
Article Not peer-reviewed version

Comparative Modeling of Green

Hydrogen Development in Costa Rica

and the UK: A Machine Learning-Driven

Policy and Investment Forecasting

Approach

Andrea Navarro Jiménez *

Posted Date: 7 April 2025

doi: 10.20944/preprints202503.2276.v2

Keywords: green hydrogen; machine learning; techno-economic modeling; Levelized Cost of Hydrogen

(LCOH); Comparative Energy Policy

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/2766464


 

 

Article 

Comparative Modeling of Green Hydrogen 

Development in Costa Rica and the UK: A Machine 

Learning-Driven Policy and Investment Forecasting 

Approach 

Andrea Navarro Jiménez 1,2 

1 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 

400044, China; andrenavarrojime@gmail.com 
2 Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, 

Chongqing University, Chongqing 400045, China 

Abstract: Green hydrogen is gaining prominence as a strategic option for decarbonizing sectors that 

are difficult to electrify, yet its economic potential differs across regions. This study develops a 

comparative modeling framework enhanced by machine learning to project both the Levelized Cost 

of Hydrogen (LCOH) and Net Present Value (NPV) for hydrogen projects in Costa Rica and the 

United Kingdom (UK). By combining geospatial energy resource mapping, techno-economic 

modeling, and advanced tools such as Random Forest algorithms, SHAP interpretability analysis, 

and Monte Carlo simulations, the research investigates how hydrogen production costs shift under 

varying policy and infrastructure scenarios. Findings show that Costa Rica’s LCOH ranges from $3.4 

to $5.1 per kilogram, influenced by renewable energy type and system scale, while the UK benefits 

from financial incentives that help offset its higher baseline costs. Across both countries, the key 

determinants of cost were electricity pricing, capital expenditure, and electrolysis efficiency. The use 

of machine learning significantly improved prediction accuracy and allowed for deeper exploration 

of policy sensitivities. The outcomes not only align with each nation’s hydrogen strategy but also 

point to actionable avenues for international cooperation, including joint technology development, 

pilot programs, and hybrid financing models. This approach demonstrates how data-driven analysis 

can support more equitable and resilient transitions to zero-carbon energy systems, particularly 

when supported by interpretable artificial intelligence methods. 

Keywords: green hydrogen; machine learning; techno-economic modeling; Levelized Cost of 

Hydrogen (LCOH); comparative energy policy 

 

1. Introduction 

Green hydrogen is increasingly recognized as a cornerstone of global decarbonization efforts, 

with the potential to mitigate up to 80 gigatons of CO₂ emissions by mid-century while supporting 

energy demand in sectors that are difficult to electrify, such as heavy industry, aviation, and long-

duration storage (Hydrogen Council & McKinsey, 2021). Forecasts indicate that the global hydrogen 

market could exceed 660 million metric tons per year, driven by ambitious policy initiatives and the 

expansion of renewable energy systems. However, this momentum brings considerable 

uncertainties, including volatile cost projections, substantial infrastructure requirements, and the 

challenge of equitable deployment across diverse geopolitical contexts. While industrialized nations 

such as China, Germany, and Japan are advancing rapidly in hydrogen development, countries in 

the Global South face systemic barriers to aligning hydrogen deployment with broader goals of socio-

economic growth and climate equity (NewClimate Institute, 2023). 
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The United Kingdom, for instance, envisions hydrogen as a flexible decarbonization tool, 

targeting 10 GW of low-carbon hydrogen production by 2030 and up to 460 TWh in demand by 2050, 

underpinned by policies such as the Hydrogen Business Model and Low Carbon Hydrogen Standard 

(Royal Academy of Engineering, 2022). In contrast, Costa Rica’s hydrogen strategy leverages its 

nearly 100% renewable electricity mix, exploring hydrogen applications in transport and agriculture, 

with cost estimates ranging from $3.4–$5.1/kg depending on the renewable source (Stamm et al., 

2024). These contrasting trajectories highlight the spectrum of hydrogen development, from 

industrial-scale export ambitions in the UK to localized, sustainability-oriented models in Costa Rica. 

