

Article

Not peer-reviewed version

Differential Protein Expression in Dengue Patients with SARS-CoV-2 IgG Antibodies: Implications of Disease Severity and Antibody Dependent Enhancement

Elizabeth Cruz-Altamirano, Miguel Angel Mayoral-Chávez, Luis Ramirez-Palacios, Juan Alpuche *

Posted Date: 24 January 2025

doi: 10.20944/preprints202501.1841.v1

Keywords: Dengue; SARS-CoV-2; Protein expression; Disease severity; Antibody-dependent enhancement (ADE)

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Differential Protein Expression in Dengue Patients with SARS-CoV-2 IgG Antibodies: Implications of Disease Severity and Antibody Dependent Enhancement

Elizabeth Cruz-Altamirano ¹, Miguel Mayoral-Chávez ¹, Luis Ramírez-Palacios ^{2,3} and Juan Alpuche ^{1,*}

- Laboratorio de Bioquímica. Facultad de Medicina y Cirugía, Universidad Autonoma Benito Juárez de Oaxaca, Oaxaca, Oax, Mexico
- ² Laboratorio de Virología y Biología Molecular. Laboratorio Estatal de Salud Pública de Oaxaca. Oaxaca, México
- ³ Laboratorio de Biodiversidad, Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca. Oaxaca, México
- * Correspondence: jalpuche.fmc@uabjo.mx

Abstract: Dengue is the most prevalent arthropod-borne disease, causing 100-400 million infections annually. Symptoms range from asymptomatic to severe, involving hemorrhage and organ failure. Severe dengue often occurs in secondary infections with different serotypes due to antibodydependent enhancement (ADE). During the SARS-CoV-2 pandemic, cross-reactions between dengue and SARS-CoV-2 antibody tests have been reported, due to antibody cross-reactivity between the dengue envelope protein and SARS-CoV-2 S1-RBD protein. This study aimed to analyze differences in the serum proteome of dengue patients with and without SARS-CoV-2 IgG antibodies, to elucidate proteins related to ADE. We conducted a bottom-up label-free proteomic analysis of serum from healthy donors and dengue patients, with or without SARS-CoV-2 IgG antibodies, followed by gene ontology analysis. We identified 1,122 protein sequences, 296 of which were gene-associated. Proteins from dengue patients with both antibodies are involved in immune regulation, humoral response, blood coagulation, and platelet degranulation. Unique proteins were coagulation factor XIII B chain, thrombospondin, Antigen KI-67, bone marrow proteoglycan, and colorectal cancer mutant protein. Our results indicate that SARS-CoV-2 IgG antibodies in dengue infection cause differential protein expression, linked to platelet activation, which may increase the risk of disease severity and may explain thrombocytopenia mechanisms in dengue patients.

Keywords: Dengue; SARS-CoV-2; Protein expression; Disease severity; Antibody-dependent enhancement (ADE)

1. Introduction

Dengue is an arthropod-borne disease, with a global prevalence, affecting 100-400 million individuals annually. The clinical spectrum encompasses asymptomatic cases, febrile manifestations, and severe presentations associated with hemorrhagic complications and organ dysfunction [1]. Severe dengue frequently occurs in secondary infections involving heterologous serotypes, wherein pre-existing antibody titers correlate with the exacerbation of severe dengue pathogenesis [2]. This phenomenon, known as Antibody-Dependent Enhancement (ADE), involves the interaction of non-neutralizing antibodies with the envelope proteins of the dengue virus, resulting in the formation of virus-antibody complexes. These complexes are subsequently recognized by immune cells, including macrophages, dendritic cells, and monocytes via Fc γ receptors [3,4]. ADE can be classified into two

primary types: extrinsic and intrinsic. Extrinsic ADE refers to the enhancement of mast cell infection by virus-antibody complexes, leading to increased viral entry. In contrast, intrinsic ADE involves intricate molecular mechanisms within the host cell that modulate the innate immune response and promote viral replication and release [3].

During primary dengue infection, the dengue virus enters host cells primarily through the canonical receptor DC-SIGN, facilitating endocytosis. Once internalized, pathogen recognition receptors (PRRs), such as Toll-like receptors (TLR) 3 and 7, detect the viral presence, resulting in the secretion of interleukin-8 (IL-8) and interferon-alpha (IFN- α). These cytokines activate the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, leading to the production of interleukin-12 (IL-12) and interferon-gamma (IFN- γ). Collectively, these mediators orchestrate a T helper type 1 (Th1) antiviral immune response to eradicate infection. However, during intrinsic ADE, the recognition of virus-antibody complexes through Fc γ receptors leads to the upregulation of negative regulators of TLR signaling pathways, including the TAF family associated NF- κ B activator (TANK) and sterile-alpha and armadillo motif-containing proteins (SARM). This upregulation results in the inhibition of interferon regulatory factors IRF1 and IRF3 [5]. Additionally, there is an increased production of IL-10 and IL-6, which further induces the expression of suppressor of cytokine signaling 3 (SOCS3), a known inhibitor of the JAK-STAT pathway, and IFN- γ signaling. These alterations collectively promote a T helper type 2 (Th2) immune response that is ineffective against viral infections, thereby exacerbating disease severity [6].

RNA viruses such as MERS-CoV, SARS-CoV, HIV, and dengue virus are commonly associated with ADE [7,8]. Notably, ADE can be triggered by antibodies targeting related viruses including Zika virus [9]. This phenomenon stems from structural similarities or molecular mimicry among viral proteins, leading to the generation of cross-reactive antibodies, often categorized as non-neutralizing antibodies. These antibodies fail to effectively opsonize the entire viral particle, enabling the virus to interact with cellular receptors and circumvent immune detection, thereby facilitating cellular entry and replication [10]. During ADE, the interaction between suboptimal antibodies and the virus enhances the viral infectivity. Specifically, when the virus-antibody complex binds to Fc receptors on immune cells, it promotes complex internalization. Paradoxically, rather than neutralizing the virus, this process may allow viral evasion of degradation pathways and support replication within immune cells.

Cross-reactive antibodies can lead to false-positive results in serological diagnostic assays. Notably, during the early stages of the SARS-CoV-2 outbreak, several patients who were later diagnosed with COVID-19 initially tested positive for dengue antibodies. This raises significant concerns regarding the specificity and reliability of serological diagnostics, particularly in areas where multiple arboviruses are endemic. Such limitations pose considerable challenges for accurate disease identification and effective public health strategies [11–13].

A study conducted in 2020 revealed the capacity of anti-dengue antibodies to recognize SARS-CoV-2 antigens [14]. This cross-reactivity is attributed to the structural similarities observed between the 6LVN chains, components of the SARS-CoV-2 spike protein H2R domain, and various chains of the dengue virus envelope protein, such as 4CBF, 4UIF, and 5A1Z. Subsequently, researchers performed serological tests for anti-dengue antibodies in COVID-19 patients and SARS-CoV-2 serological assays in individuals with dengue. The results indicated that patients with COVID-19 tested positive for dengue-specific IgG and IgM antibodies, whereas dengue patients tested positive for antibodies targeting the SARS-CoV-2 spike protein [15].

In a 2023 study, Cheng et al. extended the previous research by elucidating the cross-reactivity between anti-dengue antibodies and SARS-CoV-2 proteins. Their findings revealed that antibodies targeting the envelope (E) protein, precursor membrane (PrM), and non-structural protein 1 (NS1) of the dengue virus can recognize both the spike protein and S1 receptor-binding domain (S1-RBD) of SARS-CoV-2. Researchers identified specific amino acid sequences involved in this cross-reactivity: residues 343-347 on SARS-CoV-2 S1-RBD and residues 64-69 on the dengue E protein. Additionally, Cheng et al. explored the role of anti-S1-RBD antibodies in antibody-dependent enhancement (ADE)

of dengue infections. Experiments in mouse models have demonstrated that these antibodies protect against hemorrhage and decrease NS1 production [16].

The structural homology between SARS-CoV-2 and dengue virus may account for false-positive outcomes in serological assays for both infections. Concerning the potential for antibody-dependent enhancement (ADE) in dengue infections triggered by anti-SARS-CoV-2 antibodies, a single study has documented this phenomenon [17], whereas another investigation employing anti-S1-RBD antibodies in animal models has dismissed it. Thus, additional validation through clinical trials and diverse research approaches is crucial to thoroughly elucidate the implications of ADE and cross-reactivity in regions where both diseases are endemic.

