density	A tolerable intake level of $0.35 \mu\text{g/kg}$ body weight per day. Assumed threshold level of $0.5 \mu\text{g/g}$ creatinine.	Leconte et al. 2021 [30]
Kidneys and bones, Reverse dosimetry PBPK modeling	Toxicological reference values were 0.21 and $0.36 \mu\text{g/kg}$ body weight per day, assuming a similar threshold level for effects on kidneys and bones of $0.5 \mu\text{g/g}$ creatinine.	Schaefer et al. 2023 [31]

NAG, N-acetyl- β -D-glucosaminidase; PBPK, physiologically based pharmacokinetics [32].

As data in Table 1 indicate, there is no consensus on a “safe” exposure level even though the same endpoints were used; the dietary Cd exposure limits range between 0.28 and $0.83 \mu\text{g/kg}$ body weight per day with Cd exposure threshold levels varying from 1.0 to $5.24 \mu\text{g/g}$ creatinine for the $\beta_2\text{M}$ and/or ENAG endpoint. In a study on Chinese population data, Qing et al. (2021) reported a tolerable Cd intake to be $0.64 \mu\text{g/kg}$ body weight per day for the bone mineral density endpoint with a corresponding threshold level of $1.71 \mu\text{g/g}$ creatinine [29].

In addition to those enlisted in Table 1, POD-based health guidance values for Cd exposure, called MRLs have also been identified for oral and inhalational exposure scenarios. Using experimental dosing data [33–35], Faroone et al. (2017) reported the MRL for oral exposure to Cd in an intermediate exposure duration (15–365 days) to be $0.5 \mu\text{g/kg}$ body weight per day for decreased bone mineral density endpoint [36]. Based on experimental dosing data from the Fisher rats [37], the MRL for an acute inhalational exposure to Cd for the duration between 1 and 14 days was $0.03 \mu\text{g/m}^3$ when alveolar histiocytic infiltration and focal inflammation in alveolar septa were employed as endpoints [36].

3. Imprecisions in Measuring Internal Cd Doses and Adverse Outcomes

The practice of toxicological risk assessment involves measuring two key parameters; exposure and effect indicators. This section focuses on factors which affect the estimation of internal dose of Cd, which account for an underestimation of an effect size. Uses of blood Cd concentrations and urinary excretion rates of Cd are highlighted along with the purposes of adjusting urinary concentrations of Cd and all other excreted biomarkers of Cd effects to creatinine excretion (E_{cr}) and creatinine clearance (C_{cr}).

3.1. Assimilation of Cd and Its Determinants

From foods, Cd enters the bloodstream through multiple mechanisms such as transcytosis [38], receptor-mediated endocytosis [39,40] and specialized transport proteins for essential metals, namely iron (Fe), zinc (Zn), and calcium (Ca) [41–44]. Cd can be expected to be assimilated at rates higher than each individual essential metal Fe, Zn and Ca, consistent with the absorption rate of Cd reported for Japanese women to be between 24 and 45% [45,46]. Conceivably, the internal dose of Cd and health risk imposed will be markedly underestimated, when Cd absorption rate is assumed to be 3 to 7% as in the JECFA provisional tolerable intake model for Cd [25].

Peng et al. (2023) conducted a systematic review and observed inverse associations of zinc and body iron stores with blood Cd concentrations [48]. Higher blood and urinary Cd levels in children

and adolescent females [49], and women of reproductive age [51,52] have been linked to lower body iron stores, evident from serum ferritin $\leq 30 \mu\text{g/L}$. Like iron, marginal dietary zinc intake and subclinical zinc deficiency are highly prevalent worldwide [53–55], which means a significant proportion of population is more likely to experience the nephrotoxicity of Cd.

3.2. Use of Blood Cd Concentration in Toxicological Risk Assessment

Through the gut and lungs, Cd in foodstuffs and airborne particle pollution, enter the systemic circulation. Hence, the blood concentration of Cd can reflect recent exposure to the metal. Because most of Cd in the blood stream is in the cytosol of red blood cells which have a 3-month lifespan, blood Cd concentration reflects exposure in the past three months.

As noted in Section 3.1, and reviewed by Cirovic and Cirovic (2024) [56], the amount of Cd that reaches target tissues and organs depends on many factors, which include absorption rate, nutritional zinc status, and body iron store, not just the amount of Cd in the diet. Consequently, neither blood Cd concentration nor an amount of Cd in the diet can be a precise predictor of an internal dose of Cd. For example, Van Maele-Fabry et al. (2016) reported that breast cancer risk among postmenopausal women was not associated with dietary Cd exposure levels [57]. In comparison, Cd exposure was found to be a strong risk factor for breast cancer in studies in which Cd excretion was used as an exposure indicator [58,59]. In a study by Larsson et al. (2015), risk of having breast cancer increased 66% for each 0.5- $\mu\text{g/g}$ creatinine increase of urinary Cd excretion [58]. Lin et al. (2016) reported that breast cancer risk was not associated with dietary Cd exposure, but it was elevated 2.24-fold among women who had urinary Cd excretion rates in the top quartile, compared to those with urinary Cd in the lowest quartile [59].

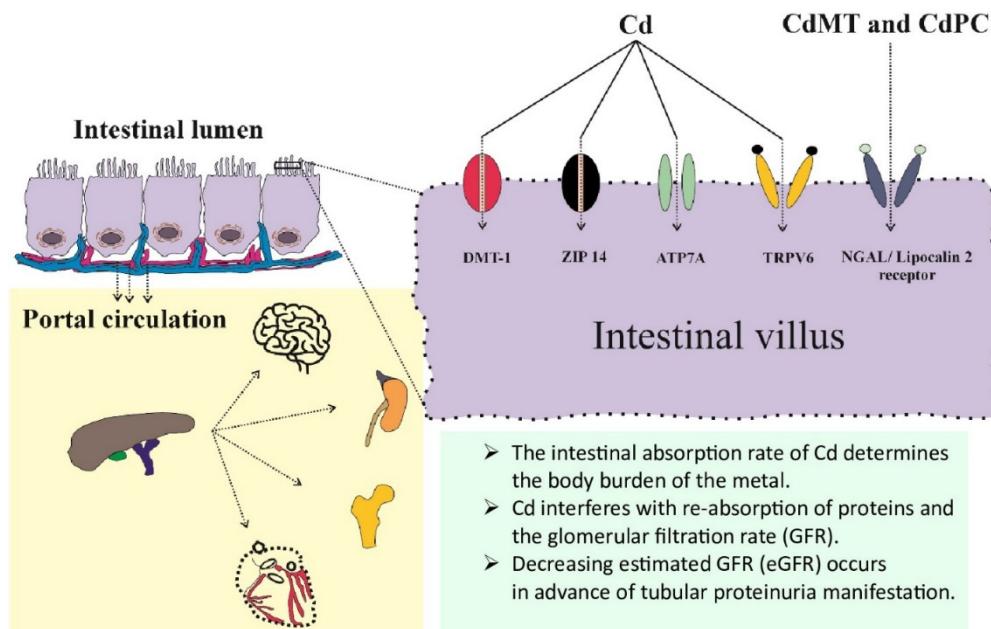
Non-association between blood Cd and diabetes has been reported in a recent case-control study from Thailand by Adokwe et al. (2025) [60]. However, in three U.S. population studies, risks of having prediabetes and diabetes both were associated with urinary Cd excretion rates [61–63]. In a study by Schwartz et al. (2003), respective risk of having prediabetes and diabetes rose 48% and 24% at Cd excretion rates of 1–2 $\mu\text{g/g}$ creatinine after smoking and other confounding factors were adjusted [61]. In a study by Wallia et al. (2010), a significant increase in risk of prediabetes was observed at Cd excretion rates $\geq 0.7 \mu\text{g/g}$ creatinine after adjustment for covariates [62]. In a study by Jiang et al. (2018), risk of having prediabetes was increased 3.4-fold in obese U.S. men who had urinary Cd excretion rate in the top quartile, compared to those with a normal weight and having urinary Cd excretion rate in the bottom quartile [63]. Risks of having break cancer, prediabetes and diabetes all have been found to be associated with urinary Cd excretion rates lower than 5.24 $\mu\text{g/g}$ creatinine, a threshold level identified from the $\beta_2\text{M}$ excretion rate $\geq 300 \mu\text{g/g}$ creatinine (Section 2.1).

3.3. Urinary Cd Excretion as an Indicator of Body Burden

It is well established that excretion of Cd can be used as a cumulative long-term exposure to the metal [64,65]. Precisely, a urinary Cd concentration reflects kidney burden because most acquired Cd can be found in the proximal tubular cells (PTCs) of kidneys which release Cd complexed with metallothionein (MT) into the lumen and then appears in urine, when they are injured or die from any cause [47].

In human population studies, urine samples are often collected at a single time point (a voided urine sample), and consequently adjusting of the urinary concentrations of Cd and all other urinary biomarkers to creatinine excretion (E_{cr}) has been used as a method to correct for differences in urine dilution among people. However, this E_{cr} -normalization creates a large statistical uncertain to datasets, resulting in an underestimation of an effect size of Cd, detailed further in Section 4. To circumvent such a problem created by E_{cr} -adjustment practice, normalization of Cd and other excreted substances to creatinine clearance (C_{cr}) has been used to simultaneously correct for interindividual differences in urine dilution, and the functioning nephrons. This C_{cr} -normalization has unveiled an unambiguous effect of Cd on eGFR [66] and the excretion of $\beta_2\text{M}$, albumin and total

proteins, discussed further in Section 4. Normalization of urinary concentrations of Cd and any excreted substance to E_{cr} and C_{cr} can be undertaken using equations below.