Existing literature provides valuable insights into the technical, policy, and economic aspects of 

hydrogen systems. Studies by Deloitte (2023) and Taghizadeh-Hesary et al. (2022) use LCOH and 

NPV modeling to evaluate hydrogen production costs under varying conditions, highlighting the 

influence of CAPEX, electricity prices, and financing terms. In parallel, research on machine learning 

(ML) has shown its value in improving forecasting accuracy and operational optimization. For 

instance, Mukelabai et al. (2024) apply ML to enhance performance forecasting and component 

modeling for renewable hydrogen systems, while Ukwuoma et al. (2024) demonstrate the benefits of 

hybrid ensemble models in biomass-based hydrogen production, offering improved prediction and 

explainability. These contributions underscore the potential of ML to optimize key system 

parameters, better align with fluctuating renewable inputs, and reduce production costs by fine-

tuning LCOH. However, a significant gap remains in comparative ML-based studies that forecast 

LCOH and NPV across countries with varying resource profiles and infrastructure maturity. 

Moreover, the limited use of regional datasets in hydrogen economic modeling constrains the 

generalizability of current frameworks. For example, while solar irradiance models have been used 

in specific cases such as India, few have been integrated into broader hydrogen production models 

to address renewable intermittency (Sareen et al., 2024). 

Machine learning significantly enhances the optimization of green hydrogen production 

processes, particularly in Solid Oxide Electrolysis Cells (SOECs). Models like XGBoost, Random 

Forest, and Deep Neural Networks (DNN) are employed to predict key performance indicators such 

as hydrogen production rates, current density, and Ohmic resistance. Notably, the XGBoost model 

has demonstrated high accuracy, achieving R² values exceeding 0.95 for hydrogen production rates 

and other relevant outputs. By integrating Genetic Algorithms (GA), the model further optimizes 

input features to maximize hydrogen production while minimizing energy consumption. 

Additionally, machine learning techniques improve cost-efficiency by fine-tuning parameters that 

directly affect the Levelized Cost of Hydrogen (LCOH). This ensures that the production process can 

adapt to dynamic variables like temperature, voltage, and gas flow rate, all of which are crucial when 

dealing with the fluctuating nature of renewable energy inputs, such as solar and wind (Yang et al., 

2025). 

In Latin America, the abundance of renewable energy sources—including wind, solar, and 

hydropower—presents a significant advantage for the production of green hydrogen. Nations such 

as Chile, Argentina, and Uruguay are particularly well-suited to become major exporters due to their 

access to affordable clean energy, which enables hydrogen generation via electrolysis. Nevertheless, 

these countries must navigate a range of barriers, including limited infrastructure, elevated 

production costs, and fragmented regulatory environments that hinder the expansion of green 

hydrogen initiatives. To address these obstacles, experts propose enhanced international 

collaboration, targeted investment in infrastructure, and the creation of transparent certification 

mechanisms to facilitate market growth (Torma, Németh, & Mendoza, 2024). It is also critical that 

hydrogen policies in the region incorporate principles of social inclusion and environmental fairness, 

ensuring that development benefits are distributed equitably and support a just transition (Dorn, 

2022). According to Gischler et al. (2023), fostering regional cooperation and promoting partnerships 

between the public and private sectors will be essential for Latin America to achieve sustainable and 

socially responsible green hydrogen development, thereby strengthening its potential to emerge as a 

global leader in this space. 
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To fill these gaps, this study introduces a comparative, machine learning–driven modeling 

framework to assess the techno-economic viability of green hydrogen in Costa Rica and the United 

Kingdom. It forecasts key indicators such as Levelized Cost of Hydrogen (LCOH) and Net Present 

Value (NPV) under varying scenarios of policy support, resource availability, and technology 

configuration. The framework leverages models like XGBoost, Random Forest, and SHAP values to 

improve predictive accuracy and explainability, while Monte Carlo simulations quantify uncertainty 

across parameters such as electricity cost and infrastructure maturity. This approach offers a robust 

way to assess the risk–return profiles of hydrogen investments in both developed and emerging 

markets. 

