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Abstract: Text-to-music generation integrates natural language processing and music generation,
enabling artificial intelligence (AI) to compose music from textual descriptions. While Al enabled
music generation has advanced, challenges in aligning text with musical structures remain under
explored. This paper systematically reviews text-to-music generation across symbolic and audio
domains, covering melody composition, polyphony, instrumental synthesis, and singing voice
generation. It categorizes existing methods into traditional, hybrid, and LLM-centric frameworks
according to the usage of large language model (LLM), highlighting the growing role of LLMs in
improving controllability and expressiveness. Despite progress, challenges such as data scarcity,
representation limitations, and long-term coherence persist. Future work should enhance multi-
modal integration, improve model generalization, and develop more user-controllable frameworks
to advance Al-enabled music composition.

Keywords: Music Generation; Text-to-music Generation; Artificial Intelligence; Large Language
Model

Introduction

1.1. Background

Music, as a “universal language,” [1] bridges different cultures and historical periods, playing a
significant role in expressing human emotions and creativity. Traditional music composition often
relies on musicians applying their knowledge of music theory to create works using real instruments.
In contrast, computers have gradually become tools for music creation, utilizing algorithms and
models to replicate the composition process. This evolution has led to the emergence of music
generation, a field that originally relied heavily on music theory as prior knowledge to design
algorithms. However, recent advancements have shifted the focus from knowledge-driven
approaches to data-driven methods, leveraging large datasets of musical compositions to enhance
generative capabilities.

Music generation is a typically multi-modal task involving the transformation of symbols, audio,
text, images, and other modalities [2]. Among these, text-to-music generation stands out as a uniquely
promising area due to its ability to interpret natural language descriptions and transform them into
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music. Unlike other modalities such as images or videos, text provides a more intuitive, user-friendly,
and accessible medium for expressing musical intent, allowing users to articulate emotions, styles, or
themes with precision and simplicity. This accessibility significantly lowers the barriers to music
creation, enabling broader participation from individuals without formal musical training.
Furthermore, the potential of text-to-music generation extends beyond user convenience —it offers a
transformative tool for diverse applications such as music therapy, dynamic video soundtracks, and
immersive experiences in the metaverse. By bridging natural language processing (NLP) with music
generation, this field can redefine how music is created and experienced, making it a critical area of
study. This review is thus essential for providing a comprehensive understanding of the
technological advancements, challenges, and future opportunities in text-to-music generation, setting
the stage for continued innovation in this emerging domain.

1.2. Motivation

Text-to-music generation is an emerging research area at the intersection of artificial intelligence,
music generation, and natural language processing. While existing reviews have extensively
explored general music generation, they have primarily focused on traditional composition tasks,
single-modality generation, or deep learning-based music synthesis, often overlooking the unique
cross-modal challenges of text-to-music generation. This gap is particularly significant given the
increasing integration of large language models (LLMs) in creative Al, which has opened new
possibilities for translating textual descriptions into structured, meaningful, and emotionally
resonant musical compositions. Despite the transformative potential of LLMs in aligning textual
inputs with complex musical outputs, their role in text-to-music generation remains underexplored,
highlighting the need for a comprehensive review of this rapidly growing field.

Existing reviews have extensively explored the broader landscape of music generation tasks,
synthesizing representational levels, compositional processes, and single-modality tasks. Several
surveys have comprehensively reviewed the broader field of music generation, offering valuable
insights into its methodologies and applications. A significant portion of these studies emphasizes
the role of deep learning. For instance, Ji et al. (2020) [1] provide an overview of various compositional
tasks at different levels of music generation, while Briot et al. (2020) [3] explore deep learning cases
from perspectives such as musical structure, creativity, and interactivity. Another study by Ji et al.
(2023) [4] delves into the applications of deep learning in symbolic music generation. Additionally,
Hernandez-Olivan and Beltran (2021) [5] examine research advancements by aligning them with the
stages and methods involved in the human creative process of composing music.

Other reviews have examined the field from alternative perspectives. Civit et al. (2022) [6]
employed bibliometric methods to analyze the development of artificial intelligence in music
generation. Herremans et al. (2017) [7] categorized music generation systems based on their
functionality. Zhu et al. (2023) [8] introduced various tools for music generation, and Wen and Ting
(2023) [9] discussed the evolution of computational intelligence techniques in this domain. Ma et
al.(2024) [2] give a quite comprehensive survey on foundation models for music. These
comprehensive reviews highlight the diverse approaches and significant progress in music
generation.

However, the unique challenges and opportunities of cross-modal text-to-music generation
remain underexplored. Most existing reviews focus on broader music generation tasks or single-
modal approaches, often classifying studies based on network architectures or technical
methodologies. This makes it difficult for researchers to gain a precise understanding of specific
generation tasks, such as generating melodies from lyrics. Furthermore, the transformative potential
of LLMs in text-to-music generation has been largely overlooked. While LLMs have revolutionized
other fields, their integration into text-to-music generation—particularly in aligning textual inputs
with complex musical outputs—remains an emerging area of research. This paper aims to address
these gaps by providing a comprehensive review of text-to-music generation, with a focus on the
integration of LLMs and the unique challenges of cross-modal generation.
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1.3. Objectives

This paper aims to provide a comprehensive and task-oriented review of advancements in text-
to-music generation, addressing key gaps in the field and proposing actionable insights for future
research. The main objectives of this work are as follows:

e To systematically classify and analyze text-to-music generation tasks: By categorizing tasks
into symbolic and audio domains, the paper examines subtasks such as melody generation,
polyphony generation, singing voice synthesis, and complete song composition. This taxonomy
offers a clear aspect for understanding the distinct challenges and opportunities within each
domain. This framework supports modular method development by providing researchers with
a structured reference for locating domain-specific innovations.

e To emphasize the potential of LLMs through framework comparison: The study focuses on
the traditional methods, hybrid approaches, and end-to-end LLM systems, providing a detailed
analysis of their strengths, limitations, and applicability. The analysis highlights the progressive
improvements introduced by LLMs, demonstrating their ability to enhance user controllability,
generalization capability, etc., offering a clearer perspective on the role of LLMs in advancing
Al-enabled music composition.

e To identify challenges and propose future directions: This objective is crucial because
addressing unresolved challenges—such as data scarcity, model generalization, emotion
modeling, and user interactivity —is the foundation for advancing text-to-music generation. By
systematically analyzing these barriers, the paper provides a roadmap for overcoming
limitations that currently hinder the effectiveness and creativity of such systems. This
exploration advances text-to-music generation, establishing it as a key direction for creative
industries.

This paper is organized as follows. Section 2 provides an overview of the evolution of text-to-
music generation, tracing its development from rule-based systems to the integration of LLMs.
Section 3 discusses the representation forms of text and music, as well as their roles in aligning textual
semantics with musical outputs. Section 4 critically reviews text-to-music generation methods,
categorizing them into symbolic domain methods and audio domain methods and providing a
comparative analysis of existing techniques. Section 5 sorts out three mainstream research
frameworks based on the LLMs integration, highlighting the potential of LLMs in enhancing end-to-
end generation and multi-modal integration. Section 6 outlines the challenges and future directions,
identifies unresolved issues such as data scarcity, emotion modeling, and interactive systems. Finally,
Section 7 concludes the paper by summarizing key insights and proposing actionable
recommendations for advancing research in this emerging field.

2. Evolution

2.1. Early Rule-Based Systems

Music generation research dates back to the mid-20th century, initially focusing on using
programming languages and mathematical algorithms to simulate the process of music creation.
Early works such as lannis Xenakis' use of probability theory [10] as well as Lejaren Hiller and
Leonard Isaacson's work Illiac Suite [11] marked the birth of automated music generation. These
efforts were primarily concerned with generating melodies, harmonic progressions, and rhythmic
patterns.

Early approaches to text-to-music generation also relied heavily on predefined rules and
templates to create music. These methods included lyric-based melody generation, where algorithms
analyzed the content of lyrics to produce melodies that aligned with their emotional and rhythmic
structures. For example, systems mapped syllables to notes based on rhythmic patterns and harmonic
rules [12,13]. Additionally, textual instruction sequences, often based on music theory, guided
melody generation. Such systems translated harmonic progressions (e.g., I-IV-V-I) [14,15] and other
theoretical constructs into melodies by algorithmically processing these instructions. While these
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methods ensured compliance with musical structures, they were limited by their reliance on rigid
rules and templates, often resulting in a lack of diversity and creativity in the generated outputs.

2.2. Emergence of Machine Learning

The late 20th and early 21st centuries brought significant shifts with the introduction of machine
learning techniques into music generation. In the machine learning era, traditional techniques for
music generation focus on learning patterns and structures from large datasets of existing
compositions. Early methods often employed Hidden Markov Models (HMMs), which excel at
modeling sequential data by capturing probabilistic transitions between states [16]. HMMs were used
to generate melodies or harmonies by determining the likelihood of note sequences, though their
capacity to handle complex musical structures was limited by their reliance on fixed state-transition
probabilities.

Building on these early approaches, more advanced models such as Recurrent Neural Networks
(RNNSs) [17,18], which are suited for sequential data like music. These networks generate melodies
or chord progressions by predicting the next note based on prior information. An improvement to
RNNs, Long Short-Term Memory (LSTM) networks [19], address the challenge of remembering long-
term dependencies, allowing for more coherent and extended music sequences.

The same techniques began being applied to text-to-music generation, where systems began to
link textual data with musical outputs. In text-to-music generation, this shift enabled the field to move
beyond lyric-to-melody mapping. Researchers began exploring models that not only mapped text to
melody but also incorporated additional musical elements such as harmony, accompaniment, and
vocals. However, these systems still had limitations. They were heavily dependent on the patterns
present in the training data, and the generated music often lacked true creativity and innovation.

2.3. The Rise of Deep Learning and Cross-Modal Approaches

With the advent of deep learning, the capabilities of general music and text-to-music generation
greatly expanded. Deep learning models such as Generative Adversarial Networks (GANs) [20] and
Transformers [21] began to offer more realistic and diverse music compositions by capturing complex
dependencies in both symbolic music and raw audio data.

The emergence of text-to-audio models has opened a new direction for music generation.
Models like AudioLM [22] and Suno’s bark! combine audio representation with text representation,
allowing them to understand textual content and generate corresponding audio. Building on these
innovations, researchers began developing more comprehensive text-to-music generation models,
which go beyond simple lyric-to-melody mappings. These models now aim to capture emotion,
themes, and other non-musical elements from texts to guide the music generation process.

The success of diffusion models in image generation tasks [23] has led researchers to apply these
models to music generation [24]. This approach has proven effective in creating richer, more
expressive outputs and has laid a strong foundation for the continued development of contemporary
text-to-music generation techniques.

2.4. The Integration of LLMs

Recent breakthroughs in music generation have been driven by multi-modal and cross-modal
learning techniques, which integrate various data types such as text, audio, and symbolic
representations. These models utilize advanced deep learning frameworks to capture the intricate
relationships between these diverse data types, enabling the generation of music that is not only
structurally coherent but also emotionally expressive and contextually rich.

In parallel, advancements in large-scale models, particularly LLMs, have paved the way for end-
to-end text-to-music generation. These models, trained on vast datasets of text and music, are capable

1 https://github.com/suno-ai/bark

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202502.1791.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 25 February 2025 do0i:10.20944/preprints202502.1791.v1l

5 of 38

of directly mapping textual descriptions to musical outputs. For example, modern LLMs-based
systems [25] can interpret detailed textual prompts, including emotional expressions, scene
descriptions, or stylistic preferences, and generate highly consistent compositions in style, rhythm,
and harmony. This end-to-end paradigm significantly lowers the barrier to music creation, allowing
users without formal music training to create complex and expressive musical works. Furthermore,
the adaptability of these models opens new possibilities for personalized music creation, soundtrack
generation, and other multi-modal applications.