Excretion of x (E_x) was normalized to E_{cr} as $[x]_u/[cr]_u$, where $x = Cd$ or any excreted biomarker; $[x]_u$ = urine concentration of x (mass/volume) and $[cr]_u$ = urine creatinine concentration (mg/dL). E_x/E_{cr} was expressed as an amount of x excreted per g of creatinine.

Excretion of x (E_x) was normalized to creatinine clearance (C_{cr}) as $E_x/C_{cr} = [Cd]_u[cr]_p/[cr]_u$, where $x = Cd$ or any excreted biomarker; $[x]_u$ = urine concentration of x (mass/volume); $[cr]_p$ = plasma creatinine concentration (mg/dL); and $[cr]_u$ = urine creatinine concentration (mg/dL). E_x/C_{cr} was expressed as an amount of x excreted per volume of the glomerular filtrate [67].

3.4. Use of Urinary β_2M in Measuring Cd effect on Tubular Reabsorptive Function

Under normal physiologic conditions, blood perfuses the kidneys at the rate of 1 L per minute, and all renal blood flow is directed through afferent arterioles into glomeruli [68]. The plasma entering the glomerulus is filtered into Bowman's space, and 99.9% of the filtered protein is reabsorbed by tubules in an approximate of 40–50 g each day [68].

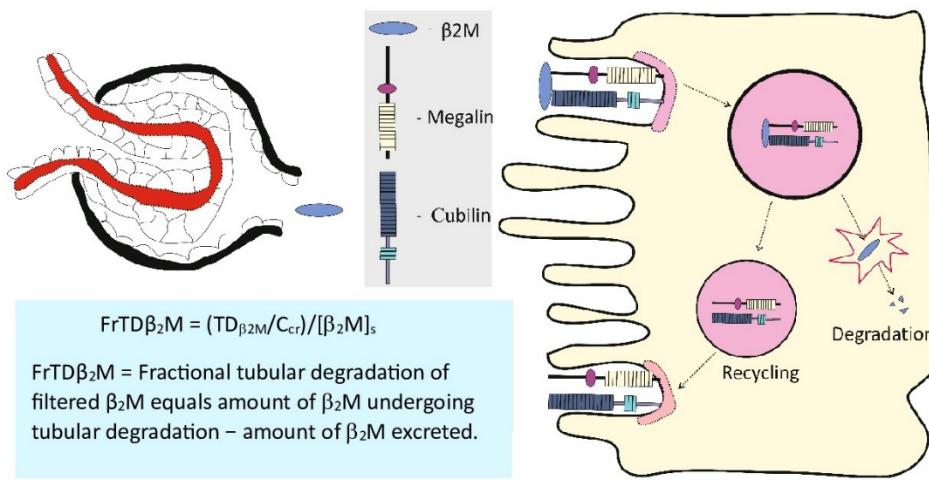

The protein β_2M with the molecular weight of 11800 Daltons is expressed on the surface of most nucleated cells and is released into the bloodstream [69,70]. As Figure 1 depicts, β_2M undergoes glomerular filtration, readily passes through the glomerular membrane to tubular lumen due to its small mass, and is reabsorbed and degraded by proximal tubular cells [69].

Figure 1. The pathway for cadmium in food to its toxic manifestation in kidneys. From the gut, Cd is delivered to liver via the portal blood system, before reaching the systemic circulation and transported to tissues and organs throughout the body. Due to a lack of excretory mechanism, Cd is retained within cells after entrance, notably the proximal tubular epithelial cells. The manifestation of toxic Cd accumulation in kidneys such as tubulointerstitial inflammation may incapacitate the glomerular filtration rate. Cd appears in urine after being released from injured or dying kidney tubular cells. Thus, it is argued that the excretion rate of Cd (E_{ca}) should be normalized to creatinine clearance (C_{cr}) to depict the amount of Cd exiting the kidneys per nephron [47].

As previously discussed, β_2M excretion rate of 300 $\mu\text{g/g}$ creatinine was used to signify a tubular effect of Cd [25]. Current evidence, however, suggests that excretion of β_2M is not a reliable tubular effect marker, and that the fractional tubular degradation of β_2M should be used instead of β_2M excretion [71]. Thus, the use of β_2M as a basis to estimate a Cd exposure limit is inappropriate and a tolerable intake as high as 58 $\mu\text{g/day}$ is not protective of human health.

The risk of developing CKD, signified by a decrease in eGFR to one third of the normal range or there is albuminuria which persists for at least 3 months [72–74] have been linked to dietary Cd exposure of $\geq 16.7 \mu\text{g}/\text{day}$ [75] and urinary Cd excretion of 0.27–0.37 $\mu\text{g}/\text{g}$ creatinine [76–78]. A new health-protective exposure limit for Cd is needed.

Figure 2. Measuring of an effect of Cd on tubular reabsorption of $\beta_2\text{M}$. The reabsorption of $\beta_2\text{M}$ occurs mostly in the S1 segment via receptor-mediated endocytosis, involving megalin. Fractional tubular reabsorption of $\beta_2\text{M}$ has emerged as a reliable parameter for assessment of tubular dysfunction [71].

4. Benchmark Dose Modeling of Cd Exposure and Its Nephrotoxicity

In this section, an application the BMD methodology to define a Point of Departure (POD) and a Cd-exposure threshold level is highlighted with a focus on functional kidney outcomes. Its primary aim is to identify the nephrotoxicity endpoint that can be considered as the most sensitive to Cd exposure. Its secondary aim is to illustrate the imprecision in determining internal Cd dose and its effect size, and the underestimation of the severity of an effect of Cd on eGFR and proteinuria, caused by the conventional normalization of excretion rate of nephrotoxicity biomarkers, such as $\beta_2\text{M}$ ($E_{\beta_2\text{M}}$), NAG (E_{NAG}), albumin (E_{alb}) and urinary total protein (E_{pro}), to creatinine excretion (E_{cr}).

4.1. Mathematical Models for Dose-Response Relationship Appraisal

Many mathematical dose-response models, namely inverse exponential, natural logarithmic, exponential, and Hill models, can be applied to continuous variables [1,3–5]. The mathematical dose-response models applicable to dichotomized or quantal datasets are two-stage, logarithmic logistic, Weibull, logarithmic probability, gamma, exponential, and Hill models [1,2]. Modeling of exposure-effect data can be done manually or using dose-response software programs, like the PROAST software (<https://proastweb.rivm.nl>) and the U.S. EPA's Benchmark Dose Software (BMDS) (<https://www.epa.gov/bmds>). Application of the PROAST software for continuous and quantal (prevalence) data are exemplified in Section 4.3.

4.1.1. Identification of POD, BMDL/BMDU, and NOAEL Equivalent of Cd Exposure

The main purpose of BMD modeling of continuous exposure-effect datasets is to define the lower bound (BMDL) and upper bound (BMDU) of the 95% confidence interval (CI) of BMD [1]. The lower bound (BMDL) value derived when the benchmark dose response (BMR) is set at 5% could reflect a Point of Departure (POD) or a reference point [1,3–5]. It is also referred to as the NOAEL equivalent, meaning the level of exposure below which an adverse effect of such exposure can be discernable. The upper bound (BMDU) is for computing the BMDU/BMDL ratio, which reflects the uncertainty in the BMD estimates. The wider difference between BMDL and BMDU values, the higher statistical uncertainty in the dataset [1,3–6].

4.1.2. Exposure Threshold Identification, BMDL₅/BMDL₁₀

The main purpose of BMD modeling of exposure-outcome prevalence datasets is to define the lower bound (BMDL) and upper bound (BMDU) of the 95% confidence interval (CI) of BMD [1,2,6]. The BMDL/BMDU values computed at 5% and 10% prevalence rates of an adverse effect are respectively designated as BMDL₅/BMDU₅ and BMDL₁₀/BMDU₁₀. The BMDL₅ could reflect a threshold level of exposure, defined as an exposure level below which the prevalence of adverse effect to be $\leq 5\%$.

4.2. Dose-Response Relationship

A significant relationship between exposure doses and outcomes should be first established before any reliable toxicological risk evaluation can be undertaken. However, as Grandjean and Budtz-Jørgensen (2007) noted that non-differential errors in the measurement of exposure and outcomes, termed total imprecision, can result in a failure to establish a dose-response relationship [19], which would otherwise be established, when such errors are eliminated [19]. The concept of imprecision in measurement of Cd exposure levels and its effects on kidneys have already evident from two meta-analyses, published in 2016 [79] and 2021 [80], leading to erroneous conclusion that there was no evidence that Cd exposure produced an effect on eGFR nor it contributed to progressive deterioration of eGFR among Cd-exposed individuals [79,80]. A dose-response relationship between eGFR and Cd has been unveiled in the latest meta-analysis by Docciali et al. (2024) [81].

Table 3 provides results from an analysis of data from 917 Thai subjects [76], where an effect size of Cd on eGFR was found to be smaller when E_{Cd} was normalized to E_{Cr}; doubling of E_{Cd}/E_{Cr} increased the risk of having low eGFR by 1.47-fold after adjustment for potential confounding factors. In comparison, the risk of having low eGFR rose 1.96-fold per doubling of and E_{Cd}/C_{Cr}. This was after similar adjustments for other variables.

Table 3. Effects of the normalization of Cd excretion rate on risk of having low eGFR.