Accordingly, the study addresses three core questions:  

(1) What are the most influential factors affecting LCOH and NPV in each country? 

(2) How can machine learning improve the forecasting accuracy and interpretability of hydrogen 

economic models? 

(3) What comparative insights can inform investment and policy decisions across different 

development contexts? 

By answering these questions, the study positions green hydrogen not only as a climate 

mitigation tool, but also as a pathway for equitable, economically resilient energy transitions. The 

remainder of the paper is organized as follows: Section 2 reviews relevant literature; Section 3 details 

the methodological framework; Section 4 presents LCOH and NPV findings; Section 5 introduces 

machine learning models and sensitivity testing; and Section 6 offers a comparative discussion, 

identifies limitations, and outlines future directions. 

2. Literature Review 

2.1. The Role of Green Hydrogen in Global Decarbonization 

Green hydrogen is a critical tool for decarbonizing hard-to-abate sectors such as heavy transport, 

industry, and power generation. In Thailand, it could comprise 12.2% of the energy mix by 2050, 

driven by investments in electrolysis and renewables (Pradhan et al., 2024). Globally, demand may 

increase fifteenfold by 2050, with the EU alone requiring 1,300 GW of electrolyser capacity (Tarvydas, 

2022). Beyond emissions reduction, hydrogen also offers value in renewable energy storage and grid 

balancing, though deployment remains constrained by high costs and infrastructure needs. The 

climate effectiveness of hydrogen—particularly blue hydrogen—depends on stringent life-cycle 

emissions tracking. Concerns around methane leakage and carbon capture performance have 

triggered calls for global standards like ISO 19870 and mandatory third-party verification (Tatarenko 

et al., 2024). Additionally, public acceptance plays a critical role, with trust in technology and 

transparent communication proving more effective than consultation alone (Buchner et al., 2025). 

Despite a growing global project pipeline, especially in China, most low-emissions hydrogen 

initiatives remain unrealized. Achieving large-scale impact will require coordinated progress in 

policy, infrastructure, and demand, especially across emerging regions like Latin America 

(International Energy Agency, 2024). Countries such as the UK, EU members, Australia, and 

Argentina are advancing through comprehensive legislative strategies. Measures like the EU’s 

hydrogen premium auctions and the U.S. Inflation Reduction Act help close the cost gap with fossil 

fuels, improving hydrogen’s competitiveness (Bird & Bird LLP et al., 2024). While the UK prioritizes 

industrial-scale hydrogen production, countries like Costa Rica are pursuing decentralized models 

tailored to renewable resource strengths and existing infrastructure. 

2.2. Overview of Electrolysis Technologies (PEM, Alkaline, AEM, SOEC) 

Green hydrogen production relies on various electrolysis technologies, each with unique 

efficiencies, materials, and operational characteristics. Solid Oxide Electrolysis Cells (SOECs) operate 

at high temperatures (700–1000 °C), achieving up to 97.6% efficiency (HHV) and low energy use (2.5–

3.5 kWh/Nm³), especially when coupled with industrial waste heat or solar thermal energy. However, 
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thermal cycling and degradation currently limit their commercial viability (Norman et al., 2024). 