Music generation technologies have evolved from rule-based methods to data-driven
approaches, with deep learning and large language models significantly advancing general music
generation and text-to-music generation. The adoption of multi-modal techniques has broadened the
capabilities of these fields, enabling the creation of music that is both contextually relevant and
emotionally nuanced. The text-to-music generation now integrates natural language processing, deep
learning, and creative music technology, opening new avenues for research and development.

3. Representation Forms of Text and Music

3.1. Text Types

In a text-to-music generation, the common text types are mainly categorized into three types,
which serve as input for the generation process and provide guidance for music creation. The
common text types and their roles in text-to-music generation are shown in Table 1.

Table 1. Text types and their characteristics.

Application
Category  Description PP Generation Characteristics Challenges
Example
® Lyrics-melody matchin, ® Multi-language
. The singing "Let it be, y . . y . & gUag
Lyrics . . @ Singing voice synthesis ® Cultural context
words of songs. let it be... . )
® Emotion- and Rhythm-based ® Appropriate rhythm
Describes ® Complex music
Musical . TIV-V-], 120 ® Music theory-based P
. musical rules like . ) theory
Attributes bpm ® Using attribute templates . .
chords. ® Lacking of creativity
Natural . ® Abstract concepts
. Create a . L .
Language Describes . ® Flexible description ® understanding
Lo . melody filled . ) .
Descriptio emotion or scene. . . ® Diverse music features. ® Converting
with hope... .
n consistency

3.2. Musical Representation

3.2.1. Event Representation: Midi-like

MIDI 2 (Musical Instrument Digital Interface) is an industry-standard protocol for
communicating between electronic musical instruments and exchanging data between an instrument
and a computer. MIDI files record information about a player's actions, such as which key was
pressed, how hard it was pressed, and how long it lasted. These messages are called “events”, which
are binary data such as Note On, Velocity, Note Of, Aftertouch, Pitch Bend, etc. Table 2 lists the
common events used in symbolic music generation research.

2 https://en.wikipedia.org/wiki/MIDI
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Table 2. Common events in music generation research.
Event Type Description Example Format
Note On Starts a note ll\g)c())te On, Channel 1, Pitch 60, Velocity
Note Off Ends a note Note fo, Channel 1, Pitch 60,
Velocity 0
P Ch , Ch 11, P
Program Change Changes in instrument or sound 3;ogram ange, -hatme rogram
Adjusts control parameters (e.g., volume, Control Change, Channel 1,
1 Ch
Control Change sustain pedal) Controller 64, Value 127
Pitch Bend Bends pitch slightly or continuously Pitch Bend, Channel 1, Value 8192
Aftertouch Pressure applied after pressing anote  Aftertouch, Channel 1, Pressure 60
1 K . .
Tempo Change (S];(:»S 1\% ayback speed in beats per minute Tempo Change, 120 BPM

Time Signature Defines beat structure (e.g., 4/4, 3/4 time) Time Signature, 4/4
Sets the song’s key (e.g., C Major, G

Key Signature Minor)

Key Signature, C Major

MIDI is a highly compatible and easy-to-edit file format with a small file size that facilitates
communication between devices and music creation, as shown in Figure 1. In music generation
research, an algorithm or model first slices a melody into sequences of notes and then establishes a
mapping relationship between musical elements and numbers through quantization and encoding
to obtain a data representation of the music. Native MIDI representations have representational
limitations, such as the inability to express the concepts of quarter notes or rest, not being able to
represent the musical onset time, etc. Therefore, some studies have improved MIDI representations
for music generation by proposing REMI [26], REMI+ to represent more information.

Track o: He's a Pirate

MetaMessage('track_name', name="He's a Pirate", time=0)
Track 1: Right Hand

note_on channel=0 note=62 velocity=114 time=0

1 1

1 1

1 1

1 1 2 31

! pno. .

! <§ 8 4 ﬁ Q I.A A ﬂ |

] ~ ! control_change channel=0 control=101 value=o0 time=0
] . X

. 5 1 note_off channel=0 note=62 velocity=64 time=480
:P“"ﬂgj j\j j\l# [ ' ......
' | Track 2: Left Hand
! i
1 1
1 1
: :

MetaMessage('track_name', name='Left Hand', time=0)
program_change channel=2 program=o time=0
note_on channel=2 note=38 velocity=114 time=o0
ittt control_change channel=2 control=101 value=0 time=0
N-A note_off channel=2 note=38 velocity=64 time=480

Track 3: Staff-1
@ @ 0 ® MetaMessage('track_name', name=‘vloin', time=0)
4 > |[oTm - = ]
— Il‘l program_change channel=4 program=48 time=0
VAN note_on channel=4 note=62 velocity=76 time=0
(@Performing according to the score control_change channel=4 control=101 value=o0 time=o0
&, @Transcription using electronic instrument note_off channel=4 note=62 velocity=64 time=960

@Transmitting information as MIDI tothe | ......
computer

Figure 1. MIDI-based event representation.

3.2.2. Audio Representation: Waveform and Spectrogram

Audio representation is a continuous form, typically categorized into one-dimensional and two-
dimensional forms. One-dimensional representations, usually in the time domain, are the simplest
type. In this form, the audio signal is represented as a time series, often visualized as a waveform.
Each point in the waveform corresponds to the amplitude value at a specific time, and the entire
sequence shows how the audio signal changes over time. In contrast, two-dimensional
representations, such as spectrograms, transform the audio signal from the time domain to the
frequency domain. These representations break down the audio signal into various frequency
components using methods like the Short-Time Fourier Transform (STFT), as shown in Figure 2.
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Waveform
©) Fourier transform (FT)/
Short-Time Fourier transform (STFT)
Spectrogram

(DRecording vocals and instruments

(@Analyzing audio utilizing digital tools

Figure 2. Waveform and Spectrogram Representation.

Compared to MIDI representation, audio waveform, and spectrogram retain more details,
enabling the style, timbre, emotion, and vocal performance to be modeled. As a result, they offer a
greater advantage in creating natural and expressive musical compositions.

3.2.3. Text Representation: ABC Notation

ABC notation is an ASCII-based text format for representing music?, using simple letters and
symbols to encode information such as notes, rhythms, and key signatures. It consists of two parts:
the header fields and the tune body. The header fields typically include track number (X), title (T),
meter (M), note length unit (L), tempo (Q), key (K), and others. The tuning body represents the
sequence of notes, in which the letters A to G correspond to musical notes, and the numbers 1 to 8
indicate pitch variations. For example, "C" represents the C note, and "C2" represents the second

octave of C. The symbol "|" indicates bar divisions, while numbers specify the duration of notes. For
instance, "C/2" indicates that the C note lasts for two eighth notes. Additional symbols are used to
represent note lifts, sustains, rests, and other musical elements.

After being encoded, the text files of ABC notation can extract information such as notes,
rhythms, and chords. Based on the extracted information, such as note start, note end, and note
strength, they can eventually be interconverted with MIDI files, as shown in Figure 3. Therefore, in
this paper, we also categorize the research that generates the form of ABC notation into the symbolic

domain.

3 https://abcnotation.com
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K:C clef=F4 !

DFJ2[*A,DG]2[EA,CJ4[EA,Cl4[D-

/I:,E;EDG,C]Z\[A,C]z[DA,]SA,2C2| L"I“‘ @g ] J_: | J J"Jl ||

]

]

]

]

i

: N 1
Vi . ! } I
%%MIDI program o ’: pno- 9& j f‘ ‘_\ |# . |:
[DF,A,Ja[DF,A, J4[DF,A,]2[EA,C]2|[DF A, J4[ DFA, J4[ A, - : r - = :

! :

1

1
K:C clef=F4

Vi ABC D8 D2 B2 | F8 R @
%%MIDI program o Notation
[D,,0,14[D,,D,12[D,,D,14[C,,C,12[[*A,,, A, Ja[ A, A, T2 [ Pitch D D E E 5| @
AI?DAAJ|]4[AADI!AA”]zl[AlﬂA”]4[AU!AI’]Z[AI”A”]4[AJ"AI?]2

|[Dn D,]4[D,,D,]2[ D,,D,]4[ D"D']2| Duration 8 2 2 8 2 2
L1p6 x1/8

M:6/8 (x1/8)

K:C clef=F4 @

V3 — > (@ ABC notation can be converted
%%MIDI program 48 ABCl «—— [MI| i fom v files
D8D2E2|F8F2G2|E8D2C2|C2D224A,2C2] '

Figure 3. ABC Notation.

4. Methods

In a text-to-music generation, methods are broadly categorized into symbolic domain and audio
domain based on data representation formats as shown in Figure 4. The textual inputs —comprising
lyrics, musical instructions, and natural language descriptions—serve as semantic drivers for
generation tasks. The symbolic domain, anchored in structured representations such as MIDI and
ABC notation, facilitates melody generation and polyphony generation. In contrast, the audio domain
operates on raw waveform and spectrogram data to achieve instrumental music synthesis, singing
voice generation, and complete song composition. The evolution of text-to-music systems reflects a
clear trajectory: advancing from single-track to multi-track generation, from simplistic structures to
intricate compositions, and from localized musical fragments to holistic, contextually coherent pieces.

Symbolic Domain Vo Audio Domain
Text
i Representation | [ Lyrics J : Representation ‘
i : h E ~ - ~ ;
! [ Midi-like ][ABC Notion] N T ; [ Waveform HSepctrogramJ |
:l i instruction T ———S i
. [Description} ('/ Instrumental \\‘ [,/ Singing \‘\
( MelOdy Generation > e Q/Iusic Generation/’ \_Voice Generation/

(Polyphony Generatlon) g \ /" Complete Song Y
— Develop towards | ( . )
Generation /

! ---->  Inputdata : N

Figure 4. Overview of Text-to-Music Generation Based on Representation and Task Domains.

4.1. Symbolic Domain Methods

Symbolic-domain music generation is the task of automatically generating symbolic music
representations by using computational models. In this process, algorithms create new musical
sequences with coherent and creative characteristics based on previously learned patterns or rules.
Symbolic music representations usually refer to discrete musical information structures, such as

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202502.1791.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 25 February 2025 do0i:10.20944/preprints202502.1791.v1l

9 of 38

MIDI files or digitized sheet music (e.g., ABC notation), which decompose music into a series of
discrete time and frequency units, such as notes, rhythms, pitches, and intensities.

4.1.1. Melody Generation

Melody is one of the fundamental elements of music, which consists of a series of notes arranged
in a specific thythm and pitch. The melody generation task is the process of automatically generating
new melodic lines through algorithms or models. This task is a core component of music generation.
The melody generation task aims to create a new melody that conforms to the rules of music theory
and is artistically pleasing. The text-based melody generation task is mainly divided into lyrics-based
melody generation and text description-based melody generation.

1. Lyric-based Melody Generation

The earliest attempt at lyric-based melody generation was based on rule-based systems.
Fukayama et al. (2010) [12] developed an algorithm for generating melodies when specific Japanese
lyrics, rhythmic patterns, and harmonic sequences were provided. The algorithm treats composition
as an optimal solution search problem under the constraints of lyrics’ rhymes, and searches for the
optimal composition through dynamic programming. In addition, the algorithm innovatively
integrates text with melody, which is also considered to be the beginning of the task of generating
melodies from lyrics.