Model A	POR	^a Low eGFR		<i>p</i>	
		95% CI			
		Lower	Upper		
Log ₂ [(E _{Cd} /E _{Cr}) $\times 10^3$], $\mu\text{g/g}$ creatinine	1.470	1.276	1.692	<0.001	
Hypertension	1.632	0.885	3.008	0.117	
Gender	1.029	0.528	2.002	0.934	
Smoking	1.232	0.637	2.383	0.536	
BMI, kg/m^2					
12-18	Referent				
19-23	1.058	0.459	2.439	0.894	
≥ 24	2.810	1.118	7.064	0.028	
Age, years					
16-45	Referent				
46-55	14.23	1.867	108.4	0.010	
56-65	28.21	3.538	224.9	0.002	
66-87	141.2	17.87	1116	<0.001	
Model B	POR	Lower	Upper	<i>p</i>	
Log ₂ [(E _{Cd} /C _{Cr}) $\times 10^3$], $\mu\text{g/L}$ filtrate	1.962	1.589	2.422	<0.001	
Hypertension	1.735	0.916	3.287	0.091	
Gender	0.840	0.410	1.719	0.633	
Smoking	0.944	0.474	1.879	0.869	
BMI, kg/m^2					
12-18	Referent				
19-23	1.109	0.452	2.717	0.822	
≥ 24	3.150	1.181	8.400	0.022	
Age, years					
16-45	Referent				

46-55	9.951	1.305	75.88	0.027
56-65	34.57	4.312	277.2	0.001
66-87	198.6	24.59	1605	<0.001

^a Low eGFR was defined as eGFR \leq 60 mL/min/1.73 m². E_{Cd} was normalized to E_{Cr} and C_{Cr} in models A and B, respectively. Data were from 917 subjects (562 females, 355 males), 16–87 years of age [76].

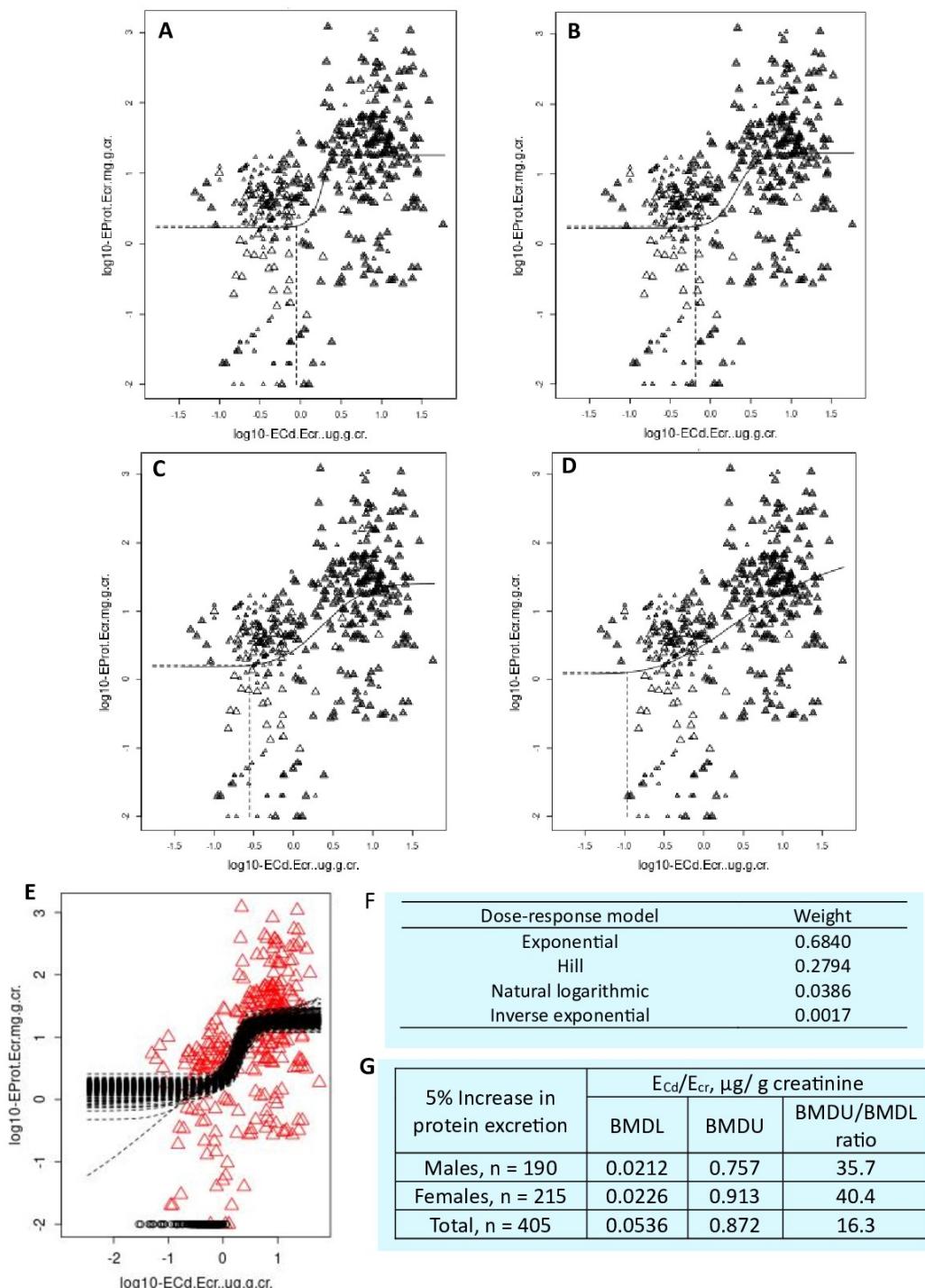
Further evidence that E_{Cd}/E_{Cr} created non-differential errors can be found in Table 4, where results from a study on 409 Thai subjects are provided [82]. In this study, effects of Cd on risks of eGFR and proteinuria were both evaluated to compare the impact of E_{Cr} and C_{Cr} normalization of E_{Cd} and E_{Pro}.

For E_{Cr}-normalized datasets (model A), risk of having low eGFR was not statistically associated with E_{Cd}/E_{Cr} ($p = 0.058$), while risk of having proteinuria rose 3.7-fold as E_{Cd}/E_{Cr} rose 10-fold ($p = 0.045$). Similar results were obtained in a meta-analysis by Jalili et al. (2021), who found an association of eGFR and E_{Cd}/E_{Cr} was insignificant, while the risk of proteinuria rose by 35% only, when the top category of Cd dose metrics was compared with the bottom Cd exposure category [80]. Thus, the risk of having proteinuria was reduced when E_{Cd} and E_{Pro} data were normalized to E_{Cr}, while the risk of having low eGFR was markedly diminished as such it became statistically insignificantly in E_{Cr} normalized data.

For C_{Cr}-normalized datasets, (model B), risks of having low eGFR and proteinuria rose 12-fold ($p < 0.001$) and 7-fold ($p = 0.001$), when there was a 10-fold increase in E_{Cd}/C_{Cr}.

Table 4. Effects of normalization of Cd excretion rate on risk of having low eGFR and proteinuria.

	Low eGFR ^a		Proteinuria ^b	
	POR (95% CI)	<i>p</i>	POR (95% CI)	<i>p</i>
Model A				
Age, years	1.121 (1.080, 1.165)	<0.001	1.068 (1.028, 1.110)	0.001
Log₁₀[(E_{Cd}/E_{Cr}) $\times 10^3$], $\mu\text{g/g}$ creatinine	2.638 (0.969, 7.182)	0.058	3.685 (1.027, 13.22)	0.045
Gender	1.082 (0.490, 2.390)	0.845	1.096 (0.475, 2.528)	0.829
Smoking	1.425 (0.596, 3.406)	0.426	1.678 (0.627, 4.486)	0.303
Hypertension	2.211 (1.017, 4.805)	0.045	1.113 (0.432, 2.867)	0.824
Model B				
Age, years	1.118 (1.073, 1.165)	<0.001	1.061 (1.022, 1.102)	0.002
Log₁₀[(E_{Cd}/C_{Cr}) $\times 10^5$], mg/L filtrate	12.24 (3.729, 40.20)	<0.001	7.143 (2.133, 23.92)	0.001
Gender	0.802 (0.346, 1.861)	0.608	1.117 (0.482, 2.587)	0.796
Smoking	1.335 (0.546, 3.262)	0.527	1.947 (0.725, 5.234)	0.186
Hypertension	2.734 (1.204, 6.207)	0.016	1.018 (0.410, 2.530)	0.969