Alkaline Electrolysis (AEC) is the most mature and cost-effective technology ($1,080–1,296/kW), 

operating at 65–100 °C with 60–80% efficiency, though it responds poorly to variable renewable 

inputs. Proton Exchange Membrane (PEM) systems offer high hydrogen purity (99.999%) and fast 

response, but rely on expensive, scarce materials like Ir and Pt, pushing costs to $2,009–2,506/kW (El-

Shafie, 2023). Anion Exchange Membrane (AEM) electrolysis, a promising low-cost alternative, uses 

non-precious catalysts and reaches up to 75% efficiency at lower temperatures (50–70 °C). Early 

deployments by Ionomer and Versogen show potential, although stability under fluctuating loads 

remains a challenge (Bernat et al., 2024). 

For off-grid or decentralized applications, AEM and PEM are favored due to their flexibility, as 

demonstrated in remote deployments across Europe and Australia, including unitized regenerative 

fuel cells (URFCs) despite current efficiency limitations (Borm & Harrison, 2021). While SOECs may 

align with the UK’s industrial-scale ambitions, Costa Rica’s decentralized model benefits more from 

the adaptable, lower-cost PEM and AEM systems, which integrate efficiently with renewable sources 

such as wind and hydropower. 

Economic Modeling and LCOH Predictions 

Economic modeling of Levelized Cost of Hydrogen (LCOH) and Net Present Value (NPV) 

highlights the trade-offs between high-efficiency technologies like SOEC and more cost-effective 

options like PEM and AEM. The UK, with large-scale plans and access to offshore wind, might justify 

the higher costs of SOEC, while Costa Rica's decentralized hydrogen production strategy, utilizing 

abundant renewable resources, could benefit from PEM or AEM due to their lower capital costs and 

adaptability to variable energy sources. 

Table 1 summarizes techno-economic assessments for different renewable energy sources and 

electrolyzer technologies, offering a clearer picture of their economic viability in different contexts. 

Table 1. Economic Comparison of Hydrogen Production Systems. 

Electrolyzer 

Technology 

Renewable 

Energy 

Source 

Region LCOH 

(USD/kg) 

Key Findings Reference 

AWE Onshore 

Wind 

Uribia, 

Colombia 

7.00 Lowest LCOH using AWE with 

onshore wind. Offshore wind has 

higher LCOH. 

Velasquez-

Jaramillo, García, & 

Vasco-Echeverri 

(2024) 

AWE Solar PV Spain 3.21 - 4.10 LCOH varies significantly based 

on PPA pricing and policy 

support. 

Matute et al. 

(2023b) 

PEM Biomass 

Gasification 

- 2.94 - 3.32 PEM electrolysis efficiency 

improves with better system 

design. 

Naqvi et al. (2024) 

AWE, PEM Wind + Solar 

PV 

Brazil 5.29 (AWE), 

5.92 (PEM) 

Hybrid renewable system offers 

significant LCOH reduction 

potential. 

Pinheiro et al. 

(2024) 
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PEM Solar - 2.0 - 3.0 Sensitivity to financial and 

technical variables; higher 

CAPEX leads to higher LCOH. 

Rezaei, Akimov, & 

Gray (2024) 

PEM Wind Finland $1.08/kg Wind integration reduces LCOH 

under high-price market 

conditions. 

Javanshir et al. 

(2024) 

Hybrid (Solar 

PV, Wind, ORC) 

Solar, Wind, 

Geothermal 

- $3.1/kg Hybrid renewable systems yield 

the lowest LCOH; ORC improves 

efficiency. 

Baral & Šebo (2024) 

Economic modeling shows that LCOH depends heavily on electrolyzer type and renewable 

energy source. SOEC suits large-scale projects with stable inputs like offshore wind, justifying higher 

CAPEX. In contrast, PEM and AEM are better for decentralized, small-scale systems due to lower 

costs and compatibility with variable renewables. These results highlight the importance of aligning 

technology choice with local resources, infrastructure, and economic conditions. 