As statistical methods began to gain traction, researchers like Monteith et al. (2012) [27] moved
away from rule-based systems by applying probabilistic models, such as n-gram models, to generate
melodies. The system produced hundreds of rhythm and pitch combinations for given lyrics, and the
best result was selected using metrics to evaluate the generated melody. This approach shifted from
strict rule-based generation to probabilistic modeling, allowing for more variety in melody
generation, though it still depended heavily on predefined patterns and lacked the complexity
needed for capturing the full depth of melody generation. Similarly, Scirea et al. (2015) [13] expanded
this idea by constructing Markov chains over note sequences using lyric syllables, showcasing how
statistical models could link lyrics with melody generation through probabilistic transitions.

The next major shift came with machine learning and neural network algorithms. Ackerman et
al. (2017) [28] applied random forests to predict note durations and scales, marking an early attempt
at using machine learning to model melodic structures. While this approach improved the generation
of rhythmic and melodic patterns, it still required handcrafted features and could not fully capture
the complex relationships between lyrics and melodies. Using neural networks further explores the
intrinsic connection between lyrics and melody. Bao et al. (2019) [29] developed SongWriter, a
sequence-to-sequence (seq2seq) model built on RNNs, which generates melodies from lyrics while
precisely aligning them. The model used two encoders: one to encode the lyrics and the other to
encode the melody context. The hierarchical decoder generated the musical notes and their
corresponding alignments with the lyrics. The use of seq2seq models marked a significant
improvement, as they could learn complex mappings between lyrics and melodies, resulting in more
cohesive and flexible melodies. This approach outperformed earlier machine learning methods,
allowing for better alignment between the generated melodies and the input lyrics.

Building on the success of RNN-based models like SongWriter, Long Short-Term Memory
(LSTM) networks have been used in music generation due to their ability to capture long-term
dependencies in sequential data. Unlike standard RNNs, LSTMs address the vanishing gradient
problem, making them particularly effective for modeling the complex temporal structures inherent
in music. In parallel, GANs have emerged as a powerful framework for music generation,
particularly in creating high-quality and diverse musical outputs. The research combining the above
two structures has become a hot topic. Yu et al. (2021) [30] used a conditional LSTM-GAN for the
lyrics of generation-based melodies. They combined syllable embedding vectors converted from text
lyrics with noise vectors and input them into the generator. A deep discriminator was also trained to
distinguish the generated MIDI note sequences from the real ones. This approach demonstrates both
LSTM'’s ability to capture long-term dependencies of melodies and GAN’s advantage to enhance the
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realism and naturalness of melodies through an adversarial learning mechanism. To further improve
generation quality, a three-branch conditional LSTM-GAN network is used in Srivastava et al.(2022)
[31]. Research utilizing a single structure independently is also investigating the potential of LSTMs
and GANs. Yu et al.(2022) [32] also proposed a three-branch structure for modeling three
independent melodic attributes. The difference is that they did not use LSTM but used a conditional
hybrid GAN. Zhang et al. (2023) [33] introduced inter-branch memory fusion (Memofu), which
facilitates information flow between multi-branch stacked LSTM networks. This allows for better
modeling of dependencies across multiple musical attributes and sequences, improving the overall
coherence of the generated melodies.

Transformer-based models have been widely applied in music generation. However, limited by
the quality of the melody-lyrics pairing dataset and the diversity of variations in real melodies, a
large number of studies are still highly dependent on the dataset and are not highly transferable.
SongMASS proposed by Sheng et al. (2021) [34] effectively alleviates data dependency by using
separate lyrics and melody encoder-decoder structures within a Transformer-based framework. It
also enhances the matching accuracy of lyrics and melodies by introducing sentence-level and word-
level alignment constraints. However, the complex alignment mechanism may increase the difficulty
of training and reduce the controllability of melody generation. To overcome data scarcity and
improve generation controllability, Ju et al. (2022) [35] proposed TeleMelody, a two-stage generation
pipeline based on music templates. The system first converts lyrics to templates and then generates
melodies based on the templates. The music templates include tonality, chord progressions, rhythmic
patterns, and terminations, and they use a self-supervised approach to realize template-generated
melodies, which solves data dependency.

In a recent study, thanks to the development of LLMs, Ding et al. (2024) [36] proposed
SongComposer, a LLM for lyrics and melody composition. It employs a single language model
architecture instead of the separate encoders and decoders of traditional approaches, and uses the
next-token prediction technique. This approach allows the model to predict subsequent notes based
on the current lyrics and a portion of the melody until the entire song is generated, outperforming
SongMASS and TeleMelody. In contrast to traditional methods, SongComposer does not require
complex rules or preset musical templates but rather learns patterns from large amounts of data to
make predictions that can generate high-quality melodies without the guidance of explicit music
theory. In addition to generating melodies from lyrics, the model can also perform the tasks of
generating lyrics from melodies, song continuation, and songs from text. The text-to-song task in this
context refers to a task pipeline consisting of textual cues to generate lyrics, lyrics to generate
melodies, and artificially produced vocals and accompaniment (as demonstrated by the authors in
the project demo4), and is therefore distinct from the text-to-song task mentioned later.

The field of lyric-based melody generation has evolved from conditional constraints to deep
learning, and has reached new heights driven by large language modeling. Despite its theoretical
appeal, this approach still faces several challenges in practice. First, the mapping relationship
between lyrics and melodies is not one-to-one. The same lyrics can correspond to multiple plausible
melodic configurations, making it more difficult for the model to learn the correct mapping
relationship. Second, high-quality, diverse, and representative datasets of lyric-melody pairings are
relatively scarce, which further limits the learning effectiveness and generalization ability of the
model.

2. Musical attribute-based Melody Generation

Earlier studies, limited by the mapping of textual semantics to music, have very limited
generative capabilities. TransProse, proposed by Davis et al. (2014) [37], contains several mapping
rules for sentiment labels to musical elements. TransProse generates music based on the density of
sentiment words in a given text. However, TransProse does not reflect non-emotional information in
the text, and its creativity is limited by manually formulated mapping rules. Rangarajan et al. (2015)

4 https://pjlab-songcomposer.github.io/
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[38] devised three strategies for mapping text to music: using all letters, using only vowels, and using
vowels in conjunction with the part of speech (POS) of words. However, since it is based on character-
level mapping, the generated music is very random and does not reflect the semantic information in
the text. In order to optimize the mapping between text and music, Zhang et al. (2020) [39] proposed
a framework called Butter, which is a multimodal representation learning system for bidirectional
music and text retrieval and generation. The system learns music, keyword descriptions, and their
cross-modal representations based on a Variational Auto Encoder (VAE). Butter can generate three
types of potential representations: music representations, keyword embeddings, and cross-modal
representations, and can generate ABC notation representations of music from text containing three
musical keywords (e.g., key, beat, and style). However, the method is limited by the fact that the three
keywords must be specified precisely, and the generated music is restricted to the Chinese folk song
dataset.

3. Description-based Melody Generation

To escape the limitations of manually formulated rules, Wu et al. (2023) [40] developed a
tranformer-based model. The model achieved for the first time the generation of complete and
semantically consistent musical scores directly from text-based natural language descriptions and
also demonstrated the effectiveness of using publicly available pre-trained BERT, GPT-2, and BART
checkpoints on music generation tasks.

With the development of LLMs, such large language models not specifically designed for music
as GPT-4 [25], and LLaMA-2 [41] have shown some level of music comprehension, but they still
perform poorly in music generation. However, ChatMusician, introduced by Yuan et al. (2024) [42],
represents a significant progress. ChatMusician uses music as a second language for large language
models. This new approach, based on the continuously pre-trained and fine-tuned LLaMA2 model,
is trained on a 4B dataset and utilizes the ABC notation to seamlessly fuse music and text. In so doing,
ChatMusician enabled in-house music composition and analysis without relying on external multi-
modal frameworks. Compared to traditional LLMs, ChatMusician can understand music, generate
structured, full-length musical compositions, and condition text, chords, melodies, motifs, musical
forms, etc., beyond the GPT-4 baseline.

Early research on description-based melody generation was limited by the ability to generate
effective mappings from textual semantics to melodies. In recent years, with technological advances,
researchers have been able to generate semantically consistent melodies from natural language
descriptions. In the latest progress, models such as ChatMusician are not only able to understand
music, but also to generate structurally complete and moderate-length musical compositions, which
significantly improves the ability of text-generated music. The generation of independent melodic
lines lays a foundation for polyphony generation. Relevant studies are summarized in Table 3.

4.1.2. Polyphony Generation

Polyphony is a style of musical composition employing two or more simultaneous but relatively
independent melodic lines. These melodic lines intertwine and support each other harmonically,
creating a rich musical texture. Each instrument or voice can have its Midi track that flows and
unfolds in a harmonious manner. Typical polyphonic music is polyphonic pieces (e.g. classical music)
as well as contemporary musical accompaniment. Creating polyphonic music is, therefore, more
complex than creating a single melody. Generating polyphonic music from text requires the model
to correctly extract or understand the music-theoretic knowledge or semantic information contained
in the text and to generate harmonized polyphonic music.

1. Musical Attribute-based Polyphony Generation
Early studies used strict attribute templates as textual input to accurately generate conforming
multi-track symbolic music. Evolving from attribute-conditional controlled generation, this type of

research creatively replaced attribute labels with text input. Riitte et al. (2023) [14]proposed FiGARO.
This system is based on a Transformer and can generate multi-track symbolic music by combining
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expert and learning features. They introduce a self-supervised description-to-sequence learning
method. The method automatically extracts fine-grained, human-interpretable features from music
sequences and trains a sequence-to-sequence model, reconstructing the original music sequence from
the description. However, the descriptions are complex attribute templates, “expert description”,
including three types of musical attributes, namely instrument, harmony, and meta-information.
These “high-level control codes” raise the bar for users while allowing them to precisely control the
generation.
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Table 3. Melody generation tasks.
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TeleMelody 2022 MIDI Transformer Encoder-Decoder, / samples in English and Not mentioned L. https..//al—
[35] Template-Based Two-Stage ; ) muzic.github.io/telemelody/
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Method
Pre-training, the sentence- 380,000+ lyrics from https://musicgeneration.github.io
) SongMass [34] 2021 MIDI  Transformer level and token-level / MetroLyrics; The Lakh MIDI Not mentioned ps: & & '
Lyric-based . . /SongMASS/
Melod alignment constraints. Dataset
Generati}(,) N Conditional LSTM-GAN, https://drive.google.com/file/d/1u
[30] 2021 MIDI LSTM-GAN Synchronized Lyrics - Note / 12,197 MIDI songs Not mentioned gOwf{BsURax1VQ4HmI8P3IdE5x
Alignment dDj0l/view?usp=sharing
. Seq-to-Seq, Lyric-Melody . .
SongWriter [29] 2019 MIDI RNN k / 18,451 Chinese pop songs  Not mentioned /
Alignment
MusicXML ~ Random Co-creative Songwriting
ALYSIA [28] 2017 Partner, Rhythm Model, / / Not mentioned http://bit.ly/2eQHado
&MIDI Forests
Melody Model
Orpheus [12] 2010 MIDI / Dynamic Programming / Japanese prosody dataset Not mentioned http://orpheus.hil.t.u-tokyo.acjp
Representation Learning, . s
Musical ~ BUTTER [39] 2020 “MPLABC g Bi-directional Music-Text / 16,257 Chinese folk songs 10Tt Music https://github.com/ldzhangyx/BU
. Notation . Fragment TTER
attribute- Retrieval
based Melody [38] 2015 MIDI / Full parse tree, POS Tag / / Not mentioned /
G ti i i : . . i
eneration . o ce [37] 2014 MIDI Mar1.<ov . Generate mu.sm from . / EmOtIOI.’lal words from Not mentioned http //transpr9se weebly.com/fin
Chains  Literature, Emotion Density literature al-pieces.html
An LLM of
Description- ChatMusician 2024 AB(.Z Transformer Musi.c.Reasoning, symbolic r.nusic MusicPile (4B tokens) Full Score .of ABC https://shanghaicar.m.on.github.io
[42] Notation Repetition Structure understanding and Notation /ChatMusician/
based Melody .
. generation
Generation ; - - .
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In order to lower the threshold for users, human natural language is used to describe target
generated music, enabling the re-understanding and re-generalization of natural language to
attribute templates to become a new development direction. MuseCoco, proposed by Lu et al. (2023)
[15], is a typical representative. Unlike FiGARO, this system extends the set of musical attributes, and
its attribute templates cover 12 musical attributes such as instrument, tempo, time, and pitch range.
In addition, the system allows natural language input instead of complex templates. This system also
adopts a two-stage framework, consisting of text-to-attribute understanding and attribute-to-music
generation. MuseCoco leverages ChatGPT’s superior performance in text understanding to convert
text descriptions into attributes, which allows users to use natural language to generate music. On
top of that, A richer set of attribute templates also improves the accuracy of the music generated to
meet users’ requirements. A richer set of attribute templates also improves the accuracy of the music
generated to meet the user’s requirements.