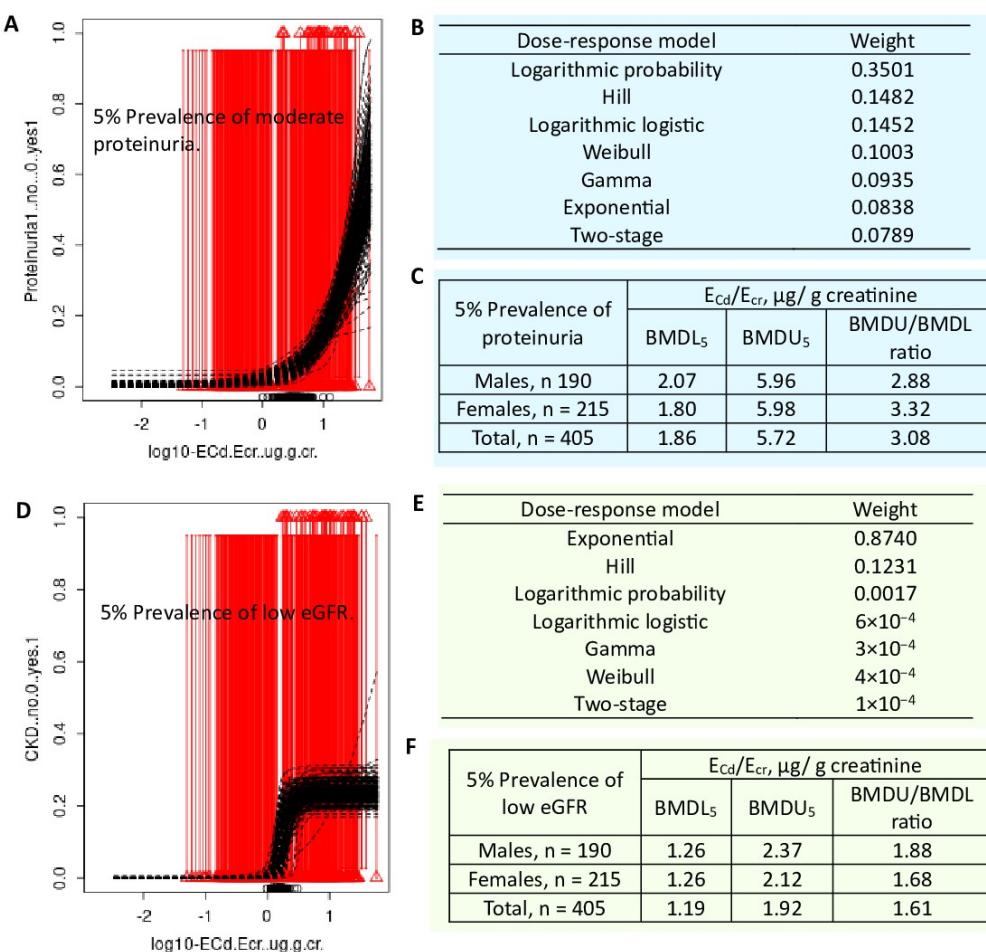

^a Low eGFR was defined as eGFR \leq 60 mL/min/1.73 m². ^b Proteinuria was defined as E_{Pro}/E_{Cr} \geq 100 mg/g creatinine and (E_{Pro}/C_{Cr}) $\times 100 \geq 100$ mg/L filtrate in models A and B, respectively. Data were from 405 subjects (208 females, 197 males) [82].

In summary, adjusting the urinary concentrations of Cd and urinary biomarkers of kidney effects, like total protein to E_{Cr} appeared to generate non-differential errors that bias the dose-response relationship toward the null. As data in Table 4 illustrate, a dose-response relationship could not be established between eGFR and E_{Cd}/E_{Cr}, while the strength of an association between E_{Pro}/E_{Cr} and E_{Cd}/E_{Cr} was weak. Consequently, Cd exposure limits cannot not reliably be derived from E_{Cr}-adjusted datasets.

4.3. The PROAST Software for BMD Modeling

Typically, a single or two dose-response models are used in manual BMD computation, which is cumbersome. The BMD software program like the PROAST is increasingly been used as it is freely accessible (web-based), and it offers several advantages; there are many dose-response models to choose and it employs the Akaike information criterion (AIC), which objectively compare the relative

goodness of fit of different models [6]. The dose-response curve in which the data best fit offers an insight into the shape and steepness of the slope describing an effect size of Cd. Outputs from the PROAST software applied to continuous and quantal data from the same 409 individuals [82] shown in Table 4 are recapitulated in Figures 3 and 4.


Figure 3. Outputs from the PROAST software applied to $\text{E}_{\text{cd}}/\text{E}_{\text{cr}}$ and protein excretion datasets. The mathematical dose-response models applied to datasets are exponential (A), Hill (B), natural logarithmic (C), and inverse exponential (D). Bootstrap model averaging with 200 repeats (E), model weighing (F), BMDL and BMDU values [G]. This figure is adapted from Satarug et al. 2024 [82].

For $\text{E}_{\text{cd}}/\text{E}_{\text{cr}}$ and $\text{E}_{\text{pro}}/\text{E}_{\text{cr}}$ datasets (Figure 3), the mathematical dose-response models used were exponential, Hill, natural logarithmic, and inverse exponential. Based on the model weights, the

exponential model carried the highest weight (0.6840), followed by Hill model (0.2794), while natural logarithmic model (0.0386) and inverse exponential model (0.0017) carried much less weights. By model averaging, the BMDL value or the NOAEL equivalent of E_{Cd}/E_{cr} was 0.0536 $\mu\text{g/g}$ for E_{pro} endpoint. Notably, the BMDL value of E_{Cd}/E_{cr} for E_{pro} endpoint will be unreliable if only Hill model is applied.

For E_{Cd}/E_{cr} and proteinuria prevalence datasets (Figure 4), the mathematical dose-response models used were two-stage, logarithmic logistic, Weibull, logarithmic probability, gamma, exponential, and Hill model. By model averaging, $BMDL_5$ value of E_{Cd}/E_{cr} for proteinuria endpoint was 1.86 $\mu\text{g/g}$ creatinine. This represented a threshold level for proteinuria. The E_{Cd}/E_{cr} -CKD prevalence curve fit moderately logarithmic probability (0.3501), followed by Hill (0.1482) and logarithmic logistic models (0.1452).

The same seven dose-response models were applied to E_{Cd}/E_{cr} -low eGFR (CKD) prevalence datasets (Figure 4). The $BMDL_5$ value of E_{Cd}/E_{cr} for CKD was 1.19 $\mu\text{g/g}$ creatinine. The E_{Cd}/E_{cr} -CKD prevalence curve fit predominantly exponential model (0.8740), meaning that a small change in E_{Cd}/E_{cr} will result in a large increase in CKD prevalence. Thus, CKD prevalence rate was more sensitive to Cd than proteinuria prevalence.

Figure 4. Outputs from the PROAST software applied to E_{Cd}/E_{cr} -proteinuria and E_{Cd}/E_{cr} -low eGFR datasets. The mathematical dose-response models applied to prevalence datasets are two-stage, logarithmic logistic, Weibull, logarithmic probability, gamma, exponential, and Hill. This figure is adapted from Satarug et al. 2024 [82].

4.4. Comparing Reproved BMD Values for Different Nephrotoxic Endpoints

Health-based exposure guidance value for Cd exposure, derived from different “POD” figures like MRL, TRV, TWI, TMI, and RfD, all assumes that a threshold level of exposure exists [1]. In theory, an exposure level derived from the most sensitive endpoint or the one with the lowest BMDL value

would be protective against all other adverse effects [1]. Thus, the lowest BMDL value of E_{Cd}/E_{Cr} should be used to define Cd exposure guidance value. To identify the most sensitive endpoint for an effect of Cd on the functional integrity of kidneys, reported results of BMD modeling of continuous and quantal data; BMDL/BMDU, BMDL₅/BMDU₅ and BMDL₁₀/BMDU₁₀ of E_{Cd}/E_{Cr} are compared.

Current Cd exposure guidelines range from 0.21 and 0.83 $\mu\text{g}/\text{kg}$ body weight per day have been determined (Table 1). These were based on different endpoints and methodologies. However, most countries employ the JECFA “tolerable” exposure level of Cd at 0.83 $\mu\text{g}/\text{kg}$ body weight per day and BMDL₅, a threshold level of 5.24 $\mu\text{g}/\text{g}$ creatinine. Indeed, the Cd exposure threshold or BMDL₅ value of E_{Cd}/E_{Cr} of 5.24 $\mu\text{g}/\text{g}$ creatinine was based solely on the $\beta_2\text{M}$ endpoint. Qing et al. (2023) reported that average dietary Cd exposure in China was 34.3 $\mu\text{g}/\text{day}$, varying between 22.6 and 54.5 $\mu\text{g}/\text{day}$ across regions, and that dietary Cd exposure recorded for 15.4% of study population exceeded the JECFA tolerable intake level of 49.8 $\mu\text{g}/\text{day}$ for a 60 kg person [83].

Many BMDL₅ values of E_{Cd}/E_{Cr} have now been determined using other kidney tubular biomarkers, like excretion of retinal binding protein (RBP) and NAG, together with the $\beta_2\text{M}$. Findings from two meta-analyses, summarized below showed that BMDL₅ values of E_{Cd}/E_{Cr} for nephrotoxicity were lower than 5.24 $\mu\text{g}/\text{g}$ creatinine.

Liu et al. (2016), applied the BMD modeling to the Cd exposure and NAG data recorded in 30 publications, and they identified BMDL₅ value of E_{Cd}/E_{Cr} to be 1.67 $\mu\text{g}/\text{g}$ creatinine [84]. Based on data from 13 publications, Woo et al. (2015) found BMDL₅ value of E_{Cd}/E_{Cr} for the $\beta_2\text{M}$ endpoint to be 4.88, 3.13 and 1.9 $\mu\text{g}/\text{g}$ creatinine, depending on the cut-off values for $\beta_2\text{M}$ used. The BMDL₅ value of E_{Cd}/E_{Cr} of 1.9 $\mu\text{g}/\text{g}$ creatinine was obtained, when $\beta_2\text{M} \leq 400 \mu\text{g}/\text{g}$ creatinine were used as a cut-off value [85].

Many more BMDL, BMDL₅ values of E_{Cd}/E_{Cr} derived from various nephrotoxicity endpoints can be found in Table 5.

Table 5. BMD modeling of Cd exposure with different nephrotoxicity endpoints.