2.3. Key Metrics: LCOH, NPV, Hydrogen Yield, Storage Cost 

Evaluating green hydrogen viability hinges on key indicators such as Levelized Cost of 

Hydrogen (LCOH), Net Present Value (NPV), hydrogen yield, and storage costs. In Brazil, wind-

powered alkaline electrolysis for urban buses achieved LCOH values between $25–56/MWh and NPV 

as high as $21.8 million, with IRR reaching 90%—even when hydrogen was priced at zero—due to 

revenue from oxygen sales and surplus electricity (Alcantara et al., 2025). A review of 334 European 

projects found average green hydrogen costs at $5.02/kg, outperforming grid-based “yellow” 

hydrogen at $6.80/kg. LCOH from onshore wind reached as low as $2.50/kg, and economies of scale 

led to cost reductions of 0.20% per 1% increase in capacity (Weißensteiner, 2025). 

Global trade models identified ammonia as the most cost-effective export vector from Chile to 

Rotterdam, unless reconversion was required, with delivered hydrogen prices between $3.37–

$4.77/kg. Storage in isolated systems could add up to $0.25/kg, emphasizing the need for dynamic, 

scenario-based planning rather than static LCOH benchmarks (Aldren et al., 2025). In South Africa, 

a solar-driven system produced 250 kg/day at $2.12/kg LCOH, though storage costs remained high 

(918 ZAR/kg). Despite this, storage enabled long-duration supply in off-grid contexts, highlighting 

the importance of integrated system design (Lebepe et al., 2025). 

In Indonesia, cost analysis across five cities revealed extreme variation—ranging from $0.48/kg 

in Ambon to $82/kg in Kupang—driven by disparities in renewable resources and infrastructure. 

Hybrid systems offered the best trade-off between yield and cost, and a 20% component price 

increase could raise LCOH by up to 30%, underscoring the importance of efficient electrolyser design 

and supply chain resilience (Prasetyo et al., 2025). 

2.4. Comparative Context: UK and Costa Rica 

Renewable Energy Profiles of the UK and Costa Rica 

Costa Rica generates 99% of its electricity from renewables—mainly hydro (74%), with 

geothermal (13%), wind (11%), and solar (1%)—creating a stable year-round supply from flexible, 

dispatchable sources. Between 2016 and 2021, renewable energy use rose significantly, boosting 

energy self-sufficiency to 54%. These conditions support green hydrogen production from off-peak 

hydro and wind, though challenges remain in grid balancing and matching supply with demand 

across regions (IRENA, 2024). 
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Meanwhile, the UK reached 50.5% renewable electricity in Q3 2024, led by wind (especially in 

Scotland), solar, and biomass. Its decarbonizing grid, bolstered by interconnector capacity and 

reduced fossil generation, offers strong potential for hydrogen production from surplus renewables. 

Still, scaling hydrogen will require greater offshore wind resilience, energy storage, and agile grid 

management (DESNZ, 2024a). 

2.5. National Hydrogen Strategies and Targets 

Costa Rica’s 2023 National Green Hydrogen Strategy targets 18–20 kton/year hydrogen demand 

by 2030 and 420 kton/year by 2050, with electrolysis capacity of 0.2–1 GW and LCOH as low as 

$1.24/kg from wind. The strategy prioritizes domestic use due to high electricity costs and limited 

infrastructure, supported by public-private efforts like Ad Astra Rocket and Cavendish S.A., and 

donors such as GIZ and IADB. Political instability poses risks to continuity and financing (Stamm et 

al., 2024). A flagship project, the Ad Astra Hydrogen Transportation Ecosystem, integrates wind and 

solar with PEM electrolysis, piloting hydrogen mobility and innovative models like leasing and off-

take agreements in Guanacaste (Ad Astra, 2024). 