Proteomic analysis serves as a sophisticated method for unraveling protein dynamics during viral infections, and in dengue research, it has been used to identify potential biomarkers for prognosticating disease outcomes [18–20]. We employed proteomic analysis to investigate the potential role of anti-SARS-CoV-2 antibodies in antibody-dependent enhancement (ADE) during dengue infection. This study commenced with an evaluation of dengue severity markers in patients diagnosed with dengue who also demonstrated seropositivity for SARS-CoV-2 IgG antibodies. Following this, we examined serum proteome alterations. The primary focus of our investigation was to elucidate whether anti-SARS-CoV-2 antibodies could potentially influence the immune response, as is typically observed in ADE.

2. Materials and Methods

Serum samples from dengue patients were provided by the State Laboratory of Oaxaca in 2023. Serum samples from healthy donors were obtained by venipuncture. Nineteen patients were enrolled in this study. Patients were categorized into distinct groups, including the control group (healthy donors). To classify the patients, we conducted Ab tests for anti-SARS-CoV-2 IgG, Ab anti-dengue IgG/IgM, Ab anti NS1 protein, protein concentration using the Bradford method, and RT-PCR for viral identification.

2.1. Antibodies Detection

The anti-SARS-CoV-2 Ab tests were conducted using commercial ELISA immunoassay kits (Euroimmune, Germany) for IgG according to the manufacturer's protocol. Initially, a 1:101 dilution was prepared using the buffer solution and the patient serum sample. Subsequently, 100 μ L of this dilution was added to each test well and incubated for 60 min at 37°C. After incubation, three washes were performed using the washing solution. Thereafter, 100 μ L of enzyme conjugate was added to the test wells and incubated for 30 min at 37°C. Three additional washes were performed, followed by the addition of 100 μ L of chromogenic solution. The solution was incubated for 30 min at room temperature, after which 100 μ L of the stop solution was added. Absorbance was measured at a wavelength of 450-630 nm using a Chromate reader (AwarenessTechnology INC). Anti-dengue IgG-IgM Ab tests were conducted using the rapid test for detection of IgG and IgM antibodies from Dengue Duo (Standard Q), in accordance with the manufacturer's protocol.

2.2. RNA Extraction and Detection of Dengue Serotypes Using qRT-PCR

Viral RNA was extracted from 140 μ L of each clinical sample in accordance with the manufacturer's instructions using the QIAamp Viral RNA Mini Kit (Qiagen, Venlo, Netherlands). RNA extraction was performed using an automated protocol (Qiagen, Hilden, Germany), with an elution volume of 60 μ L. The RNA intended for use as a template was stored at – 80°C until testing. qRT-PCR assays were conducted following the Viasure Dengue Serotyping Real-Time PCR Detection Kit protocol, as specified by the manufacturer. A total of 5 μ L template RNA samples (4–140 ng/ μ L) and negative and positive controls were added to each well. A Fast ABI 7500 thermocycler (Thermo Fisher Scientific, Waltham, MA, USA) was used. The PCR procedure was performed with one cycle at 45°C for 15 min (RT) and one cycle at 95°C for 2 min (initial denaturation), followed by 45 cycles

at 95°C for 10 s (denaturation) and 60°C for 50 s (annealing/extension (data collection)). A positive control and a negative control of molecular biology grade were used concurrently in all experiments. A sample was considered positive if its Ct value was less than 40.

2.3. Protein Integrity

Serum proteins were analyzed using 12% acrylamide SDS-PAGE gel. A 5 μ g serum sample mixed with 1X Laemmli loading buffer was loaded into each well. Electrophoresis was conducted for 90 min at 110 V, 3.0 A, and 300 watts in an electrophoresis chamber (Mini-Protean, Bio-Rad). The gel was subsequently stained with 0.02% Coomassie Blue G-250. Only samples with standard protein bands ranging from 10 kDa in the human serum were used.

2.4. Label-Free Based Quantitative Proteomic Analysis of Serum Proteome

After classification, a pool was established for proteomic analysis, using serum samples from each individual. Bottom-up label-free quantitative proteomic analysis was performed using a minimum of 300 μ g of protein per patient pool. Pooled samples were loaded onto an acrylamide electrophoresis gel, followed by band excision and trypsin digestion (Promega, Madison, WI, USA). The resulting peptides were resuspended in 20 μ L 0.1% formic acid for LC-MS/MS analysis.

Chemicals and Instrumentation. Sigma (St. Louis, MO, USA), dithiothreitol (DTT), iodoacetamide (IAA), formic acid (FA), and acetonitrile (ACN). Trypsin derived from bovine pancreas was acquired from Promega (Madison, WI). Ultrapure water was prepared using a Millipore purification system (Billerica, MA). The experimental assays were conducted using an Ultimate 3000 nano UHPLC system in conjunction with a Q Exactive HF mass spectrometer (Thermo Fisher Scientific, USA) fitted with an ESI nanospray source.

Nano LC-MS/MS Analysis. Proteomic analyses were conducted using Creative Proteomics services (Shirley, NY, USA) with an Ultimate 3000 nano UHPLC system (Thermo Fisher Scientific, USA), which incorporated a nanocolumn trapping column (PepMap C18, 100 Å, 100 μ m × 2 cm, 5 μ m) and an analytical column (PepMap C18, 100 Å, 75 μ m × 50 cm, 2 μ m). The sample loading was set to 1 μ g. The mobile phase consisted of 0.1% formic acid in water (A) and 0.1% formic acid in 80% acetonitrile (B). The total flow rate was maintained at 250 nl/min. The LC linear gradient was as follows: 2–8% buffer B for 3 min, 8–20% buffer B for 56 min, 20–40% buffer B for 37 min, and 40–90% buffer B for 4 min.

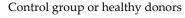
Mass spectrometric analysis. A comprehensive scan was performed across a 300-1,650 m/z range with a 60,000 resolution at 200 m/z. A full-scan automatic gain control target was established at 3e6. For the MS/MS scan, the top 20 modes were employed, utilizing the following settings: 15,000 resolution at 200 m/z, 1e5 automatic gain control target, 19 ms maximum injection time, 28% normalized collision energy; 1.4 Th isolation window. Charge state exclusion was applied to unassigned, 1, and states exceeding 6. Dynamic exclusion was performed for 30 s.

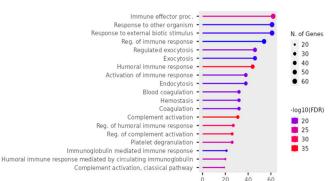
2.5. Data Analysis

Four raw MS files were analyzed and searched against a human protein database based on the species of the samples using Maxquant (1.6.2.6). The parameters were established as follows: protein modifications were carbamidomethylation (C) (fixed) and oxidation (M) (variable); enzyme specificity, trypsin; maximum missed cleavage 2, precursor ion mass tolerance, 10 ppm; and MS/MS tolerance, 0.5 Da.

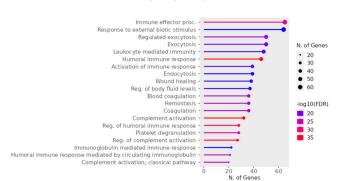
The ratio of abundance (RA) was calculated by comparing protein abundance in the control/groups of interest. Proteins with RA > 2 were considered to be relatively more abundant in the acute dengue infection state. Enrichment analysis of biological processes was conducted using the ShinyGO bioinformatic website 0.77 (Ge SX, Jung D & Yao R, Bioinformatics 36:2628–2629, 2020). Protein IDs were obtained for each protein using the UniProt ID number.

3. Results


Patients were classified into four groups: control group (healthy donors), patients with Ab anti SARS-CoV-2 IgG and NS1 protein (dengue infection, group one); patients with Ab anti SARS-CoV-2 IgG and Ab anti-dengue IgG (group two); and patients with Ab anti-dengue IgG and NS1 protein (Group three) (Table 1).


Table 1. Serological and Molecular Profiles of Study Participants Across Groups Based on Anti-SARS-CoV-2 and Anti-dengue Antibody Status and Dengue Diagnostic Markers.

