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A Short Note on Gaussian Distribution with
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Abstract: This article studies the PDE for the joint probability density function for multi-variate
Brownian motions where the correlations are not constant. In particular, with some assumption on
the correlation function, this article shows the high dimensional PDE can be decomposed into lower
dimensional PDEs which make the calculations fast and stable for practical applications.
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1. Background
Gaussian copula is widely used in quantitative finance modelling. The Gaussian distribution is

closely related to an underlying Brownian motion: the standard multi-variate normal distribution
is the terminal distribution of an underlying multi-variate Brownian motion where the correlations
are constant over time. However the correlation being constant is a limitation of this model which
might not fit the actual market. On the other hand, if the correlations are not constant, the result
terminal distribution has no closed-form representation in general. Without the closed-form solution
or analytic tractability, it becomes less attractive for practical usage. There are research in alternative
directions which bypass this tractability issue, for example in [1,2], the respective authors created
different terminal distributions which can admit shape with the desired correlation skew effect. In this
paper, we still focus on the terminal distribution result from the Brownian motion itself. We study the
PDE for the density function and show that with some assumption on the correlation function, the PDE
can be decomposed to lower dimensional ones and therefore make the calculation fast and practical.
With this technique, the result distribution can be a useful variation to the standard multi-variate
normal distribution and it can be used for purpose like modelling correlation skew effect in quant
finance.

We also think the terminal distribution with non-constant correlation might be an interesting
mathmatical object on itself.

2. Methodology
We study this math problem below. This is a 2-dimensional case however we show later that

similar techniques can be applied to higher dimensions.

x(0), y(0) = 0, 0 (1)

dx = dw1 (2)

dy = ρ(x, y, t)dw1 +
√

1 − ρ2(x, y, t)dw2 (3)

< dw1, dw2 > = 0 (4)

The Fokker-Planck equation [3–5] describes the joint probability density function p(x, y, t) by:

∂p
∂t

=
1
2
(

∂p
∂x2 + 2

∂(ρp)
∂x∂y

+
∂p
∂y2 ) (5)
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This is a 2d-PDE in the convention of quant finance industry (2d refers to 2-dimension in space
variables (x, y) while in fact it is a 3-d PDE if counting t, given the common presence of t in this type
of PDE we refer the dimensions to only the space variables) and the general numerical method is slow.
However, we can decompose the 2d-PDE into two 1d-PDEs if we make a reasonable assumtion on the
correlation function as below:

ρ(x, y, t) = ρ(x + y, t) (6)

This means the correlation depends on the (x, y) in terms of the total (x + y), which can be
interpreted as: correlation depends on a market factor which is the average of the underlyers. With
this extra assumption, we can simplify the problem as below:

Lets make change of variables below

u =
1
2
(x + y) (7)

v =
1
2
(x − y) (8)

Then we have
< du, dv >=

1
4
(< dx, dx > − < dy, dy >) = 0 (9)

And du, dv can be written as

du =

√
1 + ρ(u, t)

2
dw3 (10)

dv =

√
1 − ρ(u, t)

2
dw4 (11)

Note the first equation only involves u, then Fokker-Planck equation for u is a 1d-PDE:

∂p(u, t)
∂t

=
1
2

∂2

∂u2 (
1 + ρ(u, t)

2
p(u, t)) (12)

So we can solve p(u, t) first, then we look at the v(t). For any given path u(s), 0 ≤ s ≤ t, the v(t)
is simply a sum of infinitesimal normal variables with variances 1−ρ(u(s),s)

2 , so we know the distrubtion
of v(t) condition on this path u(s), 0 ≤ s ≤ t is a normal distribution with mean 0 and variance

∫ t

0

1 − ρ(u(s), s)
2

ds (13)

Conditioned on a path is not easy to use for calculation, it would be more useful to condition on a
value u(t) instead of the whole path. Lets consider the conditional expectation

f (u, t) = E[
∫ t

0

1 − ρ(u(s), s)
2

ds|u(t) = u] (14)

This is the path integral on all possible paths u(s) that get to u at t. We have the following:

p(u, t + dt) f (u, t + dt) =
∫ ∞

−∞
p(x, t)[ f (x, t) + dt

1 − ρ(x, t)
2

]p(u, t + dt|x, t)dx (15)