Endpoints/Population	Results	Reference
NAG and eGFR n = 790 women, 53–64 years, Sweden	BMDL (BMD) values of E_{Cd}/E_{Cr} were 0.5 (0.6) and 0.7 (1.1) $\mu\text{g}/\text{g}$ creatinine the NAG and eGFR endpoints, respectively.	Suwazono et al. 2006[86]
RBP, $\beta_2\text{M}$ and NAG n = 934 (469 men, 465 women), 10–71+ years, Jiangshan City, Zhejiang, China	BMDL values of E_{Cd}/E_{Cr} at 5% (10%) BMR in men were 0.89 (1.59), 0.62 (1.30), 0.49 (1.04) $\mu\text{g}/\text{g}$ creatinine for the RBP, $\beta_2\text{M}$, and NAG endpoints, respectively. Corresponding BMDL values of E_{Cd}/E_{Cr} in women were 0.76 (1.53), 0.64 (1.34), 0.65 (1.37) $\mu\text{g}/\text{g}$ creatinine for the RBP, $\beta_2\text{M}$, and NAG endpoints.	Wang et al. 2016 [87]
$\beta_2\text{M}$, TR $\beta_2\text{M}$ and eGFR (or C_{Cr}) n = 112 (Cd-polluted area, n = 74, non-polluted area, n = 38) Japan	BMDL values of E_{Cd}/E_{Cr} in men were 1.8, 1.8, and 3.6 $\mu\text{g}/\text{g}$ creatinine for the $\beta_2\text{M}$ endpoint and decreases in TR $\beta_2\text{M}$ by 5% and 10%, respectively. Corresponding BMDL values of E_{Cd}/E_{Cr} in women were 2.5, 2.6, and 3.9 $\mu\text{g}/\text{g}$ creatinine. BMDL values of E_{Cd}/E_{Cr} for the eGFR (C_{Cr}) endpoint in men and women were 2.9 and 3.5 $\mu\text{g}/\text{g}$ creatinine, respectively	Hayashi et al. 2024 [88]
NAG, $\beta_2\text{M}$, and eGFR n = 734 (Bangkok, n = 200, Mae Sot, n = 534), 16–87 years, Thailand	BMDL/BMDU values of E_{Cd}/E_{Cr} in men were 0.060/0.504 $\mu\text{g}/\text{g}$ creatinine for the NAG, while BMDL ₁₀ /BMDU ₁₀ values were 0.469/0.973 and 3.26/7.46 $\mu\text{g}/\text{g}$ creatinine for the β_2 -microglobulinuria and low eGFR ^a , respectively. Corresponding BMDL/BMDU values of E_{Cd}/E_{Cr} in women were 0.069/0.537 $\mu\text{g}/\text{g}$ creatinine for NAG, while BMDL ₁₀ /BMDU ₁₀ were 0.733/1.29 and 4.98/9.68 $\mu\text{g}/\text{g}$ creatinine for the β_2 -microglobulinuria and low eGFR.	Satarug et al. 2022 [89]
Protein excretion and low eGFR n = 405 (Bangkok, n = 100,	BMDL/BMDU values of E_{Cd}/E_{Cr} for protein loss in men were 0.021/0.757 $\mu\text{g}/\text{g}$ creatinine, while BMDL ₅ /BMDU ₅ values for proteinuria were 2.07/5.96 $\mu\text{g}/\text{g}$ creatinine.	Satarug et al. 2024 [82]

Mae Sot, n = 215), 19–87 years, Thailand	Corresponding BMDL/BMDU values of E_{Cd}/E_{Cr} in women were 0.023/0.913 $\mu\text{g/g}$ creatinine, while $BMDL_5/BMDU_5$ values for proteinuria were 1.80/5.98 $\mu\text{g/g}$ creatinine. In a whole group, BMDL/BMDU values of E_{Cd}/E_{Cr} for protein loss were 0.054/0.872 $\mu\text{g/g}$ creatinine, while $BMDL_5/BMDU_5$ values were 1.86/5.72 and 1.19/1.92 $\mu\text{g/g}$ creatinine for proteinuria and low eGFR, respectively.	
--	--	--

NAG, N-acetyl- β -D-glucosaminidase; eGFR, estimated glomerular filtration rate; RBP, retinal binding protein; β 2M, β 2-microglobulin; TR β 2M, tubular reabsorption of β 2M. a Low eGFR was defined as $eGFR \leq 60 \text{ mL/min/1.73 m}^2$, a diagnostic criterion for chronic kidney disease.

As typical, Wang et al. (2016) reported BMDL (BMD) values of E_{Cd}/E_{Cr} for markers of tubular toxicity, namely RBP, β 2M and NAG [87]. Surprisingly, a few studies have applied BMD methodology to the data on eGFR although low eGFR is a diagnostic criterion for CKD. There is only one paper involved BMD modeling of total protein excretion although this parameter is a predictor of continued nephron destruction, resulting in progressive decline of eGFR [82]. Interestingly, Cd exposure has been causally related to a rapid fall of eGFR in a prospective cohort study from Switzerland (n = 4704) [90]. Respective BMDL₅ value of E_{Cd}/E_{Cr} were 1.86 and 1.19 $\mu\text{g/g}$ creatinine, when proteinuria and low eGFR were used as endpoints [82].

It is notable that BMD values of E_{Cd}/E_{Cr} for effects on the glomerular filtration rate (GFR) and tubular injury/dysfunction were marginally different, meaning these two effects are intertwined. A study on Swedish women by Suwazono et al. (2006) reported BMD values of E_{Cd}/E_{Cr} for effects on eGFR together with E_{NAG}/E_{Cr} [86]. The BMDL values of E_{Cd}/E_{Cr} in Swedish women were 0.5 and 0.7 $\mu\text{g/g}$ creatinine for the tubular injury (E_{NAG}/E_{Cr}) and eGFR endpoints [86]. Satarug et al. (2022) reported BMD values of E_{Cd}/E_{Cr} for effects on eGFR, E_{NAG}/E_{Cr} plus $E_{\beta 2M}/E_{Cr}$ using Thai population data [89]. Hayashi et al. (2024) reported the BMDL values of E_{Cd}/E_{Cr} in Japanese women were 3.9 and 3.5 $\mu\text{g/g}$ creatinine for a 10% decrease in tubular reabsorption of β 2M) and C_{Cr} effect, respectively [88].

Another notable result comes from Thai population data, suggesting that the nephrotoxicity of Cd occurs at a very low body burden. Respective NOAEL equivalents of E_{Cd}/E_{Cr} in men and women were 0.060 and 0.069 $\mu\text{g/g}$ creatinine for a 5% increase in E_{NAG}/E_{Cr} [89]. The NOAEL equivalent of E_{Cd}/E_{Cr} was as little as 0.054 $\mu\text{g/g}$ creatinine, when a 5% increase in total protein excretion was used as an endpoint [82].

The BMDL₅/BMDL₁₀ values of E_{Cd}/E_{Cr} for proteinuria were 1.86 and 4.47 $\mu\text{g/g}$ creatinine, meaning that the prevalence of Cd-related proteinuria would increase from 5% to 10% when population mean value of E_{Cd}/E_{Cd} increases from 1.86 to 4.47 $\mu\text{g/g}$ creatinine. For the low eGFR endpoint, BMDL₅/BMDL₁₀ values of E_{Cd}/E_{Cr} were 1.19 and 1.35 $\mu\text{g/g}$ creatinine, meaning that the prevalence of Cd-related low eGFR would increase from 5% to 10% when population mean value of E_{Cd}/E_{Cd} increases from 1.19 to 1.35 $\mu\text{g/g}$ creatinine. Apparently, an effect size of Cd on eGFR decline was larger than proteinuria.

4.5. BMDL₅ and BMDL₁₀ Values of Cd Exposure Derived from E_{Cr} - and C_{Cr} Normalized Data

To demonstrate that normalization of E_{Cd} and E_{alb} to C_{Cr} was superior to a conventional adjustment of E_{Cd} and E_{alb} to E_{Cr} , the quantal BMD modeling outputs of the PROAST software can be found in Table 6.

Table 6. BMDL₅ and BMDL₁₀ of E_{Cd}/E_{Cr} versus E_{Cd}/C_{Cr} from albuminuria and CKD prevalences.

Prevalence of Adverse Outcome	E_{Cd}/E_{Cr} , $\mu\text{g/g}$ creatinine			$(E_{Cd}/C_{Cr}) \times 100$, $\mu\text{g/L}$ filtrate		
5% Albuminuria ^a	BMDL ₅	BMDU ₅	BMDU ₅ /BMDL ₅	BMDL ₅	BMDU ₅	BMDU ₅ /BMDL ₅
Males	3.06×10^{-3}	36.7	1.2×10^2	0.163	13	80

Females	1.22×10^{-2}	3.05×10^5	2.5×10^7	0.718	154	60
10% Albuminuria	BMDL₁₀	BMDU₁₀	BMDU₁₀/BMDL₁₀	BMDL₁₀	BMDU₁₀	BMDU₁₀/BMDL₁₀
Males	0.55	337	612	1.65	20	12
Females	2.52	1.74×10^6	6.7×10^5	3.55	2.12	60
5% CKD ^b	BMDL₅	BMDU₅	BMDU₅/BMDL₅	BMDL₅	BMDU₅	BMDU₅/BMDL₅
Males	1.47	10.6	7.7	3.22	9.64	2.90
Females	1.93	15.6	8.08	3.33	9.20	2.26
10% CKD	BMDL₁₀	BMDU₁₀	BMDU₁₀/BMDL₁₀	BMDL₁₀	BMDU₁₀	BMDU₁₀/BMDL₁₀
Males	3.92	15.7	4.00	5.61	13.4	2.39
Females	5.31	23.6	4.44	5.88	12.9	2.19

^a Albuminuria was defined as urinary albumin-to-creatinine ratios ≥ 20 mg/g in men and ≥ 30 mg/g in women for E_{cr}-normalized data, while it was defined as $(E_{Alb}/C_{cr}) \times 100 \geq 20$ mg/L filtrate in men and ≥ 30 mg/L filtrate in women for C_{cr}-normalized data. ^b CKD was defined as eGFR ≤ 60 mL/min/1.73 m². Data were from 603 subjects (203 males, 400 females) [91].