Group	ID	Ab anti SARS- CoV-2 IgG	Ab anti dengue IgG	Ab anti dengue IgM	Dengue NS1	Dengue RT PCR cT
Control	1	Pos	Neg	Neg	Neg	-
	2	Pos	Pos	Neg	Neg	-
Group	3	Pos	Pos	Neg	Neg	-
Group 1.	5162	Pos	Neg	Neg	Pos	23.2
SARS-CoV	4810	Pos	Neg	Neg	Pos	19.3
2-IgG &	4658	Pos	Neg	Neg	Pos	27
Dengue	4972	Pos	Neg	Neg	Pos	30.5
NS1	5088	Pos	Neg	Neg	Pos	32.3
C	5063	Pos	Pos	Neg	Pos	24.8
Group 2.	4947	Pos	Pos	Pos	Pos	30.7
SARS-CoV	4548	Pos	Pos	Neg	Pos	25
2-IgG,	4375	Pos	Pos	Pos	Pos	26.2
Dengue	4452	Pos	Pos	Neg	Pos	26.6
NS1 & IgG	4556	Pos	Pos	Neg	Pos	23
Group 3.	5098	Neg	Pos	Neg	Pos	32.9
	5134	Neg	Pos	Neg	Pos	22.1
Dengue	4376	Neg	Pos	Neg	Pos	20.2
NS1 & IgG	5062	Neg	Pos	Pos	Pos	24.8


3.1. Serum Proteome Analysis

We identified 1,121 protein sequences in the samples. Sequences without an associated gene and those identified solely by site were eliminated along with uncharacterized proteins, duplicates, and gender-related proteins. A total of 296 proteins were identified with high confidence levels. Protein expression differed among the groups as follows: control group, 236 proteins; group one, 256 proteins; group two, 261 proteins; and group three, 255 proteins. Gene enrichment analysis of proteins expressed in each group revealed differences in the biological processes occurring during acute dengue infection under the various evaluated conditions compared to healthy donors, as illustrated in Figure 1. Regulation of the immune response, humoral immune response, blood coagulation, and platelet degranulation are processes that exhibit the most notable changes.

Group 1. Dengue with Ab anti SARS-CoV 2-IgG positive & Ab anti-dengue IgG negative

Group 2. Dengue with Ab anti SARS-CoV-2 IgG positive & ab antidengue IgG positive

Group 3: Dengue with Ab anti SARS-CoV-2 IgG negative & ab anti-dengue IgG/ IgM positive

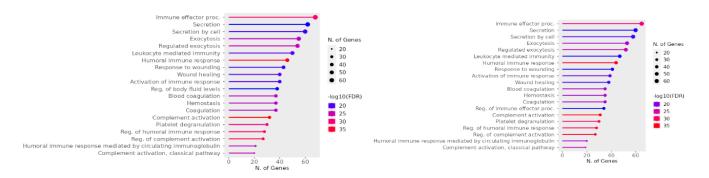


Figure 1. Enrichment analysis of the biological processes in the evaluated groups. DV (Dengue virus infection).

3.1.1. Differentially Expressed Proteins (DEPs)

Twelve of the 296 proteins were identified as DEPs across all groups. Three DEPs were exclusive to the control group: syntaxin-binding protein 5, Galectin-1, and Glucose-6-phosphate isomerase.

Three DEPs were identified in group 1: Coagulation factor IX, Ribosomal protein L19, and Peptidyl-prolyl cis-trans isomerase B. Five DEPs were found in group 2: Thrombospondin-1, Colorectal mutant cancer protein, Coagulation factor XIII B chain, Antigen KI-67, and Bone marrow proteoglycan. Only one DEP was identified in group 3: putative uncharacterized zinc finger protein 814. The functions of most of these proteins have been elucidated, with the exception of the putative uncharacterized zinc finger protein 814. Expression of Galectin-1, Ribosomal protein L19, Peptidyl-prolyl cis-trans isomerase B, and Antigen KI-67 has been described during viral infection, although their specific roles are not fully understood. Proteins such as Coagulation factor IX and Coagulation factor XIII B chain are altered during dengue infection. The involvement of syntaxin-binding protein 5, Glucose-6-phosphate isomerase, Thrombospondin-1, Colorectal mutant cancer protein, and bone marrow proteoglycan in viral infection is unknown. However, based on their functions, it is reasonable to hypothesize that they may play a role in infection. Notably, the bone marrow proteoglycan found in group two was secreted by activated eosinophils, which are key mediators of the Th2 immune response. The protein ID and most relevant functions of each DEP are described in Table 2.

Table 2. Differential Expression of Proteins (DEP) Across Groups of Interest. Each protein is listed alongside its UniProt ID, gene symbol, and functional description, highlighting their roles in the immune response, coagulation, and viral interactions.

Protein	Uniprot ID	Gen	Function
	Control	group of hea	althy donors
			STXBP5 inhibits endothelial exocytosis and promotes platelet secretion. In KO STXBP5
Syntaxin hinding			cells increase vWF & P-selectin secretion
Syntaxin-binding protein 5	Q5T5C0	STXBP5	[21]. In platelets it is important for cargo
protein 5			release from dense granules, $lpha$ granules,
			and lysosomes as well as for packaging of
			some cargo into granules [22].
			Gal-1 binds to DENV-1 and inhibits its
Galectin-1	P09382	LGALS1	adsorption and internalization processes in
			ECV-304 cells [23].
			In the cytoplasm, catalyzes the conversion
Glucose-6-phosphate	P06744	GPI	of glucose-6-phosphate to fructose-6-
isomerase			phosphate, the second step in glycolysis.
Group 1. Dengue wit	th Ab anti SAR	S-CoV 2-IgG	positive & Ab anti dengue IgG negative
			Participates in the intrinsic pathway of
Coagulation factor IX	P00740	F9	blood coagulation. Alteration of
O			coagulation in dengue infection [24,25].
			Component of the large ribosomal subunit.
			Ribosomal Protein L19 and L22 Modulate
Ribosomal protein L19	P84098	RPL19	TLR3 Signaling [26]. RPL19 is required for
1			efficient YFV and WNV protein production
			[27].
			Catalyze the isomerization of peptide
			bonds from trans to cis form at proline
Peptidyl-prolyl cis-trans	P23284	PPIB	residues and facilitates protein folding.
isomerase B			Knockdown of CYP isoforms reduces the
			replication of flavivirus VLPS [28].
Group 2. Dengue wi	th Ab anti SAR	S-CoV-2 IgG	positive & ab anti dengue IgG positive
1		<u> </u>	TSP1 is a major protein component of Alfa
			platelet-granules from which it is rapidly
			released during platelet activation. It
Thrombospondin-1	P07996	THBS1	stimulates platelet aggregation [29].TSP1
			binds to A3 domain of vWF and may
			compete with ADAMTS13 for interaction
			with vWF [30].
			Play role in cell proliferation. Colorectal
			Cancer Protein Modulates the NF-kB
Colorectal mutant cancer			Pathway [31].
protein	P23508	MCC	Knockdown of MCC induced apoptosis
protein			and inhibited proliferation in human MM
			cells [32].
			The B chain of factor XIII is not
Coagulation factor XIII B			catalytically active, but is thought to
chain	P05160	F13B	stabilize the A subunits. Alteration of
CIMIII			coagulation in dengue infection [24,25].
			Widely used as a marker to assess cell
Antigen KI-67	P46013	MKI67	proliferation, as is detected in the nucleus
			Promeranory as is accepted in the nucleus

			of proliferating cells only. Expressed in			
			plasmatic cells infected with dengue [33].			
Bone marrow	P13727	PRG2	Cytotoxin and helminthotoxin. It causes			
proteoglycan	F 13/2/	rKG2	platelet activation [34].			
Group 3. Dengue with Ab anti SARS-CoV-2 IgG negative & ab anti dengue IgG/ IgM positive						
Putative uncharacterized	B7Z6K7	ZNF814	I I also and from attion			
zinc finger protein 814	D/Z6K/	ZNF814	Unknow function			

3.2. Protein Abundance Index

We determined the abundance ratio of proteins (AR) relative to the control group and identified 30 proteins among the groups with an AR > 2.0, as presented in Table 3). Most of these proteins have been previously identified during viral infections, whereas others play crucial roles in the innate immune response. Notably, group two exhibited the highest number of proteins with an AR > 2, totaling 23, followed by group one with 18 and group three with 14.

Table 3. Serum Proteome Changes in Dengue Patients Across Diverse Groups of Interest. This table presents the abundance ratios and functional roles of various proteins identified in the sera of dengue patients, categorized into three distinct groups. Group 1 consisted of patients with positive anti-SARS-CoV-2 IgG and negative anti-dengue IgG; Group 2 included patients with both positive anti-SARS-CoV-2 IgG and anti-dengue IgG; and Group 3 comprised patients with negative anti-SARS-CoV-2 IgG and positive anti-dengue IgG/IgM. Bold data show that proteins with RA>2.