The UK’s Hydrogen Strategy, launched in 2021 and updated in 2024, targets 10 GW low-carbon 

hydrogen by 2030 (split between green and blue), aiming to produce up to 64 TWh annually. It 

supports sectors like transport, heating, and power through mechanisms like the Net Zero Hydrogen 

Fund and the Low Carbon Hydrogen Standard. Regional efforts, such as Scotland’s Orkney BIG HIT, 

contribute to deployment. The sector could generate £7 billion GVA and 64,000 jobs by 2030, though 

challenges remain in policy coordination and infrastructure scaling, especially for storage and 

distribution (DESNZ, 2024b; UK Government, 2021). 

2.6. Economic Modeling Approaches and Influencing Factors 

Green hydrogen project modeling integrates cost, efficiency, and risk analysis to evaluate 

viability. In Colombia, PEM and AWE electrolysis powered by various renewables yielded LCOH 

between $7.02–$9.69/kg, with capacity factor, CAPEX, and financing as key cost drivers; offshore 

wind remained economically unviable (Velasquez-Jaramillo et al., 2024). Spain’s PPA-backed alkaline 

electrolysis projects showed electricity prices contributed over 70% of LCOH ($3.47–$4.43/kg), with 

system sizing and grants (≥30%) boosting NPV and IRR (Matute et al., 2023b). 

A comparative study found LCOH ranging from $2.94 to $4.11/kg across advanced technologies, 

with PEM having the lowest CAPEX (~$600/kW), and cost influenced by electricity prices, stack life, 

and learning curves (Naqvi et al., 2024). In Brazil, a 100 MW hybrid system showed alkaline 

electrolysis outperformed PEM financially, with IRR near 29% and fast payback under $7/kg pricing 

(Pinheiro et al., 2025). 

Australia’s solar-powered PEM system emphasized the impact of financial structuring—CAPEX 

comprised 80% of base cost, and LCOH ($6.36/kg) was highly sensitive to capital costs and subsidies 

(Rezaei et al., 2024). In Finland, flexible PEM systems switching between hydrogen production and 

grid export reduced LCOH to $2.16–$0.65/kg, with strong NPV/IRR under variable markets 

(Javanshir et al., 2024). 

Hybrid configurations using solar, wind, and ORC tech showed LCOH as low as $3.1/kg in 2023, 

with projections down to $1.46/kg by 2050 due to tech gains and cost learning (Baral & Šebo, 2024). 

Overall, regional resource differences (e.g., UK’s offshore wind vs. Costa Rica’s hydro) significantly 

shape LCOH/NPV, and Monte Carlo simulations are widely used to capture uncertainties in input 

variables. 

2.7. Regression Models for Cost Prediction 

Machine learning (ML) has become central to green hydrogen cost modeling, particularly 

through regression techniques. While not ML-based, IRENA (2021) identified key LCOH drivers—

CAPEX, electricity price, efficiency, and deployment scale—laying the foundation for future 
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predictive models. Advanced ML applications by Kabir et al. (2023) used algorithms like KNN and 

Random Forest to optimize hydrogen production, achieving high accuracy (R² = 0.948) and 

highlighting predictors like temperature and voltage. Similarly, Kim et al. (2022) applied CART® 

models to nuclear-powered hydrogen systems, identifying top cost influencers and offering reliable 

LCOH forecasts (e.g., $2.77/kg). 

A broader review by Bassey & Ibegbulam (2023) emphasized the importance of data 

preprocessing and called for the adoption of explainable AI tools for transparency. Kwon et al. (2024) 

used neural networks with 71 inputs to forecast hydrogen demand, achieving R² = 0.9936 and guiding 

investment decisions with an LCOH of $5.63/kg. Allal et al. (2025) confirmed that models like 

Random Forest and SHAP improve cost forecasting and policy planning by revealing variable 

importance. 

Despite progress, gaps remain—few studies compare multiple ML algorithms under uniform 

conditions, and limited regional datasets hinder generalizability. Collaborative, open-access ML 

frameworks are needed to improve model transferability and scalability. Overall, ML-driven 

planning aligns with national strategies: the UK emphasizes industrial-scale infrastructure, while 

Costa Rica focuses on decentralized renewables. Tools like Random Forest and XGBoost, combined 

with SHAP values, offer interpretability and precision in modeling cost dynamics across diverse 

hydrogen contexts. 