Due to a high degree of statistical uncertainty, indicated by the BMDU/BMDL ratios ≥ 200 , the BMDL₅ and BMDL₁₀ values of E_{Cd}/E_{cr} could not be reliably defined for albuminuria endpoint. However, when 5% and 10% CKD prevalence rates were endpoints, the BMDL₅ and BMDL₁₀ values of E_{Cd}/E_{cr} were determined with certainty. In women the BMDL₅ and BMDL₁₀ values of E_{Cd}/E_{cr} for CKD endpoint were 1.93, and 5.31 μ g/g creatinine, respectively. Corresponding BMDL₅ and BMDL₁₀ values of E_{Cd}/E_{cr} in men were 1.47, and 3.92 μ g/g creatinine. Lower BMDL₅ and BMDL₁₀ values of E_{Cd}/E_{cr} in men, compared to women were due to higher creatinine excretion rates in men, attributable to a universally higher muscle mass in men than women of similar age.

In comparison BMDL₅ and BMDL₁₀ values of Cd exposure levels were determined with certainty for both albuminuria and CKD prevalence endpoints when C_{cr}-normalized data were analyzed. For the CKD (low eGFR) prevalence endpoint, BMDL₅ and BMDL₁₀ in men and women were not different statistically. In theory, the basic mechanism of the Cd toxicity in PTCs should be the same as such the toxic exposure level of Cd can be expected to be the same for both genders. These data strengthen the superior of C_{cr}-normalization of the urinary Cd concentration because excreted Cd originated from PTCs. Indeed, applying C_{cr}-normalization to urinary Cd and NAG concentrations, independent effects of age and Cd exposure on the rate of loss of tubular cells per nephron has been determined [92].

5. Conclusions

In many populations, Cd exposure level has now reached toxic levels in a significant proportion of people, and yet there is no consensus on a safe exposure level for the metal. The main route of Cd exposure in non-smokers and non-occupationally exposed people is a normal diet. However, current dietary exposure guidelines are not low enough to protect kidney health. An elevation of β_2M excretion used as a basis for derivation of a tolerable Cd exposure level is not a reliable indicator of kidney tubular dysfunction. The fractional tubular degradation of β_2M has been emerged as a measure of tubular dysfunction and thus should be employed for such a purpose.

A practice of adjusting urinary Cd, β_2M , NAG, albumin, and total proteins to creatinine excretion (E_{cr}) incorporates a conceptual flaw, which creates non-differential errors and bias the dose-response relationship toward the null. These errors and total imprecision can be eliminated by adjusting urinary Cd to creatinine clearance (C_{cr}). This C_{cr}-normalization practice does not require timed urine collection. The BMDL (NOAEL equivalent), BMDL₅ and BMDL₁₀ values for Cd exposure computed from C_{cr}-normalized data should thus be used in health-based exposure guidelines for Cd.

Using E_{NAG}/E_{cr} and E_{pro}/E_{cr} as endpoints, respective NOAEL equivalents of E_{Cd}/E_{cr} identified from Thai population datasets were 0.060 and 0.054 μ g/g creatinine. These figures are 10-fold below mean E_{Cd}/E_{cr} recorded for the general populations in many countries of 0.5-0.6 μ g/g creatinine. Using population prevalence of CKD as an endpoint, an exposure threshold level of Cd (BMD₅ value of

E_{Cd}/E_{cr}) was 1.19 $\mu\text{g/g}$ creatinine below which the prevalence of Cd-related CKD is expected to be $\leq 5\%$.

Based on the above BMD modeling data, and there is no theoretical reason to believe that a decrease in eGFR due to nephron destruction by Cd is irreversible, new dietary Cd exposure guidelines should be established to preserve kidney functional integrity and to minimize disease progression toward kidney failure. Public health measures should be developed to minimize Cd contamination of food chains and maintain the lowest achievable Cd levels in food crops, especially staples. An effective chelation therapy to remove Cd from the kidneys does not exist. Avoidance of foods containing high Cd and smoking cessation are essential preventive measures as is the maintenance of an optimal body content of essential metals, notably zinc and iron to reduce Cd assimilation and kidney burdens to the lowest achievable level.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author thanks Aleksandar Cirovic for his assistance in designing Figures 1 and 2. The author also thanks Aleksandra Buha Đorđević for her professional BMD modeling. The work was supported with resources of Centre for Kidney Disease Research, Translational Research Institute, and Department of Kidney and Transplant Services, Princess Alexandra Hospital, QLD, Australia.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Moffett, D.B.; Mumtaz, M.M.; Sullivan, D.W., Jr.; Whittaker, M.H. Chapter 13, General Considerations of Dose-Effect and Dose-Response Relationships. In *Handbook on the Toxicology of Metals*, 5th ed.; Volume I: General Considerations; Nordberg, G., Costa, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 299-317.
2. Sand, S.; Filipsson, A.F.; Victorin, K. Evaluation of the benchmark dose method for dichotomous data: model dependence and model selection. *Regul. Toxicol. Pharmacol.* **2002**, *36*, 184-197.
3. Slob, W.; Moerbeek, M.; Rauniomaa, E.; Piersma, A.H. A statistical evaluation of toxicity study designs for the estimation of the benchmark dose in continuous endpoints. *Toxicol. Sci.* **2005**, *84*, 167-185.
4. Slob, W.; Setzer, R.W. Shape and steepness of toxicological dose-response relationships of continuous endpoints. *Crit. Rev. Toxicol.* **2014**, *44*, 270-297.
5. Slob, W. A general theory of effect size, and its consequences for defining the benchmark response (BMR) for continuous endpoints. *Crit. Rev. Toxicol.* **2017**, *47*, 342-351.
6. EFSA Scientific Committee. Update: Use of the benchmark dose approach in risk assessment. *EFSA J.* **2017**, *15*, 4658.
7. Waalkes, M.P.; Rehm, S. Chronic toxic and carcinogenic effects of cadmium chloride in male DBA/2NCr and NFS/NCr mice: Strain-dependent association with tumors of the hematopoietic system, injection site, liver, and lung. *Fundam. Appl. Toxicol.* **1994**, *23*, 21-31.
8. Huff, J.; Lunn, R.M.; Waalkes, M.P.; Tomatis, L.; Infante, P.F. Cadmium-induced cancers in animals and in humans. *Int. J. Occup. Environ. Health* **2007**, *13*, 202-212.
9. Tokar, E.J.; Benbrahim-Tallaa, L.; Waalkes, M.P. Metal ions in human cancer development. *Met. Ions Life Sci.* **2011**, *8*, 375-401.
10. Callan, A.; Hinwood, A.; Devine, A. Metals in commonly eaten groceries in Western Australia: A market basket survey and dietary assessment. *Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.* **2014**, *31*, 1968-1981.
11. Watanabe, T.; Kataoka, Y.; Hayashi, K.; Matsuda, R.; Uneyama, C. Dietary Exposure of the Japanese General Population to Elements: Total Diet Study 2013-2018. *Food Saf. (Tokyo)* **2022**, *10*, 83-101.

12. Pokharel, A.; Wu, F. Dietary exposure to cadmium from six common foods in the United States. *Food Chem. Toxicol.* **2023**, *178*, 113873.
13. Boon, P.E.; Pustjens, A.M.; Te Biesebeek, J.D.; Brust, G.M.H.; Castenmiller, J.J.M. Dietary intake and risk assessment of elements for 1- and 2-year-old children in the Netherlands. *Food Chem Toxicol.* **2022**, *161*, 112810.
14. Almerud, P.; Zamaratskaia, G.; Lindroos, A.K.; Bjermo, H.; Andersson, E.M.; Lundh, T.; Ankarberg, E.H.; Lignell, S. Cadmium, total mercury, and lead in blood and associations with diet, sociodemographic factors, and smoking in Swedish adolescents. *Environ. Res.* **2021**, *197*, 110991.
15. Hill, D.T.; Jandev, V.; Petroni, M.; Atallah-Yunes, N.; Bendinskas, K.; Brann, L.S.; Heffernan, K.; Larsen, D.A.; MacKenzie, J.A.; Palmer, C.D.; et al. Airborne levels of cadmium are correlated with urinary cadmium concentrations among young children living in the New York state city of Syracuse, USA. *Environ. Res.* **2023**, *223*, 115450.
16. Satarug, S.; Vesey, D.A.; Gobe, G.C.; Phelps, K.R. Estimation of health risks associated with dietary cadmium exposure. *Arch. Toxicol.* **2023**, *97*, 329-358.
17. Egger, A.E.; Grabmann, G.; Gollmann-Tepenköylü, C.; Pechriggl, E.J.; Artner, C.; Türkcan, A.; Hartinger, C.G.; Fritsch, H.; Keppler, B.K.; Brenner, E.; et al. Chemical imaging and assessment of cadmium distribution in the human body. *Metalomics* **2019**, *11*, 2010-2019.
18. Cirovic, A.; Satarug, S. Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium. *Int. J. Mol. Sci.* **2024**, *25*, 1851.
19. Satarug, S.; Garrett, S.H.; Somji, S.; Sens, M.A.; Sens, D.A. Aberrant Expression of ZIP and ZnT Zinc Transporters in UROtsa Cells Transformed to Malignant Cells by Cadmium. *Stresses* **2021**, *1*, 78-89.
20. Grandjean, P.; Budtz-Jørgensen, E. Total imprecision of exposure biomarkers: implications for calculating exposure limits. *Am. J. Ind. Med.* **2007**, *50*, 712-719.
21. Aoshima, K. Epidemiology of renal tubular dysfunction in the inhabitants of a cadmium-polluted area in the Jinzu River basin in Toyama Prefecture. *Tohoku J. Exp. Med.* **1987**, *152*, 151-172.
22. Horiguchi, H.; Aoshima, K.; Oguma, E.; Sasaki, S.; Miyamoto, K.; Hosoi, Y.; Katoh, T.; Kayama, F. Latest status of cadmium accumulation and its effects on kidneys, bone, and erythropoiesis in inhabitants of the formerly cadmium-polluted Jinzu River Basin in Toyama, Japan, after restoration of rice paddies. *Int. Arch. Occup. Environ. Health* **2010**, *83*, 953-970.
23. Kurata, Y.; Katsuta, O.; Doi, T.; Kawasuso, T.; Hiratsuka, H.; Tsuchitani, M.; Umemura, T. Chronic cadmium treatment induces tubular nephropathy and osteomalacic osteopenia in ovariectomized cynomolgus monkeys. *Vet. Pathol.* **2014**, *51*, 919-931.
24. Wong, C.; Roberts, S.M.; Saab, I.N. Review of regulatory reference values and background levels for heavy metals in the human diet. *Regul. Toxicol. Pharmacol.* **2022**, *130*, 105122.
25. JECFA. Summary and Conclusions. In Proceedings of the Joint FAO/WHO Expert Committee on Food Additives and Contaminants, Seventy-Third Meeting, Geneva, Switzerland, 8-17 June 2010; JECFA/73/SC. Food and Agriculture Organization of the United Nations/World Health Organization: Geneva, Switzerland, 2011. Available online: <https://apps.who.int/iris/handle/10665/44521> (accessed on 22 March 2025).
26. European Food Safety Authority (EFSA) Scientific opinion on cadmium in food. *EFSA J.* **2009**, *980*, 1-139.
27. European Food Safety Authority (EFSA) Statement on tolerable weekly intake for cadmium. *EFSA J.* **2011**, *9*, 1975.
28. Qing, Y.; Yang, J.; Zhu, Y.; Li, Y.; Zheng, W.; Wu, M.; He, G. Dose-response evaluation of urinary cadmium and kidney injury biomarkers in Chinese residents and dietary limit standards. *Environ. Health* **2021**, *20*, 75.
29. Qing, Y.; Yang, J.; Chen, Y.; Shi, C.; Zhang, Q.; Ning, Z.; Yu, Y.; Li, Y. Urinary cadmium in relation to bone damage: Cadmium exposure threshold dose and health-based guidance value estimation. *Ecotoxicol. Environ. Saf.* **2021**, *226*, 112824.
30. Leconte, S.; Rousselle, C.; Bodin, L.; Clinard, F.; Carne, G. Refinement of health-based guidance values for cadmium in the French population based on modelling. *Toxicol. Lett.* **2021**, *340*, 43-51.