Uniprot ID	Abur	ndance	e ratio	Protein	Function
	Grou Grou Grou				
	p 1	p 2	p 3		
					Antiprotease
					plays a role
					in hemostatic
					balance.
					Decreased
P01023	0.67	2.49	0.28	Alpha-2-macroglobulin	levels during
101023	0.07	2.1)	0.28		dengue
					infection as
					part of a
					normal
					immune
					response [35].
	0.55			Inter-alpha-trypsin inhibitor heavy chain H2	Decreased
					expression in
P19823		2.10	0.63		patients with
					COVID 19
					Increased
					expression
P04217	2.70	70 2.66	6 2.44	Alpha-1B-glycoprotein	during
					dengue
					infection [18].
					Increased
					expression
P02750	2.28	2.28 2.18	2.18 2.51	Leucine-rich-alpha-2glycoprotein*	during
					dengue

					El (l
					Elevated
P02748	2.04	4.75	0.91	Complement component C9	during
					dengue
					infection [18].
					Unknow
P35542	2.17	0.90	1.01	Serum amyloid A-4 protein	function in
				, ,	viral
					infection.
					First
					component of
P02746	1.90	2.13	1.53	Complement C1q subcomponent subunit B	the serum
					complement
					system.
					Involved in
					protein-
					protein
					interactions.
P35858	2.60	2.48	3.31	Insulin-like growth factor-binding protein complex	
100000	2.00	2.10	0.01	acid labile subunit	levels in
					patients with
					severe
					COVID 19
					[37].
					Decreased in
					patients with
P04003	0.66	2.48	0.61	C4b-binding protein alpha chain	severe
					COVID 19
					[38].
					Participates
P03952	1.57	2.29	1.94	Plasma kallikrein.	in blood
					coagulation.
					Decreased in
					patients with
Q96PD5	1.56	1.41	2.24	N-acetylmuramoyl-L-alanine amidase.	severe
					COVID 19
					[38].
					Constituent
					of the
P10643	2.39	4.36	3.43	Complement component C7	membrane
1 100 10		1.00	0.10	comprehent component er	attack
					complex
					(MAC).
					elevated
					levels of
					expression
P10809	1.19	3.09	0.14	60 kDa heat shock protein, mitochondrial	during
		3.03	0.14		dengue
					infection in
		U937 cells			
					[39].
_					Involve in
Q96L50	7.51	4.20	8.03	Leucine-rich repeat protein 1	protein
					modification

					and						
					ubiquitinatio						
					n. Unknow						
					function in						
					viral infection.						
					Low level in						
					acute phase						
					of patients						
P02753	3.61	1.91	2.81	Retinol-binding protein 4/ RBP4	with critical						
				COVID 19							
					[40].						
					Inhibits						
					human						
Dec. (e.e.	0.07	• 04	4.00	TZ III	kininogenase						
P29622	0.86	3.01	1.92	Kallistatin	activities of						
					tissue						
					kallikrein.						
					Promote						
					transcription						
				General transcription factor IIF subunit/ GTF2F1	elongation.						
P35269	3.70	0.54	1.25		Unknow						
					function in						
					viral						
					infection.						
		1.69 3.45	3.45 1.33	Complement C1q subcomponent subunit A	C1q is						
					associated						
P02745	1.69				with the						
					proenzymes C1r and C1s						
					to yield C1.						
					Elevated						
				C reactive protein	during acute						
P02741	2.10	6.97	0.00		phase in						
				•	patients with						
					DHF [18].						
					Up						
					regulation in						
						mild COVID					
Q96KN2	2.59	2.59 0.52	1.03	Beta-Ala-His dipeptidase/ CNDP1	patients as a						
2,0111.	_,,,	0.02	1.00	zem ma mo anpopulació, en en en	protective						
					mechanism						
					of oxidative						
					stress [41].						
					Involved in						
					the initial						
					immune cell						
075992	2 2.41	41 1.13 (0.61	Attraction	clustering during						
O75882				Attractin	inflammatory						
						response and					
					chemotactic						
-					chemiotache						

					(::((
					activity of chemokines.					
					Unknow					
					function in					
					viral					
					infection					
					Mediates the					
					proteolytic					
	2.08				cleavage of					
Q9NZP8		2 30	1.25	Complement C1r subcomponent-like protein	HP/haptoglo					
Q91 \Z 10		2.59	1.25	Complement C11 subcomponent-like protein	bin in the					
					endoplasmic					
					reticulum.					
					Binds to actin					
					filaments.					
					Hight levels					
P09493	2.48	2.69	2.66	Tropomyosin alpha-1 chain/TPM1	in patients					
					with severe					
					dengue [42].					
					Elevated					
					levels in					
				Monocyte differentiation antigen CD14	plasma					
P08571	6.01	4.27	4.22		during acute					
					phase of					
					dengue fever					
					[43].					
					Interconverts					
					simultaneous					
	2.24				ly and					
					stereospecific					
P07195		2.24	2 24	195 2 24 2 1	2 18	18 1.89	L-lactate dehydrogenase B chain	ally pyruvate		
10/1/5			2.24 2.10	1.09	L-lactate dehydrogenase B chain	and lactate.				
						Unknown				
					function in					
					infection.					
					Participation					
					in glycolysis					
						and				
					gluconeogene					
P60174	1.78	2.84	2.05	Triosephosphate isomerase/ TPI1	sis. Up					
		1.76 2.64 2.03			regulated					
					during acute					
					phase of					
					infection with					
					RSV [44].					
					Major function in					
	0.69									
D02670		69 0.95 2.06	Eibringgen gemme shein/ECC	hemostasis. Alteration of						
P02679			2.06	Fibrinogen gamma chain/ FGG						
						coagulation in dengue				
					in dengue infection[45].					
					1111CHOH[43].					

					Catalytic								
	1.71				release of								
					biotin from								
D420E1		2.44	2.45	Diakini dana/ PTD	biocytin.								
P43251		3.44	2.47	Biotinidase/ BTD	Unknow								
					function								
					during viral								
					infection.								
					Involved in								
					diverse								
					cellular								
					processes.								
P06748	4 46	6.20	3.16	Nucleophosmin/ NPM1	Enhanced								
1 007 10	1.10	0.20	0.10	rucicophosimi, ivi ivii	expression in								
					HEK293								
					cells infected								
					with CHIKV								
					[46].								
													May mediate
					immune								
					function by								
					conferring								
						resistance to							
					certain								
						opportunistic infections.							
							DENV						
									infection				
					upregulates								
					PTMA								
P06454	3.89	3.89	89 5.17	5.17	5 75	5 . 75	Prothymosin alpha/ PTMA	expression,					
								20	3.73	0.70		leading to	
											suppressing		
					megakaryopo								
					iesis. Plasma								
					levels are								
					elevated in								
					dengue								
					patients and								
					DENV-								
					infected								
					megakaryobl								
					asts [47].								
Proteins with AR>2	18	23	14										

4. Discussion

Severe dengue is associated with several risk factors, including age, comorbidities, and subsequent infections with different serotypes. The potential role of anti-SARS-CoV-2 antibodies as non-neutralizing antibodies in dengue infections and their capacity to trigger ADE is a critical consideration of the cross-reactivity observed between these two viruses.

In this study, we conducted a comprehensive proteomic analysis of the serum of patients with acute dengue infection, stratified based on the presence of anti-SARS-CoV-2 IgG, anti-dengue IgG/IgM antibodies, or both. Our high-throughput analysis identified 1,196 protein sequences, of which 296 were associated with known protein genes. Comparative analysis of protein expression profiles revealed distinct differences between healthy donors and infected patients, indicating significant alterations in the serum proteome during dengue infection. We observed a notable trend in protein expression among the patient groups. Patients with either anti-SARS-CoV-2 IgG (group 1) or anti-dengue antibodies (group 3) exhibited similar numbers of expressed proteins (256 and 255, respectively). However, the most striking observation was in group 2, comprising patients with both anti-SARS-CoV-2 IgG and anti-dengue IgG/IgM antibodies, which demonstrated the highest number of expressed proteins (261).

This differential protein expression pattern aligns with the established understanding of antibody-dependent enhancement (ADE) in dengue infections. Heterologous antibodies, particularly those from different dengue serotypes, can exacerbate ADE clinical manifestations. Recent evidence has extended this concept to antibodies against other flaviviruses, such as Zika [9] and even anti-SARS-CoV-2 antibodies, as evidenced by a fatal case of dengue attributed to ADE induced by anti-SARS-CoV-2 IgG antibodies [17]. The observed increase in protein expression in group 2 supports our hypothesis that the presence of both anti-SARS-CoV-2 and anti-dengue antibodies may synergistically enhance ADE, potentially leading to more severe dengue manifestations. This finding is particularly significant, as it suggests that individuals with prior SARS-CoV-2 exposure may be at a higher risk for severe dengue outcomes, a critical consideration in regions where both diseases are endemic. Furthermore, the elevated protein expression in Group 2 may reflect a more robust and potentially dysregulated immune response, a characteristic of ADE. This heightened protein expression could be indicative of increased viral replication, enhanced inflammatory responses, and altered cellular signaling pathways, all of which are hallmarks of ADE-mediated severe dengue infections.