2. Description-based Polyphony Generation

In a recent study, Liang et al. (2024) [43] proposed ByteComposer, which utilizes LLM to
simulate mankind's music-composing process. The system adopts a modular design that includes
four stages: conceptual analysis, draft generation, self-evaluation and revision, as well as aesthetic
selection. Unlike MuseCoco, which only uses ChatGPT to extract attribute information from textual
descriptions, ByteComposer embeds LLM as an expert module that not only extracts attribute
information, but also provides guidance based on a library of music theory knowledge. As a result,
ByteComposer allows LLM to play the role of “melody composer”. At the same time, a voting module

and a memory module are added to ByteComposer, enabling users to subjectively judge the
generation results and store the evolution trajectory and interaction data. The system combines the
interactive and knowledge understanding properties of LLMs with existing symbolic music
generation models to achieve a melodic composition agent comparable to human creators. In
addition, ComposerX proposed by Deng et al. (2024) [44], adopts a multi-agent approach to
significantly improve the quality of music composition for large language models (e.g., GPT-4).
ConposerX can generate coherent polyphonic musical compositions while following users’
instructions. This has shown that the multi-agent approach boasts enormous potential in generative
tasks. The division of labor of the agents is shown in the following Table 4:

Table 4. Division of Labor.

Agent Name Task Description

Group Leader Responsible for analyzing user input and breaking it down into specific tasks
Agent to be assigned to other agents.

Melody Agent Generates a monophonic melody under the guidance of the Group Leader.

Adds harmony and counterpoint elements to the composition to enrich its

Harmony Agent
structure.

Instrument Agent Selects appropriate instruments for each voice part.

. Evaluates and provides feedback on the melody, harmony, and instrument

Reviewer Agent .
choices.

Arrangement

Standardizes the final output into ABC notation format.
Agent

At the same time, ComposerX significantly reduces training costs. The quality of works
generated by ComposerX is comparable to polyphonic compositions generated by specialized
notated music generation systems [15,40] that require substantial computing resources and data. It is
also worth noting that ChatMusician [42] can generate polyphonic music that meets the requirements
and maintains good quality. However, it cannot select instruments and only generates polyphonic
ABC notation for a single instrument.

Polyphonic music generation technology has evolved from using structured attribute templates
to natural language descriptions, aiming to improve user-friendliness and enhance the diversity and
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expressiveness of the generated music. The advantage of early structured attribute templates is their
ability to ensure that the generated music adheres to certain musical theory standards. However,
these templates have several limitations. First, the forms of text input are constrained by structured
templates, requiring the selection of fixed attributes, which makes the generation process less flexible.
Second, since the attribute templates essentially define the labels, the generated results often lack
personalization. Additionally, the multitrack melodies generated are relatively independent, lacking
coordination. With the development of deep learning and large language models, modern music
generation systems now employ natural language processing to interpret text descriptions and model
the collaborative relationships between multiple tracks, making the input process more intuitive and
universal, while the output sounds more harmonious and pleasant. Relevant studies are summarized
in Table 5.

Table 5. Polyphony Generation Tasks.

Music Large Generate
Model Model A
Task Type ode Year Represen ,0 de Description Model Dataset Name d Music chssed
Name . Architecture Link
tation Relevance Length
Human-
interpretable, Not  https://tiny
FIGAR LakhMIDI
GARO 2023 REMI+ Transformer Expert / akhMI mentione url.com/28e
. [14] L Dataset
Musical Description, d txz27
Attribute- Multi-Track
based Text-to- Textual MMD,
Polyphony attribute . EMOPIA, https://ai-
Generation MuseCoc understanding synthesis MetaMidi muzic.gith
202 MIDI T £ d To<=1 )
o [15] 023 FansIOMMEr ond attribute- an POP909, 6 bars ub.io/muse
. template
to-music ) Symphony, coco/
. refinement .
generation Emotion-gen
Imitate the
human creative A melody the Irish
ByteCompo rocess, Multi- compositio Massive ABC Not
y P%2024  MIDI Transformer 1 T P . mentione /
[43] step Reasoning, n LLM Notation d
Procedural agent dataset
Description- Control
based Significantly
Polyph i
b oy lmi:i’l‘;fcthe the Irish https://lllin
. Multi-agent Massive ABC ., dsey0615.gi
Compose ABC generation . Varied .
2024 K Transformer K LLM-based Notation thub.io/Co
rX [44] Notation quality of GPT- Lengths
framework dataset, mposerX_d
4 through a
K KernScores emo/
multi-agent
approach

4.2. Audio Domain Methods

The audio domain text-to-music generation task is a task that automatically generates music
segments directly at the audio signal level from input text. The output is usually in the form of time-
series sound waveform data rather than a symbolic representation. The research challenge in audio-
domain text-to-music generation tasks is establishing a good mapping between text and audio
signals. To overcome this challenge, the model must efficiently capture the dependencies between
text and music audio and generate high-quality sound outputs. By doing so, the generated music
segments will not only follow the textual instructions but also sound smooth and pleasing to the ear.

4.2.1. Instrumental Music Generation

In recent years, the task of text-to-audio generation has gained significant attention as an
important branch of cross-modal tasks. AudioLM [22], as a pioneering work, has made significant
breakthroughs in audio modeling. This model maps audio signals to a series of discrete audio
representations, transforming the audio generation task into a language modeling problem within
this representation space. AudioLM can generate natural and smooth audio from brief prompts,
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covering human speech, environmental sound effects, and basic piano melodies, while maintaining
consistency and coherence across long-time sequences. Following the success of AudioLM,
researchers have further explored how to use text input to precisely control the audio generation
process, leading to models like AudioLDM, Tango, and Tango2 [45—47]. These models combine the
advantages of language models and diffusion models, enabling efficient and expressive text-to-audio
generation. These advancements have laid a crucial theoretical and technical foundation for music
audio generation.

Early research generated new music by combining audio retrieval with textual labels. A typical
example of this is Mubert’, which constructs a music database with labels and assigns appropriate
labels based on the user’s text input. The appropriate music clips are then selected from the database
and combined to create a new piece of music. This approach allows Mubert to respond quickly to
user input prompts and to generate musical compositions with some degree of editing. However,
Mubert has some limitations regarding creativity and flexibility because it relies on combining
existing music fragments rather than creating entirely new ones.

The launch of Riffusion marked the beginning of the use of diffusion models for music
generation tasks. Riffusion, developed by Forsgren et al. (2022) [24], is a real-time music generation
system based on the stable diffusion model. It features direct noise diffusion on a spectrogram.
Riffusion is suitable for live performance or real-time composition as it can rapidly generate short
music clips (usually no more than a few seconds) when specific textual description or lyrics is given.
Although Riffusion had significant limitations in terms of music length and complexity, it creatively
migrated “text-to-image” technology to the audio domain. Since then, diffusion has become one of
the most widely used models for music generation tasks. Huang et al. (2023) [48] proposed a model
called Noise2Music. The model uses a two-stage diffusion modeling framework that includes a
generator model and a cascade model. The study explored two intermediate representations, i.e.,
spectrograms and low-fidelity audio (3.2 kHz waveforms). Experimental results show that when low-
fidelity audio is used as an intermediate representation, the results are better than when spectrograms
are used. Nevertheless, the audio generated by Noise2Music can last for 30 seconds or less and the
sampling rate is 24kHz. Schneider et al. (2023) [49] proposed Motsai. This model also uses a two-
stage diffusion modeling framework and is capable of generating stereo music at 48kHz lasting up
to several minutes. The first stage of the model compresses the audio signal by using a diffusion
amplitude self-encoder, and the second stage generates music using a text-conditional latent space
diffusion model. In addition, Mofisai achieves a significant breakthrough in computational efficiency,
enabling real-time extrapolation on a consumer-grade graphics processor while maintaining high
sound quality and long temporal structural integrity. Recently, Li et al. (2024) [50] proposed JEN-1.
Based on a diffusion model, JEN-1 can handle multiple types of tasks (music generation, music repair,
music continuation, etc.), improving the multitask generalization of music generation models. Also,
similar to Noise2Music, JEN-1 processes raw waveform data directly, avoiding the loss of fidelity
associated with conversion to spectral formats, and generating 48 kHz stereo music. JEN-1
incorporates both autoregressive and non-autoregressive structures. The autoregressive mode helps
to capture the time-series dependence of music, while the non-autoregressive mode accelerates the
process of sequence generation. This hybrid mode overcomes the limitations of a single mode.

Another part of the research explored the application of language models to generative tasks.
Almost simultaneously, Agostinelli et al. (2023) [51] proposed MusicLM, which introduces a
hierarchical sequence-to-sequence autoregressive modelling approach. This model extends
AudioLM to include three levels of language models, namely semantic, coarse acoustic, and fine
acoustic and is able to generate musical audio at 24kHz. MusicLM addresses the problem of paired
audio-text data scarcity by combining MuLan [52] (an embedding model that unites music and text).
In addition, MusicLM demonstrates its potential for melodic transformation, being able to stylize a

5 https://mubert.com/
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hummed or whistled melody based on a prompt. Considering the advantages of language modeling
and diffusion modeling, Lam et al. (2023) [53] proposed MeLoDy, an approach that combines the
language model with the diffusion model. MeLoDy is an LM-guided diffusion model. It uses the
Dual Path Diffusion (DPD) model and an audio VAE-GAN to decode semantic tokens for the fast
generation of musical waveforms. The DPD model effectively incorporates semantic information into
the underlying representation passages in the denoising step while handling coarse-grained and fine-
grained acoustic features. While MeLoDy continues to use the top-level language model in MusicLM
for semantic modeling, it significantly reduces the number of forward passes in MusicLM. As well as
improving generation efficiency, MeLoDy maintains musicality and text relevance comparable to
MusicLM and Noise2Music, and exceeds the baseline model in terms of audio quality.

Previous models suffer from the limited size of the music dataset, copyright infringement, and
plagiarism. To address these problems, Chen et al. (2023) [54] proposed MusicLDM, which aims to
address this challenge. Based on the AudioLDM architecture, MusicLDM introduces a beat-
synchronized Mixup strategy to enhance the novelty of text-to-music generation. The mixup strategy
is a method that restructures existing training samples through linear interpolation, whereby it can
augment the training dataset. This approach facilitates MusicLDM to learn via interpolation among
training samples rather than simply memorizing a single training instance. Consequently, it helps to
reduce overfitting resulting from the limited size of the dataset and reduces the risk of plagiarism in
the generated content.