The p(u, t + dt|x, t) is the transition probability from state (x, t) to (u, t + dt).
Now we follow the Fokker-Planck equation derivation technique, we will get:

∂

∂t
(p f ) = p

1 − ρ(u, t)
2

+
1
2

∂

∂u2 (p f
1 + ρ(u, t)

2
) (16)

The proof is standard derivation, readers can skip it. For completeness we include the outline below:
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Outline of proof:

lim
dt→0

p(u, t + dt) f (u, t + dt)− p(u, t) f (u, t)
dt

= lim
dt→0

∫ ∞
−∞ p(x, t) f (x, t)p(u, t + dt|x, t)dx − p(u, t) f (u, t)

dt
+ lim

dt→0

∫ ∞

−∞
p(x, t)

1 − ρ(x, t)
2

p(u, t + dt|x, t)dx

Note the second term comes to

lim
dt→0

∫ ∞

−∞
p(x, t)

1 − ρ(x, t)
2

p(u, t + dt|x, t)dx = p(u, t)
1 − ρ(u, t)

2

So we just have to prove

lim
dt→0

∫ ∞
−∞ p(x, t) f (x, t)p(u, t + dt|x, t)dx − p(u, t) f (u, t)

dt
=

1
2

∂

∂u2 (p f
1 + ρ(u, t)

2
)

Let h(u) be a smooth function with compact support, consider∫ ∞

−∞
h(u)

∫ ∞

−∞
p(x, t) f (x, t)p(u, t + dt|x, t)dxdu

=
∫ ∞

−∞
p(x, t) f (x, t)

∫ ∞

−∞
h(u)p(u, t + dt|x, t)dudx

=
∫ ∞

−∞
p(x, t) f (x, t)

∫ ∞

−∞
(h(x) + h′(u − x) +

1
2

h′′(u − x)2 + O((u − x)3))p(u, t + dt|x, t)dudx

Now the integral
∫ ∞
−∞(u − x)k p(u, t + dt|x, t)du is the k − th moment of the Brownian motion

du =
√

1+ρ(u,t)
2 dw3, so we have

∫ ∞

−∞
(u − x)p(u, t + dt|x, t)du = 0∫ ∞

−∞
(u − x)2 p(u, t + dt|x, t)du =

1 + ρ(x, t)
2

dt∫ ∞

−∞
(u − x)k p(u, t + dt|x, t)du = higher order than dt when k > 2

Then we have below, in the order of dt∫ ∞

−∞
h(u)

∫ ∞

−∞
p(x, t) f (x, t)p(u, t + dt|x, t)dxdu

=
∫ ∞

−∞
p(x, t) f (x, t)h(x)

∫ ∞

−∞
p(u, t + dt|x, t)dudx + dt

∫ ∞

−∞

1
2

p(x, t) f (x, t)h′′
1 + ρ(x, t)

2
dx

=
∫ ∞

−∞
p(x, t) f (x, t)h(x)dx + dt

∫ ∞

−∞

1
2

p(x, t) f (x, t)h′′
1 + ρ(x, t)

2
dx

so

lim
dt→0

∫ ∞
−∞ h(u)

∫ ∞
−∞ p(x, t) f (x, t)p(u, t + dt|x, t)dxdu −

∫ ∞
−∞ h(u)p(u, t) f (u, t)du

dt

=
∫ ∞

−∞

1
2

p(x, t) f (x, t)h′′
1 + ρ(x, t)

2
dx

=
∫ ∞

−∞
h(x)

1
2

∂2

∂x2 (p(x, t) f (x, t)
1 + ρ(x, t)

2
)dx

The last step in above is integration by parts. Because the h(u) is arbitrary smooth function so it
follows that:

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 January 2025 doi:10.20944/preprints202501.0923.v1

https://doi.org/10.20944/preprints202501.0923.v1


4 of 8

lim
dt→0

∫ ∞
−∞ p(x, t) f (x, t)p(u, t + dt|x, t)dx − p(u, t) f (u, t)

dt
=

1
2

∂

∂u2 (p f
1 + ρ(u, t)

2
)

End of Proof.
To recap, we have these 2 key equations:

∂p(u, t)
∂t

=
1
2

∂2

∂u2 (
1 + ρ(u, t)

2
p(u, t)) (17)

∂

∂t
(p f ) = p

1 − ρ(u(t), t)
2

+
1
2

∂

∂u2 (p f
1 + ρ(u, t)

2
) (18)

We can solve for p first and then solve for f (It is also possible to bundle the PDE solving for p
and f together in discretization etc). Knowing p(u, t) and f (u, t), the whole distribution is known. The
key point here is when solving p or f it is a low dimension PDE.