Through comprehensive enrichment analysis of gene expression patterns, we identified significant alterations in key biological processes associated with dengue pathogenesis. The most striking findings emerged in four critical domains: immune response regulation, humoral immune response, blood coagulation, and platelet degranulation. These processes were markedly upregulated in dengue patients compared to healthy controls, with particularly pronounced effects in patients harboring both anti-SARS-CoV-2 and anti-dengue antibodies (Group 2).

Enrichment analysis revealed a robust immune response signature, with the immune effector process and the response to external biotic stimuli showing the highest number of associated genes. This pattern was consistently elevated across all patient groups but reached its peak in group 2, suggesting potentially excessive immune activation in patients with dual antibodies.

The blood coagulation pathway showed significant enrichment, with multiple genes involved in hemostasis and differential expression of platelet function. This finding aligns with the clinical manifestations of severe dengue, in which coagulopathy plays a central role in disease progression. Platelet degranulation-related genes showed marked upregulation, particularly in Group 2, indicating enhanced platelet activation and consumption. This observation provides a molecular basis for the increased risk of bleeding complications in patients with severe dengue.

The most compelling finding was the consistently higher gene enrichment scores in Group 2 across all analyzed biological processes. This pattern suggests that the presence of both anti-SARS-CoV-2 and anti-dengue antibodies may create a synergistic effect, potentially amplifying the immune response and associated pathological processes.

The enhanced activation of these pathways, particularly in group 2, provides molecular evidence for the increased risk of disease severity in patients with dual antibodies. The simultaneous upregulation of the immune response and coagulation pathways suggests a complex interplay between immune activation and hemostatic dysfunction, potentially contributing to more severe clinical manifestations. This provides crucial molecular insights into the mechanisms underlying

severe dengue manifestations and suggests that the presence of anti-SARS-CoV-2 antibodies may contribute to disease severity through enhanced immune activation and coagulation dysfunction. This understanding has important implications for the clinical management and risk assessment of dengue patients with prior SARS-CoV-2 exposure.

Analysis of differentially expressed proteins (DEP) in each group revealed significant findings. In healthy groups, the presence of Galectin-1/LGALS1 has been shown to suppress viral replication in both cell culture and murine models. Its absence in our patients facilitated dengue replication [23], underscoring its crucial role during infection, although the underlying mechanism remains elusive. The syntaxin-binding protein 5/STXBP5, which is synthesized in endothelial cells and platelets, is an intriguing case. While its involvement in dengue infection is not well documented, studies have shown that endothelial cells lacking this protein exhibit increased P-selectin expression and elevated vWF levels in the plasma [21], promoting platelet adherence and agglutination [48]. This phenomenon has also been observed in dengue infections. Furthermore, STXBP5 knockout in mice results in reduced PF4/CXCL4 secretion from platelets [22]. Given that low PF4/CXCL4 levels correlate with dengue severity, although the cause remains unclear [49], the absence of STXBP5 in groups 1, 2, and 3 may suggest a link between dengue virus and STXBP5 downregulation, which may explain the decreased PF4 synthesis in platelets and warrants further investigation. Glucose-6phosphate isomerase/GPI, a critical glycolytic enzyme, plays an unclear role in viral infection. However, considering that microorganisms often utilize the Warburg pathway for efficient energy production during replication [50], the absence of this protein in dengue patients may represent a host defense mechanism to impede this metabolic pathway and combat infection. Further research is needed to substantiate this hypothesis.

Differentially expressed proteins (DEPs) in group one, specifically ribosomal protein L19/RPL19 and Peptidyl-prolyl cis-trans isomerase B/PPIB, have been identified as crucial host factors in the replication of flaviviruses such as Yellow Fever Virus (YFV) and West Nile Virus (WNV) [27,28]. The detection of coagulation factor IX indicates an ongoing coagulation process. Disruptions in coagulation during dengue infection have been previously reported [24,25]. The exact mechanisms underlying this phenomenon remain incompletely understood; however, they may involve platelet aggregation, leading to microthrombus formation, as well as increased tissue factor (TF) expression by endothelial cells or activated platelets [51], which subsequently triggers the coagulation cascade.

In the second group, a high number of differentially expressed proteins (DEPs) were identified, suggesting an accelerated rate of viral replication facilitated by the simultaneous presence of antibodies targeting both dengue and SARS-CoV-2. Most DEPs are associated with mechanisms underlying severe clinical manifestations of dengue, potentially driven by the antibody-dependent enhancement (ADE) phenomenon. Thrombospondin-1/THBS1 serves as an indicator of an elevated platelet activation rate and is released from alpha granules during this process. Enhanced platelet activation leads to diminished platelet levels due to increased consumption and destruction, correlating with severe dengue cases, in which NS1 proteins [52] and immunocomplexes are primary activation triggers [53]. Reduced platelet counts are typically noted in the critical phase of dengue, commencing three-four days post-infection and manifesting as petechiae on the skin. These low levels continue through the convalescent phase, generally normalizing within two weeks postinfection. While the progression of complications is influenced by host factors (age and comorbidities), earlier platelet activation, such as that during the acute phase in our study subjects, increases the likelihood of complications. Platelets not only contribute to bleeding, plasma leakage, and organ failure but also play a crucial role in immune response modulation, stimulating immune cell activation, and pro-inflammatory molecule release [54].

The presence of coagulation factor XIII B chain/FIIIB in this group suggests potential coagulation pathway dysfunction, as this protein is crucial for FXIII-A2B2 complex formation. FXIII plays a vital role in stabilizing fibrin clots at the termination of the coagulation pathway. Despite high FIIIB levels in normal serum, its absence in other groups, including healthy controls, is noteworthy. We postulate that in group two, the absence of STXBP5, as seen in Groups 1 and 3, resulted in elevated immature

vWF levels, facilitating platelet adherence and microthrombus formation, thus activating the coagulation cascade. Early coagulation cascade activation in dengue infection is also linked to severe cases owing to the rapid consumption and depletion of coagulation factors, which become unavailable in later infection stages to prevent bleeding and plasma leakage [24,25].

Furthermore, the third DEP, Bone marrow proteoglycan/PRG2, which is secreted by eosinophils, also activates platelets. Eosinophil activation is induced by IL4 and IL10, which are produced in large quantities during the ADE phenomenon, shifting the immune response from Th1 to Th2 [6]. Consequently, the detection of PRG2, FXIIIB, and THBS1 strongly indicated, based on their functions, the potential presence of an ADE phenomenon in group 2.

The final DEPs identified in this group, Antigen KI-67/MKI67 and Colorectal mutant cancer protein/MCC, were involved in cellular replication. Given that these processes are dysregulated in other infections, it would be valuable to investigate their potential roles in dengue. Finally, Putative uncharacterized zinc finger protein 814/ZNF814, the only DEPs expressed in group 3, was not associated with any function, but other proteins that contain the zinc finger domain participate in the regulation of the immune response during viral infection [55]; therefore, future evaluation of this protein should be performed.

The final analysis, examining the abundance ratio among the groups, revealed that 30 of the 296 proteins were overexpressed during dengue infection, as demonstrated by AR > 2.0. Upon examination of each group, it was observed that group two contained the highest number of overexpressed proteins (23), followed by groups 1 (18 and group three (14. The majority of the overexpressed proteins have been previously identified in viral infections, including Alpha-2macroglobulin, Inter-alpha-trypsin inhibitor heavy chain H2, Alpha-1B-glycoprotein, Leucine-richalpha-2 glycoprotein, Insulin-like growth factor-binding protein complex acid labile subunit, Nacetylmuramoyl-L-alanine amidase, 60 kDa heat shock protein, mitochondrial, retinol-binding protein 4/ RBP4, Beta-Ala-His dipeptidase/ CNDP1, Tropomyosin alpha-1 chain/TPM1, monocyte differentiation antigen CD14, Triosephosphate isomerase/ TPI1, Nucleophosmin/ NPM1 and Prothymosin alpha/PTMA. Others, such as General transcription factor IIF subunit/ GTF2F1, Serum amyloid A-4 protein, Leucine-rich repeat protein 1, Attractin, L-lactate dehydrogenase B chain and Biotinidase/ BTD, currently lack evidence of participation during viral infection. The remaining proteins are involved in the innate immune response, including C-reactive protein/CRP, complement components C9, C7, C1q subcomponent subunit B, Complement C1q subcomponent subunit A, C4bbinding protein alpha chain, and Complement C1r subcomponent-like protein, or in blood coagulation, such as Kallistatin and Fibrinogen gamma chain/FGG. Dysregulation of proteins in the complement system during dengue infection has been previously described [18], and it is anticipated that these proteins were also overexpressed in the patients in this study.