Traditional multi-stage music generation methods usually rely on cascading of multiple models
or upsampling steps. This not only increases the complexity of the system, but also imposes a high
computational overhead. Copet et al. (2023) [55] proposed MusicGen. MusicGen moves from the
traditional multi-stage generation approach to a single autoregressive Transformer decoder, which
can simultaneously operate multiple parallel streams of music representations by efficiently
interleaving compressed discrete music representations (i.e., music tokens). This approach not only
simplifies the music generation process, but also significantly reduces the computational costs while
maintaining high quality music output. Notably, unlike MusicLM [51] which relies on supervised
data, MusicGen can control melody through unsupervised data.

From the above studies, diffusion models and language models have demonstrated their
powerful capabilities in music generation. Diffusion models, with their unique noise diffusion and
denoising process, have achieved remarkable results in music generation tasks and can generate
high-quality and diverse musical works. Language models, based on their mature application in
natural language processing, enable effective modeling and generation of music signals by mapping
audio signals to discrete representations. Both models can generate music based on textual
descriptions, and control such musical attributes as style, melody, rhythm, etc., demonstrating a high
degree of controllability and flexibility in music generation. Relevant studies are summarized in
Table 6.

4.2.2. Singing Voice Synthesis

Singing voice synthesis (SVS) refers to the synthesis of a singing voice according to lyrics and
musical scores with the help of speech synthesis techniques. Compared with traditional music
generation tasks, SVS is a relatively independent research field because it involves more digital signal
processing techniques and audio sampling synthesis techniques. Text-based singing voice generation
mainly refers to providing lyrics to generate singing voices. The technical basis of this task is Text-to-
speech. Like Text-to-speech, the mainstream task is divided into three types: splicing synthesis,
statistical parameter synthesis, and the current popular neural network synthesis method.

1.  Splicing Synthesis

Splicing synthesis first requires creating a sound inventory containing a large number of short

vocal units. Then, based on the features of the target vocal, such as pitch, duration, and timbre, the

unit with the smallest distance from the target unit is selected for splicing. The duration and pitch of
the selected units are then adjusted to match the melody and tempo of the target voice. As early as
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1997, Macon et al. (1997) [56] proposed Lyricos, a song synthesizer extended from a text-to-speech
synthesizer based on the unit concatenation. Since then, a large number of studies have been modeled
on this framework, which has developed song synthesis systems of various languages. A successful
business case is the Vocaloid [57] software released by Yamaha in 2003. This software uses this
Splicing synthesis method. Since then, many companies have used Vocaloid as the engine to launch
a series of virtual singers, such as Hatsune Miku and LuoTianyi.

Since splicing synthesis synthesizes a song by recording, arranging, and splicing different
pronunciations, it has the advantages of a wide range of sounds and a high degree of editorial
freedom. However, the method relies heavily on pre-recorded sound libraries, which are expensive
to acquire, label, and train; secondly, when splicing different audio segments, the transition between
neighboring segments can lead to artifacts at the splices if not handled properly; and finally, It is
difficult for the model to generate pitch variations or articulation styles beyond the range of the
training data, which limits the effectiveness of the generated singing voice.

2. Statistical Parameter Synthesis

Hence, statistical parameter-based synthesis methods have come into being. Saino et al. (2006)
[58] extended the application of HMMs in speech synthesis research to song synthesis. In speech
synthesis, HMM attaches importance to precisely quantizing time-series variations of speech features
into specific statistical parameters. The model treats the textual information as an observable outcome
with the acoustic features as its hidden states. The model aims to accurately map from textual to
acoustic information through these statistical parameters. When applied to vocal synthesis, HMM
needs to record a large number of vocal clips of the same singer and then refine the acoustic feature
parameters (e.g., pitch, duration, resonance peaks, etc.) for vocal synthesis through its modeling;
finally, the sequence of acoustic features is converted into an audio signal through a vocoder to realize
the synthesis of the vocals.
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Table 6. Instrumental Music Generation Tasks.
Musi Model L Model Musi
Task Type Model Name Year usic . ,0 de Description arge Mode Dataset Name Generated Music Accessed Link
Representation Architecture Relevance Length
Commercial .
instrumental Mubert / Waveform / Tag-based Contr(?l, Musm segment / / Varied lengths https://mubert.com/
. . combination
music Generation
Omnidirectional Diffusion Models,Hybrid Ponds https://ienmusic.ai/a
JEN-1[50] 2024  Waveform Diffusion AR and NAR Architecture, Masked Noise / . Varied lengths ps: ] ’
MusicCaps udio-demos
Robust Autoencoder
Beat-synchronous mixup,Latent Trained on Broad Audiostock https://musicldm.git
MusicLDM [54] 2024 Mel-Spectrogram  Diffusion Diffusion, CLAP, AudioLDM Data at Scale dataset, 2.? Mll.hon Varied lengths hub.io/
text-audio pairs
n . Waveform e i . TEXT2MUSIC . . https://bit.ly/audio-
Moftsai [49] 2023 (48KHz@2) Diffusion Latent Diffusion, 64x compression / Dataset Multiple minutes diffusion
Internal .
. Discrete tokens Transformer LM,Codebook Interleaving  Trained on Broad Dataset,ShutterStoc . https'//glthub'com/f&,l
MusicGen [55] 2023 Transformer . <=5minutes cebookresearch/audi
Lo (32kHz) Strategy Data at Scale k,Pond5,MusicCap
Description- s ocraft
based
. Waveform Diffusion& Dual-path diffusion, language Trained LLaMA for 257k hours of https://efficient-
t tal LoD 202 10s -
nemrmenta; MeLoDy [53] 2023 (32kHz) VAE-GAN model, Audio VAE-GAN semantic modeling music 0s - 30s melody.github.io/
music Generation — -
Optimize using pre- https://google-
. Waveform Based on AudioLM, multi-stage modeling, trained models = MusicCaps (280k . . research.github.io/se
MusicLM[51] 2023 (24kHz) Transformer MuLan Mulan and w2v- hours) Multiple minutes anet/musiclm/examp
BERT les/
Using for
. . Spectrogram and Description for https://google-
N01s[ejé\;[ U1 2023 Waveform(better Diffusion  Cascading diffusion,1D Efficient U-Net Training Generation MuLaﬁ/([) E:E) (150K 30 seconds  research.github.io/no
) and Text Embedding ise2music
Extraction
Riffusion [24] 2022 Spectrogram Diffusion Tag-based control, Music segment / / ~10 seconds https://www.riffusio

combination

n.com/
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The statistical parameter synthesis technique significantly reduces the labor cost in singing voice
synthesis compared to the traditional sample splicing method providing more stable and consistent
results. This technology has become the basic framework of the current research on singing voice
synthesis. However, constrained by statistical laws, statistical models have limitations in capturing
complex pitch and rhythmic variations.

3. Neural Network Synthesis

With the development of neural networks, some studies have begun to apply neural networks
to singing voice synthesis. Nishimura et al. (2016) [59] proposed a DNN-based singing voice synthesis
method. Since singing voice synthesis considers more contextual factors than standard TTS synthesis,
DNN is used to represent the mapping function from contextual features to acoustic features.
Compared to HMM, DNN can better handle complex contextual factors. To address the problem of
pitch context sparsity, singing voice synthesis employs note-level pitch normalization and linear
interpolation techniques to improve the accuracy of FO¢ prediction. In the subjective listening test,
this system significantly outperforms the HMM-based system. Based on similar neural network
frameworks, song synthesis techniques based on various types of neural networks, such as CNN [60],
LSTM [61], GAN [62], etc., have been born since then.

XiaoiceSing [63] is one of the earliest commercially deployed SVS systems driven by deep
learning. The system is built on the main architecture of FastSpeech [64] and makes specific
adjustments to adapt to singing synthesis tasks. To avoid the out-of-tune issue, XiaoiceSing adds a
residual join to the FO prediction to make the predicted pitch more accurate. In addition, to improve
rhythm, XiaoiceSing, in addition to the duration loss of each phoneme, calculates the total durations
all phonemes make up a note to take. Using WORLD [65] as a vocoder, XiaoiceSing is able to ensure
that the input FO contour is consistent with the FO contour in the generated vocals, ensuring a high
level of quality and consistency. During this period, research on using Transformers and WORLD
vocoders has been springing up [66—68]. In order to overcome the limitation of the sampling rate,
Chen et al. (2020) [69] proposed HiFiSinger. It replaces WORLD with a parallel WaveGAN [70] to
generate waveforms at a high-fidelity 48kHz sampling rate, although it utilizes the same FastSpeech-
based acoustic model as XiaoiceSing. WaveGAN, unlike WaveRNN, can generate a more realistic
audio waveform through a discriminator.

In addition to the FastSpeech architecture, Tacotron [71] is also widely used for vocal synthesis
tasks, with a greater focus on generative detail and expressiveness. Gu et al. (2020) [72] proposed
ByteSing, which combines the advantages of a Tacotron-like architecture with the neural vocoder of
WaveRNN. Neurovocoders are capable of capturing and reproducing more complex acoustic
features. This high-fidelity generative capability is much better than the generative ability of
conventional vocoders. ByteSing employs an autoregressive decoder to convert the input features
(extended by duration information) directly into Mel spectrograms which are synthesized into
waveforms by the vocoder. By using attention-based alignment and the encoder-decoder framework,
ByteSing effectively manages long-range dependencies and detailed acoustic feature modeling.
Auxiliary phoneme duration prediction models are added to enhance ByteSing's ability to handle the
complex temporal nuances inherent in singing. The system is capable of a guaranteed sampling rate
of 24kHz.

As diffusion models are demonstrating enormous potential in generative tasks, Diffsinger
proposed by Liu et al. (2021) [73], also based on FastSpeech, employs a denoising diffusion
probabilistic model to transform generative tasks into parametric Markov chains conditioned on
musical scores. The model adds noise to the Mel spectrogram through a diffusion process until it
becomes Gaussian, and gradually restores the Mel spectrogram during denoising. In order to
improve sound quality and inference speed, Diffsinger introduces a shallow diffusion mechanism
and utilizes prior knowledge acquired from simple loss to reduce inference steps, allowing the model

6 FO: The fundamental frequency of pitch, commonly used to describe the pitch of a sound.
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to close to a real-time generation.The techniques mentioned above all rely on large databases, so
studies aiming to reduce data consumption are cropping up, such as LiteSing [67], Sinsy [74], etc.

As traditional SVS techniques employ a two-stage generation approach, independent training
of the acoustic model and vocoder may result in mismatches. However, VIsinger [75] and VISinger 2
[76] proposed by Zhang et al. have significantly reduced these mismatches. They have successfully
applied end-to-end speech synthesis techniques to song synthesis and generated song audio directly
from lyrics and music scores.

This method operates on the main architecture of VITS (Variational Inference with adversarial
learning for end-to-end Text-to-Speech) [77]. It means that VITS uses a combined end-to-end speech
synthesis model that incorporates VAE, normalizing flow, and GAN to improve the encoder
following singing characteristics. While modeling the acoustic variations in singing, VITS introduces
an FO predictor to obtain stable singing performance. This system also optimizes rhythm, modifying
the traditional duration prediction to the duration ratio of phonemes to notes. Introducing the
Vlsinger series takes singing synthesis to a new end-to-end model.

The neural network synthesis approach simplifies the system architecture. Firstly, it generates
high-quality singing audio from text through an end-to-end modeling approach. Secondly, deep
learning models enable the learning of complex acoustic feature representations, generating high-
fidelity singing voices. Finally, the improved architectural and training technique can improve
computation efficiency, making real-time generation possible and supporting multi-modal
information fusion.