31. Schaefer, H.R.; Flannery, B.M.; Crosby, L.M.; Pouillot, R.; Farakos, S.M.S.; Van Doren, J.M.; Dennis, S.; Fitzpatrick, S.; Middleton, K. Reassessment of the cadmium toxicological reference value for use in human health assessments of foods. *Regul. Toxicol. Pharmacol.* **2023**, *144*, 105487.
32. Pouillot, R.; Farakos, S.S.; Spungen, J.; Schaefer, H.R.; Flannery, B.M.; Van Doren, J.M. Cadmium physiologically based pharmacokinetic (PBPK) models for forward and reverse dosimetry: Review, evaluation, and adaptation to the U.S. population. *Toxicol. Lett.* **2022**, *367*, 67-75.
33. Brzóska, M.M.; Moniuszko-Jakoniuk, J. Disorders in bone metabolism of female rats chronically exposed to cadmium. *Toxicol. Appl. Pharmacol.* **2005**, *202*, 68-83.
34. Brzóska, M.M.; Moniuszko-Jakoniuk, J. Bone metabolism of male rats chronically exposed to cadmium. *Toxicol. Appl. Pharmacol.* **2005**, *207*, 195-211.
35. Brzóska, M.M.; Moniuszko-Jakoniuk, J. Effect of low-level lifetime exposure to cadmium on calcitropic hormones in aged female rats. *Arch. Toxicol.* **2005**, *79*, 636-646.
36. Faroон, O.; Keith, S.; Mumtaz, M.; Ruiz, P. Minimal Risk Level Derivation for Cadmium: Acute and Intermediate Duration Exposures. *J. Exp. Clin. Toxicol.* **2017**, *1*, 1-12.
37. NTP, NIH Publication 95-3388: NTP technical report on toxicity studies of cadmium oxide (CAS No. 1306-19-0) Administered by Inhalation to F344/N Rats and B6C3F1 Mice, U.S. Department of Health and Human Services. National Institutes of Health. National Toxicology Program, Research Triangle Park, NC, 1995.
38. Fujita, Y.; el Belbasi, H.I.; Min, K.S.; Onosaka, S.; Okada, Y.; Matsumoto, Y.; Mutoh, N.; Tanaka, K. Fate of cadmium bound to phytochelatin in rats. *Res. Commun. Chem. Pathol. Pharmacol.* **1993**, *82*, 357-365.
39. Langelueddecke, C.; Roussa, E.; Fenton, R.A.; Thévenod, F. Expression and function of the lipocalin-2 (24p3/NGAL) receptor in rodent and human intestinal epithelia. *PLoS ONE* **2013**, *8*, e71586.
40. Langelueddecke, C.; Lee, W.K.; Thévenod, F. Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: Implications for in vivo cadmium toxicity. *Toxicol. Lett.* **2014**, *226*, 228-235.
41. Schneider, S.N.; Liu, Z.; Wang, B.; Miller, M.L.; Afton, S.E.; Soleimani, M.; Nebert, D.W. Oral cadmium in mice carrying 5 versus 2 copies of the Slc39a8 gene: Comparison of uptake, distribution, metal content, and toxicity. *Int. J. Toxicol.* **2014**, *33*, 14-20.
42. Fujishiro, H.; Himeno, S. New insights into the roles of ZIP8, a cadmium and manganese transporter, and its relation to human diseases. *Biol. Pharm. Bull.* **2019**, *42*, 1076-1082.
43. Thévenod, F.; Fels, J.; Lee, W.K.; Zarbock, R. Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: Myths and facts. *Biometals* **2019**, *32*, 469-489.
44. Ohta, H.; Ohba, K. Involvement of metal transporters in the intestinal uptake of cadmium. *J. Toxicol. Sci.* **2020**, *45*, 539-548.
45. Kikuchi, Y.; Nomiyama, T.; Kumagai, N.; Dekio, F.; Uemura, T.; Takebayashi, T.; Nishiwaki, Y.; Matsumoto, Y.; Sano, Y.; Hosoda, K.; et al. Uptake of cadmium in meals from the digestive tract of young non-smoking Japanese female volunteers. *J. Occup. Health* **2003**, *45*, 43-52.
46. Horiguchi, H.; Oguma, E.; Sasaki, S.; Miyamoto, K.; Ikeda, Y.; Machida, M.; Kayama, F. Comprehensive study of the effects of age, iron deficiency, diabetes mellitus, and cadmium burden on dietary cadmium absorption in cadmium-exposed female Japanese farmers. *Toxicol. Appl. Pharmacol.* **2004**, *196*, 114-123.
47. Satarug, S.; Vesey, D.A.; Ruangyuttikarn, W.; Nishijo, M.; Gobe, G.C.; Phelps, K.R. The Source and Pathophysiologic Significance of Excreted Cadmium. *Toxics* **2019**, *7*, 55.
48. Peng, X.; Li, C.; Zhao, D.; Huang, L. Associations of micronutrients exposure with cadmium body burden among population: A systematic review. *Ecotoxicol. Environ. Saf.* **2023**, *256*, 114878.
49. Silver, M.K.; Lozoff, B.; Meeker, J.D. Blood cadmium is elevated in iron deficient U.S. children: A cross-sectional study. *Environ Health* **2013**, *12*, 117.
50. Schildroth, S.; Friedman, A.; Bauer, J.A.; Claus Henn, B. Associations of a metal mixture with iron status in U.S. adolescents: Evidence from the National Health and Nutrition Examination Survey. *New Dir. Child Adolesc. Dev.* **2022**, *2022*, 67-89.
51. Flanagan, P.R.; McLellan, J.S.; Haist, J.; Cherian, G.; Chamberlain, M.J.; Valberg, L.S. Increased dietary cadmium absorption in mice and human subjects with iron deficiency. *Gastroenterol.* **1978**, *74 Pt 1*, 841-846.

52. Meltzer, H.M.; Brantsaeter, A.L.; Borch-Johnsen, B.; Ellingsen, D.G.; Alexander, J.; Thomassen, Y.; Stigum, H.; Ydersbond, T.A. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study. *Environ. Res.* **2010**, *110*, 497–504.

53. King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of nutrition for development (BOND)-zinc review. *J. Nutr.* **2015**, *146*, 858S–885S.

54. Trame, S.; Wessels, I.; Haase, H.; Rink, L. A short 18 items food frequency questionnaire biochemically validated to estimate zinc status in humans. *J. Trace Elem. Med. Biol.* **2018**, *49*, 285–295.

55. Lowe, N.M.; Hall, A.G.; Broadley, M.R.; Foley, J.; Boy, E.; Bhutta, Z.A. Preventing and controlling zinc deficiency across the life course: A call to action. *Adv. Nutr.* **2024**, *15*, 100181.

56. Cirovic, A.; Cirovic, A. Factors moderating cadmium bioavailability: Key considerations for comparing blood cadmium levels between groups. *Food Chem. Toxicol.* **2024**, *191*, 114865.

57. Van Maele-Fabry, G.; Lombaert, N.; Lison, D. Dietary exposure to cadmium and risk of breast cancer in postmenopausal women: A systematic review and meta-analysis. *Environ. Int.* **2016**, *86*, 1–13.

58. Larsson, S.C.; Orsini, N.; Wolk, A. Urinary cadmium concentration and risk of breast cancer: A systematic review and dose-response meta-analysis. *Am. J. Epidemiol.* **2015**, *182*, 375–380.