Proteomic analysis revealed a compelling association between the presence of both anti-dengue and anti-SARS-CoV-2 antibodies and enhanced immune activation patterns, suggesting ADE. This finding has significant implications for populations in dengue-endemic regions with prior SARS-CoV-2 exposure, whether through natural infection or vaccination, as it may contribute to increased disease severity. The observed increase in severe dengue cases and associated mortality in the Americas following the COVID-19 pandemic, as reported by the WHO/PAHO, adds epidemiological support to this molecular evidence [56].

However, it is crucial to note that ADE development involves multiple variables in addition to the presence of antibodies alone. Our findings suggest that anti-SARS-CoV-2 antibodies may function as an additional risk factor for severe dengue manifestations, acting in concert with established risk factors including host health status and viral characteristics. This proteomic approach may raise concerns in biological interpretation, particularly as the differential expression of proteoforms and protein species across groups of interest underscores the intricate nature of the immune response during dengue infection, particularly in the context of ADE. The proteins identified in our analysis not only reflect alterations in immune regulation and coagulation processes but also highlight the diverse functional roles that different proteoforms may play in pathophysiological contexts.

The comprehensive proteomic approach employed in this study not only elucidated the potential mechanisms of disease severity but also identified candidate biomarkers for disease progression and diagnosis. However, the limitations of our investigation include a potential lack of comprehensive characterization of all proteoforms present in serum samples, which may influence our understanding of protein interactions and their biological significance. An additional limitation is that reliance on bottom-up proteomics techniques may obscure critical post-translational modifications and variations among protein species, thereby complicating the interpretation of results

Despite our findings require validation through subsequent studies, aimed to explore these aspects further, employing advanced proteomic techniques to elucidate the full complexity of the dengue proteome and its interactions with antibodies from SARS-CoV-2, this bottom-up proteomic analysis provides a crucial foundation for understanding the complex interplay between SARS-CoV-2 and dengue virus infections.

5. Conclusions

Proteomic analysis of serum samples from dengue-infected patients with varying antibody profiles has revealed significant alterations in key biological processes. Enrichment analysis demonstrated the upregulation of proteins involved in platelet activation, coagulation cascades, and Th2 immune responses, particularly in patients with both anti-SARS-CoV-2 IgG and anti-dengue IgG/IgM antibodies. These molecular signatures parallel those typically observed in secondary dengue infections characterized by the ADE phenomenon, as evidenced by differential gene enrichment patterns across immune effector processes and hemostatic pathways. While these findings provide compelling molecular evidence for the potential ADE-mediated pathogenesis in the context of dual-antibody presence, further clinical studies are warranted to validate these observations and establish their therapeutic implications.

Author Contributions: Conceptualization, Investigation, and Writing - Original Draft, ECA; Visualization, Project administration; Investigation, Resources, Visualization, Writing - Review & Editing, and Funding acquisition, MMC; Investigation, Formal Analysis, Methodology, and Validation, LRP; Conceptualization, Supervision, Data Curation, Resources, Writing - Original Draft, Writing - Review & Editing, Visualization, Funding acquisition, and Project administration, JA. All authors have read and agreed to the published version of the manuscript."

Funding: This Project was supported by the Consejo Nacional de Humanidades Ciencia y Tecnologia, CONAHCYT (scholarship #1070651), and Autonomous University Benito Juárez of Oaxaca.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki and was approved by the Committee of the Institutional Review Board of the Experimental Biomedicine program.

Informed Consent Statement: Informed consent was obtained from all the subjects involved in the study.

Data Availability Statement: The original contributions presented in this study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author(s)..

Acknowledgments: The authors thank all the instructors of the Undergraduate Biochemical Laboratory FMC-UABJO for technical assistance during this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

 Dengue and Severe Dengue Available online: https://www.who.int/news-room/fact-sheets/detail/dengueand-severe-dengue (accessed on 9 January 2025).

- 2. Katzelnick, L.C.; Gresh, L.; Halloran, M.E.; Mercado, J.C.; Kuan, G.; Gordon, A.; Balmaseda, A.; Harris, E. Antibody-Dependent Enhancement of Severe Dengue Disease in Humans. Science 2017, 358, 929–932, doi:10.1126/science.aan6836.
- 3. Chan, C.Y.Y.; Low, J.Z.H.; Gan, E.S.; Ong, E.Z.; Zhang, S.L.-X.; Tan, H.C.; Chai, X.; Ghosh, S.; Ooi, E.E.; Chan, K.R. Antibody-Dependent Dengue Virus Entry Modulates Cell Intrinsic Responses for Enhanced Infection. mSphere 2019, 4, e00528-19, doi:10.1128/mSphere.00528-19.
- 4. Rodrigo, W.W.S.I.; Jin, X.; Blackley, S.D.; Rose, R.C.; Schlesinger, J.J. Differential Enhancement of Dengue Virus Immune Complex Infectivity Mediated by Signaling-Competent and Signaling-Incompetent Human FcγRIA (CD64) or FcγRIIA (CD32). J. Virol. 2006, 80, 10128–10138, doi:10.1128/JVI.00792-06.
- 5. Narayan, R.; Tripathi, S. Intrinsic ADE: The Dark Side of Antibody Dependent Enhancement During Dengue Infection. Front. Cell. Infect. Microbiol. 2020, 10, 580096, doi:10.3389/fcimb.2020.580096.
- Ubol, S.; Phuklia, W.; Kalayanarooj, S.; Modhiran, N. Mechanisms of Immune Evasion Induced by a Complex of Dengue Virus and Pre-existing Enhancing Antibodies. J. Infect. Dis. 2010, 201, 923–935, doi:10.1086/651018.
- 7. Wen, J.; Cheng, Y.; Ling, R.; Dai, Y.; Huang, B.; Huang, W.; Zhang, S.; Jiang, Y. Antibody-Dependent Enhancement of Coronavirus. Int. J. Infect. Dis. 2020, 100, 483–489, doi:10.1016/j.ijid.2020.09.015.
- 8. Sawant, J.; Patil, A.; Kurle, S. A Review: Understanding Molecular Mechanisms of Antibody-Dependent Enhancement in Viral Infections. Vaccines 2023, 11, 1240, doi:10.3390/vaccines11071240.
- 9. Bonheur, A.N.; Thomas, S.; Soshnick, S.H.; McGibbon, E.; Dupuis, A.P.; Hull, R.; Slavinski, S.; Del Rosso, P.E.; Weiss, D.; Hunt, D.T.; et al. A Fatal Case Report of Antibody-Dependent Enhancement of Dengue Virus Type 1 Following Remote Zika Virus Infection. BMC Infect. Dis. 2021, 21, 749, doi:10.1186/s12879-021-06482-0.
- 10. Jain, D.; Salunke, D.M. Antibody Specificity and Promiscuity. Biochem. J. 2019, 476, 433–447, doi:10.1042/BCJ20180670.
- 11. Yan, G.; Lee, C.K.; Lam, L.T.M.; Yan, B.; Chua, Y.X.; Lim, A.Y.N.; Phang, K.F.; Kew, G.S.; Teng, H.; Ngai, C.H.; et al. Covert COVID-19 and False-Positive Dengue Serology in Singapore. Lancet Infect. Dis. 2020, 20, 536, doi:10.1016/S1473-3099(20)30158-4.
- 12. Kembuan, G.J. Dengue Serology in Indonesian COVID-19 Patients: Coinfection or Serological Overlap? IDCases 2020, 22, e00927, doi:10.1016/j.idcr.2020.e00927.
- 13. Spinicci, M.; Bartoloni, A.; Mantella, A.; Zammarchi, L.; Rossolini, G.M.; Antonelli, A. Low Risk of Serological Cross-Reactivity between Dengue and COVID-19. Mem. Inst. Oswaldo Cruz 2020, 115, e200225, doi:10.1590/0074-02760200225.
- 14. Nath, H.; Mallick, A.; Roy, S.; Sukla, S.; Biswas, S. Computational Modelling Supports That Dengue Virus Envelope Antibodies Can Bind to SARS-CoV-2 Receptor Binding Sites: Is Pre-Exposure to Dengue Virus Protective against COVID-19 Severity? Comput. Struct. Biotechnol. J. 2021, 19, 459–466, doi:10.1016/j.csbj.2020.12.037.
- 15. Lustig, Y.; Keler, S.; Kolodny, R.; Ben-Tal, N.; Atias-Varon, D.; Shlush, E.; Gerlic, M.; Munitz, A.; Doolman, R.; Asraf, K.; et al. Potential Antigenic Cross-Reactivity Between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Dengue Viruses. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 73, e2444–e2449, doi:10.1093/cid/ciaa1207.
- 16. Cheng, Y.-L.; Chao, C.-H.; Lai, Y.-C.; Hsieh, K.-H.; Wang, J.-R.; Wan, S.-W.; Huang, H.-J.; Chuang, Y.-C.; Chuang, W.-J.; Yeh, T.-M. Antibodies against the SARS-CoV-2 S1-RBD Cross-React with Dengue Virus and Hinder Dengue Pathogenesis. Front. Immunol. 2022, 13, 941923, doi:10.3389/fimmu.2022.941923.
- 17. Beig, I.; Talwar, D.; Kumar, S.; Hulkoti, V. Post Covid Fatal Antibody Dependent Enhancement of Dengue Infection in a Young Male: Double Trouble. 2021.
- Kumar, Y.; Liang, C.; Bo, Z.; Rajapakse, J.C.; Ooi, E.E.; Tannenbaum, S.R. Serum Proteome and Cytokine Analysis in a Longitudinal Cohort of Adults with Primary Dengue Infection Reveals Predictive Markers of DHF. PLoS Negl. Trop. Dis. 2012, 6, e1887, doi:10.1371/journal.pntd.0001887.
- 19. Han, L.; Ao, X.; Lin, S.; Guan, S.; Zheng, L.; Han, X.; Ye, H. Quantitative Comparative Proteomics Reveal Biomarkers for Dengue Disease Severity. Front. Microbiol. 2019, 10, 2836, doi:10.3389/fmicb.2019.02836.