Singing voice synthesis technology has undergone three stages splicing synthesis, statistical
parameter synthesis, and neural network synthesis. Great Changes have occurred in the
representation of acoustic features, model structure, and other aspects. These techniques have
improved the naturalness of synthesized singing and enabled the system to better capture pitch
changes and rhythms, generating more vivid and realistic singing audio. Future research will
continue to explore new ways to reduce data requirements, increase synthesis speed, and enhance
model generalization capabilities. Relevant studies are summarized in Table 7.
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Table 7. Singing Voice Synthesis Tasks.
Musi Model
Task Type Model Name Year usie . ,0 de Keywords Dataset Name Accessed Link
Representation  Architecture
ACE Studio 2021 / / Al synthesis,Auto pitch / https://acestudio.ai/
ial thesi A% https: tonics. thesi
.Corflmera.a Syn esizer 2018 / / WaveNet vocoder, DNN, Al synthesis / ps://dreamtonics.com/synthesizer
Singing Voice Studio v/
Enei
neine Vocaloid 2004 Wavecft;):rrrl‘&Spe / sample concatenation / https://www.vocaloid.com/
conditional VAE,Improved Decoder, Parameter . . .
Mel- https://zh .github.io/VI
VISinger 2 [76] 2022 © VAE+DSP Optimization, Higher Sampling OpenCpop psi//zhangyongmao.github.io/VISi
Spectrogram . . nger2/
Rate(Considering to VISinger)
ViSinger [75] 2022 Mel- VAE end-to-end s'olutlon, FO predictor, no1jmahzmg 4.7 hours singing dataset with https://zhangyongmao.github.io/VISi
Spectrogram flow based prior encoder and adversarial decoder 100 songs nger/
Mel Diffusion+Neural Shallow diffusion mechanism, parameterized
DiffSinger [73] 2021 Markov chain, Denoising Diffusion Probabilistic PopCS https://diffsinger.github.io
Spectrogram Vocoder
Model, FastSpeech
o . HiFiSinger 2020 Mel- Transformer +  Parallel WaveGAN (sub-frequency GAN+multi- Chinese Mandarin pop songs https://speechre.search.github.io/hiﬁs
Singing Voice [69] Spectrogram  Neural Vocoder length GAN), FastSpeech inger/
Synthesis . Mel- Transformer+Neur WaveRNN, Auxiliary Phoneme Duration . . . . .
Byt 72] 202 hi MusicXML! https://Byt .github.
yteSing [72] 2020 Spectrogram al Vocoder Prediction model, Tacotron 90 Chinese songs (Music ) ps://ByteSings.github.io
. Acoustic Transformer + integrated network, Residual FO, syllable . e . .
XiaoiceSing [63] 2020 parameters WORLD duration modeling, FastSpeech Mandarin pop songs https://xiaoicesing.github.io/
[59] 2016 Acoustic DNN musical—note-lev.el pitch no.rmalization, linear- 70 Japanese children’s songs /
parameters interpolation (female)
(58] 2006 Acoustic HMM Context-dependent HMMs, duration models, and 60 Japanese children’s songs https://www.sp.nitech.ac.jp/~k-
parameters time-lag models (male) saino/music/
AB LA si idal 1, vibrato, phoneti t inut f ti
Lyricos [56] 1997  Waveform  Sinusoidal model S/OLA sinusoida mo.de , vibrato, phonetic en mlmll es of continuous /
modeling singing data

MusicXML is a standard XML-based file format for representing sheet music and music information.
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4.2.3. Complete Song Generation

A song is a combination of vocals and accompaniment. Complete song generation synthesizes
research on pure music generation and song synthesis with the goal of automating the creation of
complete songs. This generation task is a multi-modal one involving multiple types of generation
tasks. It requires not only synthesizing the corresponding accompaniment based on the textual
content but also generating matching lyrics, vocals, etc.

Jukebox [78], proposed by the OpenAl team, is among the first to explore complete song
generation. Rather than generating complete songs based entirely on text, Jukebox generates
complete songs by modeling the raw audio domain while providing a way to use lyrics to control the
generated content. It uses a multi-layered VQ-VAE architecture capable of compressing audio into
discrete spaces while retaining as much musical information as possible. Jukebox uses an encoder-
decoder model to implement conditional control of lyrics and uses the NUS AutoLyricsAlign tool to
align lyrics and music. In addition to lyrics, Jukebox also allows users to control artists and genres.

Hong et al. (2024) [79], for the first time, proposed Text-to-song which incorporates both vocal
and accompaniment generation. They developed Melodist, a two-stage text-to-song method.
Melodist generates singing voice synthesis (SVS) first, and then vocal-to-accompaniment (V2A)
synthesis based on SVS. Finally, Melodist mixes SVS and V2A together to form a complete song. In
the vocal-to-accompaniment synthesis stage, the Melodist adopts the tri-tower contrastive pre-
trained framework to learn more efficient text representations and jointly embeds text, vocals, and
accompaniment into an aligned space, which enables the model to control accompaniment generation
by using natural language cues. The experiment shows that the outputs generated by the Medodist
model achieve better performance in terms of subjective and objective metrics assessment, as well as
text consistency. However, as the results generated rely on the quality of the source separation, the
method still has limitations—it cannot achieve an end-to-end generation. On top of this, this method
also sees the accompaniment as a piece of music, ignoring the complex combinations between
instrumental tracks.

As a representative of business projects for text-to-song tasks, Suno” is currently one of the most
influential software. It is capable of generating complete songs with lyrics end-to-end via natural
language descriptions, or it can use natural language descriptions to control the generation of
accompaniment on the condition that lyrics are provided. It uses heuristics for audio tokenization
and the transformer architecture , but it is an unofficial open source project now?. The team’s other
open source project is a text-to-audio generation model called Bark?, which is capable of generating
near-human-level speech and can be used to generate music by adding tokens. This project’s
excellence in text-to-audio generation also laid the groundwork for the creation of Suno.

Recently, the ByteDance team proposed Seed-Music [80], a multi-modal music generation large
model. This is a comprehensive framework designed to generate high-quality music through fine-
grained style control. It integrates autoregressive language modeling and diffusion methods to
support two key workflows: controlled music generation and post-editing. The controlled generation
workflow harmonically unified vocals and accompaniment (accompaniment in midi format) to be
created through multimodal inputs (e.g., lyrics, stylistic descriptions, audio references, scores, and
voice cues), providing a high degree of customization and adaptability. For another thing, post-
production editing features enable users to interactively modify elements of existing music tracks,
including vocal lyrics, melody, and timbre.

Currently, the research on text-to-music generation has expanded from pure audio generation
to more complex and comprehensive tasks, and complete song generation is a great challenge with a

7 https://suno.com/

8 Relevant content referenced from the podcast: https://www.latent.space/p/suno

° https://github.com/suno-ai/bark
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generation process that integrates various types of tasks. In the future, with the development of
multimodal large models as well as generative models, it is possible to provide richer contexts and
details for song generation, and to further improve the quality as well as the diversity of generation.
Relevant studies are summarized in Table 8.

Table 8. Complete Song Generation Methods.

Task Type Model Year Re I\:etilr:tati Model Kevwords Large Model Dataset GeMnf::;tced Accessed
YP® Name P Architecture yw Relevance Name Link
on Length

Multi-modal
Inputs, Auto-
regressive

Large multi- https://team
Seed- Transformer Language modal language doubao.co
. Waveform & Modeling,Voco guag Not Varied .
Music 2024 models for . m/en/specia
MIDI e der . mentioned Length
[80] Diffusion understanding 1/seed-
Latents,Zero- . .
U and generation music
shot Singing
Voice
Conversion
Tri-Tower
Contrastive .
TEXHO- Pre-training, Using LL{[\/I to Chinese song https://text2
o8 Melodi Cross-Modality generate datasets and Not songMelodi
Generation 2024 Waveform Transformer . natural . : .
st [79] Information Open-Source mentioned st.github.io/
. language
Matching, Datasets Sample/
. prompts
Lyrics and
Prompt-based
Multiscale VQ-
VAE,
Autoregressive . s m
Jukebo VO-VAE+ Transformer, Trained on 1.2 m11119n Multiple https.//]uk.e
2020 Waveform i Broad Data at  songs with . box.openai.
x [78] Transformer Conditional . minutes
. Scale lyrics com/
Generation,
Hierarchical
Modeling
Heuristic
Commercia method, Singing audio
I Complete Suno 2023 Waveform Transformer Au,dlo, / and non- <=4 minutes https://alPh
Song Al Tokenization, sineing audio a.suno.ai/
Generation Zero threshold §ng
for use

4.3. Comments on Existing Techniques

The field of text-to-music generation has made great progress over the years, with advancements
in rule-based systems, statistical models, generative approaches, and large language models (LLMs).
However, each method has its strengths and limitations. Challenges such as data dependency, model
controllability, and generalization remain significant. This section reviews these techniques and
highlights the key issues that require attention.

1. Rule-Based and Template Methods

Rule-based and template-driven methods are among the earliest approaches in text-to-music
generation. These methods follow predefined musical rules, such as chord progressions or rhythmic
patterns, to generate melodies. Their simplicity and reliability make them highly interpretable and
consistent, useful in structured applications like educational tools or composition guides. However,
their deterministic nature severely limits their ability to adapt to the diversity and complexity of real-
world music. For example, such methods struggle to create dynamic and expressive outputs when
handling lyrics with varying emotional tones. While they are useful for tasks requiring fixed
structures, their lack of creativity makes them unsuitable for tasks that demand innovation and
diversity.
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2. Statistical Models

Statistical approaches, such as Markov chains and n-gram models, introduced randomness that
improved over rule-based systems. By analyzing patterns in training data, these models can generate
melodies that exhibit some variability and complexity. However, they cannot capture long-term
dependencies, which are crucial for creating coherent music. For instance, while a Markov chain
might produce locally plausible note sequences, it often fails to generate melodies with meaningful
global structures. Additionally, statistical models are highly dependent on the quality of the training
data, often overfitting to specific patterns and failing to generalize to new musical styles or datasets.
This limits their ability to produce diverse and innovative outputs across broader applications.

3. Generative Models

Generative models represent a significant leap in text-to-music generation, offering powerful
tools for creating realistic, diverse, and dynamic outputs. GANs are one of the most prominent
methods, leveraging an adversarial framework where a generator produces melodies and a
discriminator evaluates their quality. Models like LSTM-GANs combine sequential modeling with
GAN:Ss to improve the coherence of generated music. However, GANs often face issues such as mode
collapse, where the generator produces limited variations, and instability during training, making it
challenging for them to optimize effectively. Furthermore, GANs generally lack fine control over
specific musical attributes, which limits their use in tasks requiring precise alignment with textual
inputs.

In addition to GANSs, Variational Autoencoders (VAEs) have gained attention for their ability to
learn structured latent representations of music. VAEs map input data (e.g., melodies) to a latent
space, allowing for smooth interpolation between musical features and generating new, coherent
outputs. Their probabilistic framework ensures stable training and enables control over the diversity
of generated melodies. However, VAEs tend to produce less sharp or vivid outputs than GANSs,
which can affect the perceptual quality of the music.

More recently, diffusion models have emerged as a powerful alternative in generative tasks,
including music generation. These models progressively transform noise into structured outputs
through a reverse diffusion process, guided by a learned probability distribution. Diffusion models
excel at generating high-quality outputs with precise control over attributes, making them suitable
for tasks that require both diversity and coherence. For example, text-to-music diffusion models can
effectively map lyrics to melodies by capturing nuanced relationships in a step-by-step generation
process. While these models are computationally intensive and require careful tuning, they have
demonstrated significant potential in addressing the limitations of earlier generative approaches.