3. Higher Dimensions
In higher dimensions, similar technique can be applied if we assume the correlations have a

dependency on one variable (though the variable might be defined as a linear combination of the base
variables) and time only. A brief walk through of the idea as below:

Let x1, x2, ..., xn be the initial Brownian motion variables with correlations ρij(x1, x2, ..., xn, t).
For simplicity and avoid any singularity questions, lets assume the ρij all just depend on variable
M = 1

n ∑i xi and t. Now we can represent the random process by new set variables M, x2, ..., xn, (x1 is
left out as it can be implied by others). We can do Cholesky decomposition of this set of variables and
a nice property is that the Cholesky matrix elements are all just function of M and t: this is because all
the ρij are just function of M and t and the Cholesky decomposition is a deterministic operation on
those ρij. Now we can apply the same process as before, solve for the probability density of M, and
then for variance function of each of the independent Brownian motion variables coming from the
Cholesky decomposition. The process will be long and tedious but there is no conceptional difference
to the previous case. Note in a special case where all the ρij(M, t) are the same function, the change of
variables is much cleaner and easier.

So in general, with the assumption that the correlation dependency degenerated to one variable
only, the joint terminal distribution of dimension n can be calculated by n 1-d PDEs (1-d refer to 1
space variable).

4. Implementaion Example
We show one example of 2-d case: We discretize p and f together and solve for p first for a time

step, and then solve for f . We don’t use chain rule to break out the partial derivatives of product but
instead discretize on the product. With standard finite difference methods, the calculation is fast and
stable. We present an example of the distribution below:

Figure 1 shows the contour of a Gaussian distribution with correlation skew. The underlying
correlation function is:

ρ(u) =


0.9 if u < −2

√
t

0.9 − u+2
√

t
4
√

t
0.4 if − 2

√
t ≤ u < 2

√
t

0.5 if u ≥ 2
√

t

The graph axis is in x and y. Note u, v will be the two diagonal directions.
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Figure 1. Contour of Gaussian distribution with correlation skew

The shape of the contour is expected. As we put higher correltion when the u = x+y
2 is lower,

and lower correlation when u is higher, the probability is more concentrated when u is low and more
dispersed when u is high. Note with u fixed, the graph also shows symmetry in the direction of v.

The following graphs shows more details on p(u) in above example.
In Figure 2 the distribution of u is very close but different to a standard normal. To see the

difference, we reflected the probability around center and then one can see the negative part has a
fatter tail than positive part. This is expected as we correlated x, y more when x + y is more negative,
we expect x + y will have more potential to go lower in the negative direction, and as we de-correlate
x, y more when x + y more positive, we expect the diversifying effect makes the x + y less potential to
go higher when x + y positive.
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Figure 2. Marginal distribution of u

To demonstrate this point, we can increase the skew of correlation further to see the fat tail effect.
Below is the p(u) for a more skewed correlation function.

The correlation function in Figure 3 is

ρ(u) =


0.9 if u < −2

√
t

0.9 − u+2
√

t
4
√

t
1.4 if − 2

√
t ≤ u < 2

√
t

−0.5 if u ≥ 2
√

t

The coutour in Figure 1 shows the v is concentrated when u more negative and v is spreaded
when u is more positive.
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Figure 3. Marginal distribution of u

Below Figure 4 shows the std dev of v conditioned on u, ie, the
√

f function.

Figure 4. std dev of v conditioned on u
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5. Copula Application
Knowing the p(u) and f (u) we can integrate any function on this terminal distribution. For given

u, v, it maps to x, y, and the marginal distribution of x and y are still normal distribution respectively,
so they can be readily used to invert CDFs.
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