- Garishah, F.M.; Boahen, C.K.; Vadaq, N.; Pramudo, S.G.; Tunjungputri, R.N.; Riswari, S.F.; Van Rij, R.P.; Alisjahbana, B.; Gasem, M.H.; Van Der Ven, A.J.A.M.; et al. Longitudinal Proteomic Profiling of the Inflammatory Response in Dengue Patients. PLoS Negl. Trop. Dis. 2023, 17, e0011041, doi:10.1371/journal.pntd.0011041.
- 21. Zhu, Q.; Yamakuchi, M.; Ture, S.; De La Luz Garcia-Hernandez, M.; Ko, K.A.; Modjeski, K.L.; LoMonaco, M.B.; Johnson, A.D.; O'Donnell, C.J.; Takai, Y.; et al. Syntaxin-Binding Protein STXBP5 Inhibits Endothelial Exocytosis and Promotes Platelet Secretion. J. Clin. Invest. 2014, 124, 4503–4516, doi:10.1172/JCI71245.
- 22. Ye, S.; Huang, Y.; Joshi, S.; Zhang, J.; Yang, F.; Zhang, G.; Smyth, S.S.; Li, Z.; Takai, Y.; Whiteheart, S.W. Platelet Secretion and Hemostasis Require Syntaxin-Binding Protein STXBP5. J. Clin. Invest. 2014, 124, 4517–4528, doi:10.1172/JCI75572.
- 23. Toledo, K.A.; Fermino, M.L.; Andrade, C.D.C.; Riul, T.B.; Alves, R.T.; Muller, V.D.M.; Russo, R.R.; Stowell, S.R.; Cummings, R.D.; Aquino, V.H.; et al. Galectin-1 Exerts Inhibitory Effects during DENV-1 Infection. PLoS ONE 2014, 9, e112474, doi:10.1371/journal.pone.0112474.
- 24. Bhamarapravati, N. Hemostatic Defects in Dengue Hemorrhagic Fever. Clin. Infect. Dis. 1989, 11, S826–S829, doi:10.1093/clinids/11.Supplement_4.S826.
- 25. Funahara, Y.; Sumarmo; Wirawan, R. Features of DIC in Dengue Hemorrhagic Fever. In Current Studies in Hematology and Blood Transfusion; Abe, T., Yamanaka, M., Eds.; S. Karger AG, 1983; Vol. 49, pp. 201–211 ISBN 978-3-8055-3726-1.
- 26. Yang, E.-J.; Seo, J.-W.; Choi, I.-H. Ribosomal Protein L19 and L22 Modulate TLR3 Signaling. Immune Netw. 2011, 11, 155, doi:10.4110/in.2011.11.3.155.
- 27. Petrova, E.; Gracias, S.; Beauclair, G.; Tangy, F.; Jouvenet, N. Uncovering Flavivirus Host Dependency Factors through a Genome-Wide Gain-of-Function Screen. Viruses 2019, 11, 68, doi:10.3390/v11010068.
- 28. Qing, M.; Yang, F.; Zhang, B.; Zou, G.; Robida, J.M.; Yuan, Z.; Tang, H.; Shi, P.-Y. Cyclosporine Inhibits Flavivirus Replication through Blocking the Interaction between Host Cyclophilins and Viral NS5 Protein. Antimicrob. Agents Chemother. 2009, 53, 3226–3235, doi:10.1128/AAC.00189-09.
- 29. Isenberg, J.S.; Romeo, M.J.; Yu, C.; Yu, C.K.; Nghiem, K.; Monsale, J.; Rick, M.E.; Wink, D.A.; Frazier, W.A.; Roberts, D.D. Thrombospondin-1 Stimulates Platelet Aggregation by Blocking the Antithrombotic Activity of Nitric Oxide/cGMP Signaling. Blood 2008, 111, 613–623, doi:10.1182/blood-2007-06-098392.
- 30. Pimanda, J.E.; Ganderton, T.; Maekawa, A.; Yap, C.L.; Lawler, J.; Kershaw, G.; Chesterman, C.N.; Hogg, P.J. Role of Thrombospondin-1 in Control of von Willebrand Factor Multimer Size in Mice. J. Biol. Chem. 2004, 279, 21439–21448, doi:10.1074/jbc.M313560200.
- 31. Sigglekow, N.D.; Pangon, L.; Brummer, T.; Molloy, M.; Hawkins, N.J.; Ward, R.L.; Musgrove, E.A.; Kohonen-Corish, M.R.J. Mutated in Colorectal Cancer Protein Modulates the NFκB Pathway. ANTICANCER Res. 2012.
- 32. Edwards, S.K.; Baron, J.; Moore, C.R.; Liu, Y.; Perlman, D.H.; Hart, R.P.; Xie, P. Mutated in Colorectal Cancer (MCC) Is a Novel Oncogene in B Lymphocytes. J. Hematol. Oncol.J Hematol Oncol 2014, 7, 56, doi:10.1186/s13045-014-0056-6.
- 33. Maqueda-Alfaro, R.A.; Marcial-Juárez, E.; Calderón-Amador, J.; García-Cordero, J.; Orozco-Uribe, M.; Hernández-Cázares, F.; Medina-Pérez, U.; Sánchez-Torres, L.E.; Flores-Langarica, A.; Cedillo-Barrón, L.; et al. Robust Plasma Cell Response to Skin-Inoculated Dengue Virus in Mice. J. Immunol. Res. 2021, 2021, 5511841, doi:10.1155/2021/5511841.
- 34. Rohrbach, M.S.; Wheatley, C.L.; Slifman, N.R.; Gleich, G.J. Activation of Platelets by Eosinophil Granule Proteins. J. Exp. Med. 1990, 172, 1271–1274, doi:10.1084/jem.172.4.1271.
- 35. Kunder, M.; Lakshmaiah, V.; Moideen Kutty, A.V. Plasma Neutrophil Elastase, A1-Antitrypsin, A2-Macroglobulin and Neutrophil Elastase–A1-Antitrypsin Complex Levels in Patients with Dengue Fever. Indian J. Clin. Biochem. 2018, 33, 218–221, doi:10.1007/s12291-017-0658-1.
- 36. Sahin, A.T.; Yurtseven, A.; Dadmand, S.; Ozcan, G.; Akarlar, B.A.; Kucuk, N.E.O.; Senturk, A.; Ergonul, O.; Can, F.; Tuncbag, N.; et al. Plasma Proteomics Identify Potential Severity Biomarkers from COVID-19 Associated Network. PROTEOMICS Clin. Appl. 2023, 17, 2200070, doi:10.1002/prca.202200070.