4. Transformer-Based Architectures

The introduction of Transformer-based models has significantly advanced music generation by
addressing many of the limitations of earlier methods. Transformers excel in modeling long-range
dependencies and capturing intricate relationships between musical elements, such as aligning lyrics
with melodies. Models like SongMASS leverage these capabilities by using separate encoders and
decoders for lyrics and melody, combined with pre-training techniques to improve generation
quality. These models effectively handle the complexity of musical structures by focusing on parallel
processing and self-attention mechanisms, enabling more coherent and contextually aligned outputs.

In addition to task-specific Transformer models, language models based on the Transformer
architecture have been adapted for music generation tasks. These models learn representations of
sequences, whether text or symbolic music, and can generate music by treating it as a language. For
instance, in some approaches, musical notes and rhythms are tokenized into sequences akin to words
in natural language, allowing the models to predict the next note or phrase based on the preceding
context. This adaptation of language models provides a flexible and scalable framework for melody
generation, where the system can leverage transfer learning from vast datasets of natural language
or symbolic music.
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Despite these strengths, Transformer-based architectures and language models share several
limitations. They are computationally intensive, requiring large amounts of memory and processing
power. Their performance is also highly sensitive to the quality and diversity of training data, which
can restrict their ability to handle underrepresented musical styles or genres. Additionally, self-
attention mechanisms, while powerful, may struggle with extremely long sequences, a common
challenge in music generation tasks. To address these issues, some researchers have introduced
hierarchical Transformer architectures that split sequences into smaller, more manageable chunks,
improving computational efficiency without sacrificing output quality.

Integrating language models into music generation represents a bridge between natural
language processing and musical creativity. While these models effectively handle sequential data
and enable creative outputs, they often require fine-tuning and additional preprocessing to adapt to
the unique characteristics of music data, such as time signatures and harmonic progressions. Despite
these challenges, language models have opened new possibilities for using textual descriptions to
guide music generation, providing a foundation for more advanced systems.

5. Large Language Models

Large language models, such as SongComposer, represent the latest advancements in text-to-
music generation. LLMs are highly flexible and capable of learning complex patterns from vast
datasets, enabling them to produce high-quality music that aligns closely with textual inputs. Unlike
traditional methods that rely on fixed rules or templates, LLMs learn to infer relationships between
lyrics and melodies in a data-driven manner. This allows them to handle tasks like melody
generation, lyric-melody alignment, and even song continuation with impressive results. However,
LLMs also face challenges. Their reliance on massive computational resources makes them less
accessible for smaller-scale applications. Additionally, they lack fine-grained control over specific
musical attributes, which can lead to outputs that deviate from user expectations. The “black-box”
nature of LLMs also makes it difficult to interpret their decisions, which can be problematic in
applications requiring transparency or adherence to strict musical guidelines.

A key challenge across all methods is balancing creativity and control. Rule-based and statistical
methods excel in providing structure and interpretability but fail to produce diverse and expressive
music. On the other hand, generative models, such as GANs, VAEs, and diffusion models, along with
LLMs, offer unparalleled creativity and flexibility but often lack fine control over the outputs.
Another significant issue is the dependency on high-quality datasets. Many models require extensive,
diverse, and well-annotated training data to perform well, yet such datasets are often scarce,
especially for underrepresented musical styles or languages. This limitation hinders the
generalization of these models to broader and more diverse applications.

To address these challenges, future research should focus on hybrid approaches that combine
the strengths of different methods. For example, integrating rule-based templates with Transformer-
based architectures could provide better control over specific musical features while retaining the
flexibility of deep learning models. Similarly, LLMs could be enhanced with interpretable
mechanisms or user-guided controls to improve alignment with specific requirements. Exploring
self-supervised learning and transfer learning techniques could also help mitigate the dependency
on large labeled datasets, making models more versatile and adaptable across diverse scenarios.

5. Frameworks

Text-to-music generation frameworks are evolving rapidly, driven by advancements in large
language models (LLMs). This chapter categorizes existing approaches into three paradigms based
on their integration of LLMs: Traditional Rule-Driven Frameworks, Hybrid LLM-Augmented
Frameworks, and End-to-End LLM-Centric Frameworks. Each paradigm addresses distinct
challenges in semantic-text-to-music alignment, controllability, and scalability, offering unique trade-
offs between interpretability and generative flexibility.

5.1. Traditional Learning-Based Frameworks
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Traditional learning-based frameworks in text-to-music generation typically rely on machine
learning or deep learning models designed for sequence generation. These models treat music and
text as sequences, using neural networks to capture relationships between the two modalities. By
training on paired datasets of text and music, they aim to generate musical outputs that align with
textual inputs. These methods usually employ encoder-decoder architectures or recurrent structures
(e.g., LSTM, RNN) to model dependencies within and across the modalities. The general pipeline for
traditional methods in text-to-music generation can be divided into three main stages:

e  Text Encoding: The input text (e.g., lyrics) is converted into numerical representations using
embedding layers, capturing semantic and rhythmic information.

e Sequence Generation: Deep learning models (e.g. LSTM, RNN) generate musical sequences
(e.g., melody, chords, or rhythm) based on the encoded text.

e  Output Synthesis: The generated musical sequences are converted into symbolic music formats
(e.g., MIDI) or synthesized into audio.

Case 1: LSTM-GAN

Yu et al. (2021) [30] proposed a conditional LSTM-GAN model for lyric-to-melody generation,
enhancing the traditional pipeline with adversarial training. The model encodes lyrics into syllable-
level embeddings, capturing both semantics and rhythm. These embeddings serve as inputs for an
LSTM-based generator, which creates musical sequences, introducing variability through noise
vectors for increased creativity. A discriminator then evaluates the generated melodies, guiding the
generator to produce more realistic and contextually aligned outputs. This combination of sequence
generation and adversarial training improves the diversity and quality of the music, retaining the
core structure of text-to-music generation.

Traditional text-to-music generation methods, including models like Yu’s LSTM-GAN, have
several key characteristics. One notable strength is their ability to capture long-range musical
dependencies, ensuring that the generated melodies maintain coherence over time. The use of
adversarial training further improves the diversity and realism of the outputs, moving beyond the
deterministic nature of early models. However, these improvements come with certain trade-offs.
For example, the reliance on large, high-quality paired datasets makes the model highly data-
dependent, limiting its ability to generalize across different musical styles or genres. Additionally,
while adversarial training encourages creativity, it may limit control over specific musical elements
like rhythm or harmony, making it difficult to fine-tune outputs for professional use.

5.2. Hybrid LLM-Augmented Frameworks

Hybrid approaches in text-to-music generation integrate Large Language Models (LLMs) as a
core module alongside traditional sequence generation models. In this framework, the LLM plays a
versatile role by processing text in various ways, such as extracting musical attributes, generating
lyrics, or reconstructing descriptions. The LLM enriches the input text, which is fed into a subsequent
music generation model (e.g., LSTM, Transformer) to produce musical outputs. By acting as a
powerful intermediary, the LLM helps bridge the gap between complex textual input and the
generated music, ensuring better alignment and context preservation. The general pipeline for hybrid
approaches can be summarized in the following stages:

e  Text Encoding: With traditional methods.

e LLM Module: Extracts key semantic features and contextual information from the input text
and generates new content, such as lyrics or expanded descriptions, based on the input.

e Sequence Generation: With traditional methods.

e Output Synthesis: With traditional methods. Sometimes LLM is used to give feedback.

Case 2: MuseCoCo
MuseCoCo [15] is an innovative hybrid model for generating music from text descriptions. It

combines the power of pre-trained language models (LLMs) with traditional sequence generation
models to enhance text-to-music generation. In the MuseCoCo system, templates are pre-prepared
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for the LLM. For example, a template could be: “The music is imbued with [EMOTION]”. When the
input prompt is “write a happy four-beat pop song”, the LLM extracts the relevant attributes, such
as emotion and time signature, and refines the template by filling in values. This results in a
description like: “The music is imbued with [happiness] and the [4/4] time signature is used in the
music. The genre of the music is [pop].” These templates guide the generation process, ensuring the
music aligns with the user’s description.

While integrating the LLM provides greater flexibility and control over the music generation
process, it also introduces an additional layer of complexity. The model’s performance depends
heavily on the quality of the LLM’s text processing and its ability to accurately extract or generate
relevant musical attributes. Moreover, the system's effectiveness is contingent on the quality of the
attribute templates used to guide the generation process. Poorly defined or overly rigid templates
can limit the system’s creativity and adaptability, preventing the generation of truly innovative or
diverse music.

5.3. End-to-End LLM-Centric Frameworks

End-to-end large language model (LLM) systems treat music as a second language, applying
sequence-based models, typically used in natural language processing (NLP), to generate music
directly from text. In this approach, the LLM processes textual input (e.g., lyrics, prompts, or
descriptions) and generates corresponding musical elements (such as melody, rhythm, and
harmony), considering these elements as analogous to linguistic structures like words and sentences.
This eliminates the need for separate music theory modules or templates, offering a unified
framework for text-to-music generation. The general pipeline for end-to-end LLM-based systems in
text-to-music generation consists of the following stages:

e  Text Encoding: With traditional methods.

e LLM Processing: The encoded text is processed by the language model, which treats music as a
sequence similar to text. The model predicts the next musical element (e.g., note, rhythm, or
harmony) based on the current context, generating a complete musical sequence in an iterative
manner. In this stage, the LLM is able to use its extensive pre-trained knowledge of language
and patterns to generate musically coherent sequences that align with the input description.

e Output Synthesis: Extract symbol information from textual music sequences and synthesize
them.

Case 3: SongComposer

SongComposer [36] is a specialized LLM for generating lyrics and melodies directly from textual
input. It is trained using a high-quality lyrics-melody pairing dataset, which fine-tunes the LLM to
understand the relationship between lyrics and melody more effectively. This fine-tuning step, along
with the introduction of innovative encoding rules, enables the model to process melody sequences,
ensuring that the generated music is both contextually appropriate and musically coherent.
SongComposer operates by accepting a text description, generating both the lyrics and matching
melody, including information like note pitch, duration, and rest duration. This dual output
facilitates the generation of complete musical pieces and allows the extracted information to be used
for further music creation.

LLM-based systems for text-to-music generation offer creativity and flexibility, as they can
generate diverse and contextually relevant music across a wide range of genres, styles, and emotional
tones. By integrating text processing and music generation into a single framework, these systems
ensure a seamless alignment between the input text and the generated music. However, there are
limitations, particularly in the lack of fine-grained control over musical features such as tempo,
dynamics, and instrumentation. While LLMs can create highly creative and musically coherent
compositions, achieving precise control over these elements is difficult. Additionally, these models
are computationally intensive, requiring significant resources for both training and inference. Their
performance is also highly dependent on the quality and diversity of the training data, making them
less effective for underrepresented genres or musical styles.
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5.4. Comparative Analysis and Limitations

Table 9 provides a comparison and analysis of the three mainstream frameworks. The metrics
used for evaluation are explained as follows.

e  Creativity: The ability to generate unique and diverse outputs.

e  Control over Output: The level of control a user has over specific aspects of the generated music
(e.g., tempo, harmony).

e Data Dependency: The reliance on high-quality labeled datasets for training the model. (More
stars mean low dependency.)

e  Generalization: The ability to adapt across different genres and tasks.

e  Training Complexity: The computational cost and difficulty of training the model. (More stars
mean low Complexity.)

¢ Output Quality: The coherence, relevance, and alignment of generated music with the text
input.

Table 9. Comparison of the three mainstream frameworks.