59. Lin, J.; Zhang, F.; Lei, Y. Dietary intake and urinary level of cadmium and breast cancer risk: A meta-analysis. *Cancer Epidemiol.* **2016**, *42*, 101–107.

60. Adokwe, J.B.; Pouyfung, P.; Kuraeiad, S.; Wongrith, P.; Inchai, P.; Yimthiang, S.; Satarug, S.; Khamphaya, T. Concurrent Lead and Cadmium Exposure Among Diabetics: A Case-Control Study of Socio-Demographic and Consumption Behaviors. *Nutrients* **2025**, *17*, 710.

61. Schwartz, G.G.; Il'yasova, D.; Ivanova, A. Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. *Diabetes Care* **2003**, *26*, 468–470.

62. Wallia, A.; Allen, N.B.; Badon, S.; El Muayed, M. Association between urinary cadmium levels and prediabetes in the NHANES 2005–2010 population. *Int. J. Hyg. Environ. Health* **2014**, *217*, 854–860.

63. Jiang, F.; Zhi, X.; Xu, M.; Li, B.; Zhang, Z. Gender-specific differences of interaction between cadmium exposure and obesity on prediabetes in the NHANES 2007–2012 population. *Endocrine* **2018**, *61*, 258–266.

64. Barregard, L.; Fabricius-Lagging, E.; Lundh, T.; Mölne, J.; Wallin, M.; Olausson, M.; Modigh, C.; Sallsten, G. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources. *Environ. Res.* **2010**, *110*, 47–54.

65. Akerstrom, M.; Barregard, L.; Lundh, T.; Sallsten, G. The relationship between cadmium in kidney and cadmium in urine and blood in an environmentally exposed population. *Toxicol. Appl. Pharmacol.* **2013**, *268*, 286–293.

66. Satarug, S.; Vesey, D.A.; Nishijo, M.; Ruangyuttikarn, W.; Gobe, G.C.; Phelps, K.R. The Effect of Cadmium on GFR Is Clarified by Normalization of Excretion Rates to Creatinine Clearance. *Int. J. Mol. Sci.* **2021**, *22*, 1762.

67. Phelps, K.R.; Gosmanova, E.O. A generic method for analysis of plasma concentrations. *Clin. Nephrol.* **2020**, *94*, 43–49.

68. Navar, L.G.; Maddox, D.A.; Munger, K.A. Chapter 3: The renal circulations and glomerular filtration. In Brenner and Rector's the Kidney, 11th ed.; Elsevier: Philadelphia, PA, USA, 2020; pp. 80–114.

69. Argyropoulos, C.P.; Chen, S.S.; Ng, Y.-H.; Roumelioti, M.-E.; Shaffi, K.; Singh, P.P.; Tzamaloukas, A.H. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. *Front. Med.* **2017**, *4*, 73.

70. Sivanathan, P.C.; Ooi, K.S.; Mohammad Haniff, M.A.S.; Ahmadipour, M.; Dee, C.F.; Mokhtar, N.M.; Hamzah, A.A.; Chang, E.Y. Lifting the Veil: Characteristics, Clinical Significance, and Application of β -2-Microglobulin as Biomarkers and Its Detection with Biosensors. *ACS Biomater. Sci. Eng.* **2022**, *8*, 3142–3161.

71. Phelps, K.R.; Yimthiang, S.; Pouyfung, P.; Khamphaya, T.; Vesey, D.A.; Satarug, S. Homeostasis of β 2-Microglobulin in Diabetics and Non-Diabetics with Modest Cadmium Intoxication. *Scierxiv* **2025**, *2025*, 60. <https://doi.org/10.20517/scierxiv.2025.60.v1>

72. Murton, M.; Goff-Leggett, D.; Bobrowska, A.; Garcia Sanchez, J.J.; James, G.; Wittbrodt, E.; Nolan, S.; Sörstadius, E.; Pecoits-Filho, R.; Tuttle, K. Burden of Chronic Kidney Disease by KDIGO Categories of Glomerular Filtration Rate and Albuminuria: A Systematic Review. *Adv. Ther.* **2021**, *38*, 180–200.

73. Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. *Lancet* **2021**, *398*, 786-802.

74. Farrell, D.R.; Vassalotti, J.A. Screening, identifying, and treating chronic kidney disease: Why, who, when, how, and what? *BMC Nephrol.* **2024**, *25*, 34.

75. Shi, Z.; Taylor, A.W.; Riley., M.; Byles., J.; Liu, J.; Noakes, M. Association between dietary patterns, cadmium intake and chronic kidney disease among adults. *Clin. Nutr.* **2018**, *37*, 276-284.

76. Satarug, S.; Đorđević, A.B.; Yimthiang, S.; Vesey, D.A.; Gobe, G.C. The NOAEL equivalent of environmental cadmium exposure associated with GFR reduction and chronic kidney disease. *Toxics* **2022**, *10*, 614.

77. Feng, X.; Zhou, R.; Jiang, Q.; Wang, Y.; Chen, C. Analysis of cadmium accumulation in community adults and its correlation with low-grade albuminuria. *Sci. Total Environ.* **2022**, *834*, 155210.

78. Grau-Perez, M.; Pichler, G.; Galan-Chilet, I.; Briongos-Figuero, L.S.; Rentero-Garrido, P.; Lopez-Izquierdo, R.; Navas-Acien, A.; Weaver, V.; García-Barrera, T.; Gomez-Ariza, J.L.; et al. Urine cadmium levels and albuminuria in a general population from Spain: A gene-environment interaction analysis. *Environ. Int.* **2017**, *106*, 27-36.

79. Byber, K.; Lison, D.; Verougstraete, V.; Dressel, H.; Hotz, P. Cadmium or cadmium compounds and chronic kidney disease in workers and the general population: A systematic review. *Crit. Rev. Toxicol.* **2016**, *46*, 191-240.

80. Jalili, C.; Kazemi, M.; Cheng, H.; Mohammadi, H.; Babaei, A.; Taheri, E.; Moradi, S. Associations between exposure to heavy metals and the risk of chronic kidney disease: A systematic review and meta-analysis. *Crit. Rev. Toxicol.* **2021**, *51*, 165-182.

81. Docioli, C.; Sera, F.; Francavilla, A.; Cupisti, A.; Biggeri, A. Association of cadmium environmental exposure with chronic kidney disease: A systematic review and meta-analysis. *Sci. Total Environ.* **2024**, *906*, 167165.

82. Satarug, S.; Vesey, D.A.; Đorđević, A.B. The NOAEL equivalent for the cumulative body burden of cadmium: focus on proteinuria as an endpoint. *J. Environ. Expo. Assess.* **2024**, *3*, 26.

83. Qing, Y.; Li, Y.; Cai, X.; He, W.; Liu, S.; Ji, Y.; Jiang, M.; Yang, L.; Wang, J.; Ping, S.; et al. Assessment of Cadmium Concentrations in Foodstuffs and Dietary Exposure Risk Across China: A Metadata Analysis. *Exposure and Health* **2023**, *15*, 951-961

84. Liu, C.; Li, Y.; Zhu, C.; Dong, Z.; Zhang, K.; Zhao, Y.; Xu, Y. Benchmark dose for cadmium exposure and elevated N-acetyl-β-D-glucosaminidase: A meta-analysis. *Environ. Sci. Pollut. Res. Int.* **2016**, *23*, 20528-20538.

85. Woo, H.D.; Chiu, W.A.; Jo, S.; Kim, J. Benchmark Dose for Urinary Cadmium based on a Marker of Renal Dysfunction: A Meta-Analysis. *PLoS One* **2015**, *10*, e0126680.

86. Suwazono, Y.; Sand, S.; Vahter, M.; Filipsson, A.F.; Skerfving, S.; Lidfeldt, J.; Akesson, A. Benchmark dose for cadmium-induced renal effects in humans. *Environ. Health Perspect.* **2006**, *114*, 1072-1076.

87. Wang, X.; Wang, Y.; Feng, L.; Tong, Y.; Chen, Z.; Ying, S.; Chen, T.; Li, T.; Xia, H.; Jiang, Z.; et al. Application of the benchmark dose (BMD) method to identify thresholds of cadmium-induced renal effects in non-polluted areas in China. *PLoS ONE* **2016**, *11*, e0161240.

88. Hayashi, T.; Nogawa, K.; Watanabe, Y.; Kido, T.; Sakurai, M.; Nakagawa, H.; Suwazono, Y. Benchmark Dose of Urinary Cadmium for Assessing Renal Tubular and Glomerular Function in a Cadmium-Polluted Area of Japan. *Toxics* **2024**, *12*, 836.

89. Satarug, S.; Vesey, D.A.; Gobe, G.C.; Đorđević, A.B. The Validity of Benchmark Dose Limit Analysis for Estimating Permissible Accumulation of Cadmium. *Int. J. Environ. Res. Public. Health* **2022**, *19*, 15697.

90. Xie, S.; Perrais, M.; Golshayan, D.; Wuerzner, G.; Vaucher, J.; Thomas, A.; Marques-Vidal P. Association between urinary heavy metal/trace element concentrations and kidney function: a prospective study. *Clin. Kidney J.* **2024**, *18*, sfae378.

91. Satarug, S.; Vesey, D.A.; Gobe, G.C.; Yimthiang, S.; Buha Đorđević, A. Health Risk in a Geographic Area of Thailand with Endemic Cadmium Contamination: Focus on Albuminuria. *Toxics* **2023**, *11*, 68.

92. Satarug, S. Urinary N-acetylglucosaminidase in People Environmentally Exposed to Cadmium Is Minimally Related to Cadmium-Induced Nephron Destruction. *Toxics* **2024**, *12*, 775.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.