- 37. Kimura, Y.; Nakai, Y.; Shin, J.; Hara, M.; Takeda, Y.; Kubo, S.; Jeremiah, S.S.; Ino, Y.; Akiyama, T.; Moriyama, K.; et al. Identification of Serum Prognostic Biomarkers of Severe COVID-19 Using a Quantitative Proteomic Approach. Sci. Rep. 2021, 11, 20638, doi:10.1038/s41598-021-98253-9.
- 38. di Flora, D.C.; Dionizio, A.; Pereira, H.A.B.S.; Garbieri, T.F.; Grizzo, L.T.; Dionisio, T.J.; Leite, A. de L.; Silva-Costa, L.C.; Buzalaf, N.R.; Reis, F.N.; et al. Analysis of Plasma Proteins Involved in Inflammation, Immune Response/Complement System, and Blood Coagulation upon Admission of COVID-19 Patients to Hospital May Help to Predict the Prognosis of the Disease. Cells 2023, 12, 1601, doi:10.3390/cells12121601.
- 39. Padwad, Y.S.; Mishra, K.P.; Jain, M.; Chanda, S.; Karan, D.; Ganju, L. RNA Interference Mediated Silencing of Hsp60 Gene in Human Monocytic Myeloma Cell Line U937 Revealed Decreased Dengue Virus Multiplication. Immunobiology 2009, 214, 422–429, doi:10.1016/j.imbio.2008.11.010.
- 40. Vollenberg, R.; Tepasse, P.-R.; Fobker, M.; Hüsing-Kabar, A. Significantly Reduced Retinol Binding Protein 4 (RBP4) Levels in Critically Ill COVID-19 Patients. Nutrients 2022, 14, 2007, doi:10.3390/nu14102007.
- 41. Bramer, L.M.; Hontz, R.D.; Eisfeld, A.J.; Sims, A.C.; Kim, Y.-M.; Stratton, K.G.; Nicora, C.D.; Gritsenko, M.A.; Schepmoes, A.A.; Akasaka, O.; et al. Multi-Omics of NET Formation and Correlations with CNDP1, PSPB, and L-Cystine Levels in Severe and Mild COVID-19 Infections. Heliyon 2023, 9, e13795, doi:10.1016/j.heliyon.2023.e13795.
- 42. Soe, H.J.; Yong, Y.K.; Al-Obaidi, M.M.J.; Raju, C.S.; Gudimella, R.; Manikam, R.; Sekaran, S.D. Identifying Protein Biomarkers in Predicting Disease Severity of Dengue Virus Infection Using Immune-Related Protein Microarray. Medicine (Baltimore) 2018, 97, e9713, doi:10.1097/MD.00000000000009713.
- 43. Upasani, V.; Ter Ellen, B.M.; Sann, S.; Lay, S.; Heng, S.; Laurent, D.; Ly, S.; Duong, V.; Dussart, P.; Smit, J.M.; et al. Characterization of Soluble TLR2 and CD14 Levels during Acute Dengue Virus Infection. Heliyon 2023, 9, e17265, doi:10.1016/j.heliyon.2023.e17265.
- 44. Yin, G.-Q.; Zeng, H.-X.; Li, Z.-L.; Chen, C.; Zhong, J.-Y.; Xiao, M.-S.; Zeng, Q.; Jiang, W.-H.; Wu, P.-Q.; Zeng, J.-M.; et al. Differential Proteomic Analysis of Children Infected with Respiratory Syncytial Virus. Braz. J. Med. Biol. Res. 2021, 54, e9850, doi:10.1590/1414-431X20209850.
- 45. Huang, Y.-H.; Liu, C.-C.; Wang, S.-T.; Lei, H.-Y.; Liu, H.-S.; Lin, Y.-S.; Wu, H.-L.; Yeh, T.-M. Activation of Coagulation and Fibrinolysis during Dengue Virus Infection. J. Med. Virol. 2001, 63, 247–251, doi:10.1002/1096-9071(200103)63:3<247::AID-JMV1008>3.0.CO;2-F.
- 46. Abraham, R.; Mudaliar, P.; Jaleel, A.; Srikanth, J.; Sreekumar, E. High Throughput Proteomic Analysis and a Comparative Review Identify the Nuclear Chaperone, Nucleophosmin among the Common Set of Proteins Modulated in Chikungunya Virus Infection. J. Proteomics 2015, 120, 126–141, doi:10.1016/j.jprot.2015.03.007.
- 47. Yang, M.-L.; Lin, C.-L.; Chen, Y.-C.; Lu, I.-A.; Su, B.-H.; Chen, Y.-H.; Liu, K.-T.; Wu, C.-L.; Shiau, A.-L. Prothymosin α Accelerates Dengue Virus-Induced Thrombocytopenia. iScience 2024, 27, 108422, doi:10.1016/j.isci.2023.108422.
- 48. Riswari, S.F.; Tunjungputri, R.N.; Kullaya, V.; Garishah, F.M.; Utari, G.S.R.; Farhanah, N.; Overheul, G.J.; Alisjahbana, B.; Gasem, M.H.; Urbanus, R.T.; et al. Desialylation of Platelets Induced by Von Willebrand Factor Is a Novel Mechanism of Platelet Clearance in Dengue. PLOS Pathog. 2019, 15, e1007500, doi:10.1371/journal.ppat.1007500.
- 49. Trugilho, M.R. de O.; Hottz, E.D.; Brunoro, G.V.F.; Teixeira-Ferreira, A.; Carvalho, P.C.; Salazar, G.A.; Zimmerman, G.A.; Bozza, F.A.; Bozza, P.T.; Perales, J. Platelet Proteome Reveals Novel Pathways of Platelet Activation and Platelet-Mediated Immunoregulation in Dengue. PLoS Pathog. 2017, 13, e1006385, doi:10.1371/journal.ppat.1006385.
- 50. Pouysségur, J.; Marchiq, I.; Parks, S.K.; Durivault, J.; Ždralević, M.; Vucetic, M. 'Warburg Effect' Controls Tumor Growth, Bacterial, Viral Infections and Immunity Genetic Deconstruction and Therapeutic Perspectives. Semin. Cancer Biol. 2022, 86, 334–346, doi:10.1016/j.semcancer.2022.07.004.
- 51. Panes, O.; Matus, V.; Sáez, C.G.; Quiroga, T.; Pereira, J.; Mezzano, D. Human Platelets Synthesize and Express Functional Tissue Factor. Blood 2007, 109, 5242–5250, doi:10.1182/blood-2006-06-030619.
- 52. García-Larragoiti, N.; Kim, Y.C.; López-Camacho, C.; Cano-Méndez, A.; López-Castaneda, S.; Hernández-Hernández, D.; Vargas-Ruiz, Á.G.; Vázquez-Garcidueñas, M.S.; Reyes-Sandoval, A.; Viveros-Sandoval,

- M.E. Platelet Activation and Aggregation Response to Dengue Virus Non-structural Protein 1 and Domains. J. Thromb. Haemost. JTH 2021, 19, 2572–2582, doi:10.1111/jth.15431.
- 53. Ojha, A.; Nandi, D.; Batra, H.; Singhal, R.; Annarapu, G.K.; Bhattacharyya, S.; Seth, T.; Dar, L.; Medigeshi, G.R.; Vrati, S.; et al. Platelet Activation Determines the Severity of Thrombocytopenia in Dengue Infection. Sci. Rep. 2017, 7, 41697, doi:10.1038/srep41697.
- 54. Singh, A.; Bisht, P.; Bhattacharya, S.; Guchhait, P. Role of Platelet Cytokines in Dengue Virus Infection. Front. Cell. Infect. Microbiol. 2020, 10, 561366, doi:10.3389/fcimb.2020.561366.
- 55. Esposito, S.; D'Abrosca, G.; Antolak, A.; Pedone, P.V.; Isernia, C.; Malgieri, G. Host and Viral Zinc-Finger Proteins in COVID-19. Int. J. Mol. Sci. 2022, 23, 3711, doi:10.3390/ijms23073711.
- 56. Dengue OPS/OMS | Organización Panamericana de la Salud Available online: https://www.paho.org/es/arbo-portal/dengue (accessed on 9 January 2025).

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.