Creativity Control over Data Dependency Generalization Tmmm? Output Quality
Output Complexity
Traditional Methods * %k * ok ok * ok * %k ook ke k * ok ok
Hybrid Approaches ¥ %k %k k ¥ %k %k k * %k k * %k * %k K %k %k ok
End-to-End LLM Systems kkkkkx  skkkk* ¥k Kk ok ok %k ok * ok Kk Kok ok

The table compares three mainstream frameworks for text-to-music generation—Traditional
Methods, Hybrid Approaches, and End-to-End LLM Systems—across six key aspects, highlighting
their strengths and limitations.

Traditional Methods primarily rely on models like LSTMs, RNNs, and VAEs, which follow a
linear pipeline from text encoding to sequence generation and music synthesis. While these methods
provide high output quality and control through high-quality paired datasets, their creativity and
generalization capabilities are moderate, constrained by pre-defined patterns and rules. Additionally,
traditional methods are less adaptable to varied tasks and rely heavily on labeled data for effective
training, though their training complexity remains relatively low.

Overall, the table illustrates the trade-offs between these frameworks, with traditional methods
excelling in simplicity and control, hybrid approaches balancing flexibility and complexity, and end-
to-end LLM systems pushing the boundaries of creativity and generalization at the expense of control
and resource efficiency.

6. Challenges and Future Directions
6.1. Challenges

6.1.1. Technical Level

Although breakthroughs have been made, text-to-music generation tasks still face the following
technical challenges.

1. Dataset Scarcity and Representation Limitations

High-quality datasets are the foundation for training effective text-to-music generation models.
However, current datasets often lack diversity in musical styles and emotional expressions, resulting
in generated outputs that are overly homogeneous. Furthermore, the accuracy of dataset labeling
directly impacts model training, as incorrect labels may mislead models into learning faulty musical
patterns. Large-scale datasets, essential for training complex models, also pose significant challenges
in terms of data collection, processing, and representation. Symbolic datasets (e.g., MIDI) may fail to
capture the expressive nuances of music, while audio-based datasets are computationally demanding
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and challenging to align with textual semantics. Addressing these limitations requires innovative
approaches to dataset design, multi-modal alignment, and data augmentation.

2. Model Training and Generalization

The generalization ability of current models remains a key limitation, especially when dealing
with unseen data. Many existing systems struggle to produce coherent and contextually appropriate
music outside their training data distribution. Moreover, training large-scale models demands
extensive computational resources, which limits accessibility for researchers and developers.
Additionally, model interpretability is a significant concern; understanding how models make
decisions during music generation is crucial for improving their performance and providing more
guided outputs. Enhancing interpretability can also aid in debugging and refining models to better
align with the intended tasks.

3. Evaluation Metrics for Creativity

The limitation in model generalization is a key factor restricting the creativity of generated
outputs. Creativity inherently involves successful extrapolation beyond the dataset distribution,
whereas current machine learning methods mainly address interpolation rather than extrapolation
[81,82]. Models need to strike a balance between imitating existing musical styles and generating
novel music. Additionally, the lack of effective methods for quantifying and evaluating musical
creativity limits objective assessments of innovation in generated music.

4.  Song Structure and Long-Term Coherence

Music often relies on complex short-term and long-term structures, such as the verse-bridge-
chorus format in popular music or the thematic development in classical compositions. Capturing
and generating such structures poses a significant challenge, particularly for long-sequence modeling
tasks. Current models struggle to simultaneously manage local coherence (e.g., smooth transitions
between notes or measures) and global structure (e.g., thematic development across an entire piece).
Achieving this balance requires advanced techniques that can effectively handle hierarchical
dependencies in musical compositions [18].

5.  Emotion Representation and Modeling

Although emotion is a vital component of music, representing and modeling emotion poses a
complex challenge. The limitations of existing models lie in how to effectively analyze emotional
representations in text and model emotional features. Furthermore, the relationship between emotion
and musical elements is a complex issue that involves both psychology and musicology, requiring
models to understand and leverage these associations to generate music with specific emotional
qualities. Only a few studies have addressed the emotional aspect of music [83-88].

6. Interactivity between Human and Computer

While end-to-end modeling has enabled systems to generate complete musical compositions
seamlessly, there is a growing demand for interactive generation systems. Users often prefer to
engage with Al as a "musical partner,” adjusting outputs dynamically during the generation process.
Existing interactive systems [89,90] have demonstrated promise, but they are far from widespread
adoption. Key challenges include designing interfaces that allow intuitive user interaction, enabling
real-time feedback without compromising the coherence of the generated music, and addressing the
balance between user input and model autonomy. Further exploration of human-Al interaction in
the context of music generation is essential to create systems that are not only functional but also
user-friendly and adaptable to diverse creative workflows.

6.1.2. Social Level

Due to the unique nature of artistic works, the text-to-music generation faces several social
challenges:

1. Copyright Issues
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The music generation task now faces three main challenges, including the legality of training
datasets, originality of generated content, and copyright ownership. The music industry is most
concerned that Al learning from songs to generate new content could infringe on the copyrights of
original artists [91,92]. Major music companies, such as Universal Music Group, have begun taking
steps and demanding that streaming platforms prevent Al tools from scraping lyrics and melodies
from copyrighted songs. The Recording Industry Association of America has submitted a list of Al
developers to the U.S. government, and filed a lawsuit against Al music companies, aiming to prevent
the unauthorized use of copyrighted recordings to “train” generative Al models10. Additionally, the
“deep fake” of generated content also deserves attention [93,94], as it poses a serious threat to the
originality and personal style of artists.

2. Privacy Concerns

Despite years of research in artificial intelligence, privacy concerns remain unresolved(Zhang et
al. 2022). Privacy is especially pronounced in singing voice generation. Bai et al. (2024) [80] noted that
they have recognized “the singing voice evokes one of the strongest expressions of individual
identity”. Therefore, it becomes a burning issue to ensure data collection and usage do not infringe
on personal privacy in training.

3. Music Industry Impact

Music generation has shifted traditional creation methods, posing a potential threat to music
producers’ livelihoods. The proliferation of low-cost or even free music generation tools is
encroaching upon the traditional music market, impacting the structure of the music industry [96].

6.2. Future Directions

Text-to-music generation represents a revolutionary advancement in music creation, applying
natural language processing and machine learning techniques to the composition process and
opening new pathways for music creation. From early rule-based methods to today’s deep learning
models, music generation technology has made great strides, enabling researchers to produce music
with considerable artistic value and emotional depth. Given the challenges outlined above, several
future directions for text-to-music generation are proposed.

1. Enhancing Data Quality and Diversity

Future developments will prioritize enhancing data quality and diversity. Building
comprehensive music datasets that cover a wider range of styles, genres, and cultures will enable
models to learn broader musical characteristics and improve generalization. High-quality datasets
enriched with detailed annotations—such as emotional content, structural markers, and performance
techniques—will be essential for refining models’ learning capabilities. The incorporation of synthetic
data generation using LLMs could also serve as a supplementary approach to address data scarcity
by creating realistic textual and musical annotations.

2. Optimizing Training Efficiency

Another key direction is the optimization of model training methods, which can reduce training
time and costs through the application of distributed computing platforms and improve algorithm
efficiency to facilitate a more efficient learning process.
3. Improving the Quality and Personalization

Future models will increasingly adopt innovative mechanisms to improve the quality and
personalization of generated music. Techniques such as attention mechanisms and style transfer will
make compositions more adaptable to specific user requirements, producing works that are highly
artistic and personalized. For instance, LLMs can play a pivotal role in capturing nuanced textual

10 News Link: https://www.riaa.com/record-companies-bring-landmark-cases-for-responsible-ai-a

gainstsuno-and-udio-in-boston-and-new-york-federal-courts-respectively/
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inputs—such as emotional tones or thematic details—and translating them into corresponding
musical elements, such as melodic contours or harmonic progressions.

4. Deepening Understanding of Musical Structures

Model designs will focus on better understanding musical structures, such as segment divisions,
motif development, and long-term coherence. With Transformer-based architectures and the use of
pre-trained LLMs, future systems will be capable of generating compositions that exhibit complex
structures and rich variations, bridging the gap between algorithmic generation and human
creativity.

5. Bridging Music and Emotion

Emotion modeling will also become a central area of focus, enabling models to generate music
that evokes emotional resonance. By integrating LLMs trained on multi-modal data, such as text and
audio, future systems will achieve a deeper understanding of the relationships between linguistic
expressions and musical emotions. These improvements will empower models to create emotionally
expressive compositions that resonate with listeners on a profound level.

6. Advancing Cross-Modal Music Generation

The rise of large-scale models will push advancements toward model integration and cross-
modal capabilities. LLMs with multi-modal inputs—such as text, images, and video—will pave the
way for generating music inspired by diverse input types, significantly expanding the application
scenarios of music generation. For example, a model could generate soundtracks for a video or a
painting, seamlessly bridging artistic domains and enriching creative workflows.

7.  Establishing Clear Copyright Ownership

From a social perspective, it is imperative to set forth more clear-cut rules of copyright
ownership and record the process of creation with the help of blockchain technology in the future.
This initiative will ensure the legality of creations and promote the development of open copyright
music databases, encouraging data sharing while protecting artists' rights and interests.

8.  Strengthening Privacy Protection

In terms of privacy protection, stronger encryption and anonymization of user data will become
a defining trend. This means that users' privacy will not be invaded and that specific, transparent
service terms will be rolled out to build users’ trust.

9. Fostering Collaboration Between Technology and Artists

In the music industry, there will be a greater focus on collaboration between technology
platforms and artists, exploring innovative applications, and developing fairer revenue distribution
mechanisms to balance the conflicting interests between automated generation and traditional
manual creation.

7. Conclusion

This paper provides a comprehensive overview of recent advancements in text-to-music
generation, focusing on the classification and methodologies of symbolic and audio domains. It
systematically introduces key improvements in text-to-music generation across various tasks
(melody generation, polyphony generation, instrumental music generation, singing voice synthesis,
and complete song generation). By introducing a taxonomy of text types (lyrics, musical attributes,
and natural descriptions) and musical representations (MIDI, spectrograms, ABC notation), we
establish a structured framework for evaluating cross-modal alignment challenges.

The primary contribution of this work lies in its critical review and classification of existing
frameworks for text-to-music generation. By categorizing approaches into traditional methods,
hybrid techniques, and end-to-end large language model (LLM) systems, the paper provides a
detailed comparison of their strengths, limitations, and applicability to different tasks. Unlike prior
surveys focused on single-modality generation, we highlight how LLMs enhance controllability and
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generalization by integrating semantic understanding with musical structure modeling, addressing
limitations of rule-based systems in creativity and data-driven models in interpretability.

Key technical challenges are identified, including dataset scarcity for underrepresented genres,
long-term coherence in multi-track compositions, and the need for emotion-aware generation. Social
challenges, such as copyright ambiguity and Al-generated content originality, are also discussed.
Future advancements are expected to improve the quality and diversity of generated music while
simplifying the generation process to make it more intuitive and accessible. Key areas for exploration
include developing more sophisticated algorithms to better interpret textual semantics, reducing
dependence on large labeled datasets through innovative data processing techniques, and enhancing
model generalization to produce more creative and personalized outputs. Additionally, integrating
multi-modal large models will enable systems to incorporate diverse information sources, such as
images, videos, and environmental sounds, fostering the creation of richer and more
multidimensional musical experiences.

This work provides a critical roadmap for advancing text-to-music generation by systematizing
methodologies, clarifying cross-modal alignment challenges, and highlighting the transformative
role of LLMs in enhancing controllability and interpretability. By bridging gaps between semantic
understanding and structural modeling, and prioritizing ethical and technical challenges, the paper
lays the groundwork for future innovations that balance creativity, technical rigor, and societal
impact in Al-generated music, empowering researchers to develop more accessible, diverse, and
socially responsible systems.
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