3. Methodology 

3.1. Spatial Resource Assessment 

This study conducts a spatial analysis of wind and solar energy resources in Costa Rica and the 

United Kingdom by leveraging geospatial raster datasets and administrative boundary shapefiles. 

Python (v3.11) was used as the primary analytical platform, employing libraries such as rasterio, 

geopandas, shapely, and numpy. For each country, high-resolution raster layers representing wind 

speed or global horizontal irradiance (GHI) were clipped using province- or country-specific 

polygons to isolate regional resource characteristics. 

Zonal Statistics Extraction 

To assess solar and wind potential, raster datasets were spatially masked and clipped. The 90th 

percentile value of the dataset, representing the threshold for identifying high-potential zones, was 

computed using: 

 

● T90: The 90th percentile threshold of the data values. 

● X: The vector of valid raster values (e.g., wind speed or solar irradiance) for a given region. 

Pixels with values equal to or exceeding T90 were classified as part of the top 10% high-

performance zone: 

 

● Xtop10%: Subset of data values representing the top 10%. 

● xi: Individual raster values within the dataset X 

3.2. Offshore Potential Mapping 

To delineate offshore resource zones, a 20 km buffer was generated around each administrative 

unit (province or country section). Offshore areas were calculated by subtracting the original 

landmass from its buffered version: 
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● Aoffshore: The resulting offshore area geometry. 

● Aregion: The original land-based administrative area. 

● Buffer(Aregion,20km): Geometric expansion by 20 kilometers. 

These areas were rasterized and used to isolate marine wind or solar data for offshore analysis. 

3.3. Wind Power Density Estimation 

Wind energy potential was quantified by converting wind speed into wind power density using 

the kinetic energy formula: 

 

● P: Wind power density (W/m²). 

● ρ: Air density (assumed 1.225 kg/m³ at sea level). 

● v: Wind speed (m/s). 

This equation reflects the theoretical amount of kinetic energy available per square meter and 

assumes ideal conditions with no turbine losses. 

3.4. Solar Irradiance Analysis 

Solar resource potential was assessed using Global Horizontal Irradiance (GHI) datasets. High-

performance solar zones were isolated using the 90th percentile method: 

 

● T90solar: The 90th percentile of GHI values in a given region. 

● GHI: Global Horizontal Irradiance values (in kWh/m²/day). 

The top 10% solar performance zone was similarly defined as: 

 

● GHItop10%: Set of high-performing solar pixels. 

● gi: Individual irradiance values in the dataset. 

3.5. High-Potential Zone Delineation 

A consistent approach was used to extract high-resource areas for both wind and solar datasets. 

The general form of the percentile-based extraction is: 

 

● Xtop10%: High-performing data subset. 

● xi: Individual data value. 

● X: Complete dataset for a given spatial zone. 

These zones were retained for further modeling of hydrogen production costs and infrastructure 

suitability. 
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3.6. Hydrogen LCOH Modeling 

This section details the methodology used to estimate the Levelized Cost of Hydrogen (LCOH) 

for both the UK and Costa Rica. LCOH serves as a critical metric to assess the cost-effectiveness of 

hydrogen production from renewable sources. The approach integrates annualized capital 

expenditures (CAPEX), operational expenditures (OPEX), electricity prices, and electrolyzer 

efficiency, while accounting for country-specific economic and technical conditions. 

3.6.1. UK LCOH Model Inputs 

For the UK, the Levelized Cost of Hydrogen (LCOH) was calculated using a set of input 

parameters summarized in Table 2, which reflects current and projected techno-economic conditions 

in the UK’s hydrogen sector. 

The LCOH was estimated based on annualized CAPEX, OPEX, electricity prices, and 

electrolyzer performance. The formula used is: 

 

where: 

 

The Capital Recovery Factor (CRF)  is calculated using: 

 

where: 

● r=0.06 (cost of capital) 

● n=20 years (plant lifetime) 

Table 2. UK Hydrogen LCOH Modeling Inputs. 

Category Variable Value/Description Notes Reference 

CAPEX Electrolyzer Cost $2,990/kW For multi-MW 

scale systems 

EHO, 2025 

Electricity 

Price 

Avg Wholesale 

Electricity Price 

$93.83/MWh Conversion of 

€86.88 to USD (1 

GBP = 1.29 USD) 

Statista, 

2025 

Operating 

Hours 

Operating Hours 

per Year 

4,000 hours Based on cost-

optimal window 

selection 

EHO, 2025 

Cost of Capital Capital Recovery 

Factor (CRF) 

6% Used in 

NPV/LCOH 

projections 

EHO, 2025 
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OPEX (Fixed) Other OPEX $0.02 per kg H₂ Includes 

maintenance, 

stack 

replacement 

EHO, 2025 

Stack 

Degradation 

Stack Performance 

Decline 

0.0012 (1.2‰/h) Impacts 

performance 

decline over time 

EHO, 2025 

Stack 

Durability 

Lifetime of 

Electrolyzer Stack 

80,000 hours Lifetime of stack 

under nominal 

conditions 

EHO, 2025 

Grid Fees and 

Taxes 

Grid Fees and 

Taxes 

~€100M (raw total) ($108 

million) 

Included only 

when grid-

connected (e.g., 

offshore wind) 

EHO, 2025 

Investment 

Strategy 

Public-private 

investment 

framework 

Blended finance, PPPs, 

and £960M ($1.238 billion 

USD) Green Industries 

Growth Accelerator 

(GIGA) fund 

UK DESNZ, 2024 UK 

DESNZ, 

2024 

Funding 

Volume 

Green Hydrogen 

Project Budget 

£960 million ($1,238.4 

million) (GIGA Fund) + 

private capital (£400M 

($516 million) in HAR1) 

UK DESNZ, 2024 UK 

DESNZ, 

2024 

Project 

Duration 

Green Hydrogen 

Project 

2024–2030 UK DESNZ, 2024 UK 

DESNZ, 

2024 

Funding 

Mechanism 

Government 

support schemes 

Net Zero Hydrogen 

Fund, Hydrogen 

Allocation Rounds 

(HAR1, HAR2), R&D tax 

reliefs 

UK DESNZ, 2024 UK 

DESNZ, 

2024 

Climate 

Impact 

CO₂ mitigation 

(project/lifetime) 

70,000+ tCO₂e (project); 

650,000 tCO₂e (lifetime 

potential) 

UK DESNZ, 2024 UK 

DESNZ, 

2024 

Private Sector 

Investment 

Private financial 

capacity 

£18 billion ($23.22 billion 

USD) from UK 

Infrastructure Bank 

UK DESNZ, 2024 UK 

DESNZ, 

2024 
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(UKIB) for hydrogen, 

CCUS, storage projects 

3.6.2. Costa Rica LCOH Model Inputs 

The Levelized Cost of Hydrogen (LCOH) for Costa Rica was estimated using the same modeling 

approach and formulas described in Section 3.6.1, including the Capital Recovery Factor (CRF). 

Country-specific inputs, detailed in Table 3, were adapted to reflect Costa Rica’s unique techno-

economic context—particularly its lower infrastructure costs, reduced electricity rates, and favorable 

financing conditions. 

Table 3. Costa Rica Hydrogen Cost Modeling Inputs. 

Category Variable Value/Description Notes Reference 

CAPEX Initial Investment 

(Fase 3) 

$2,000,000 3 MWe system, 

300 kg H₂/day 

Ad Astra, 2018 

OPEX Water Cost $2.88/m³ Industrial rate Ad Astra, 2018 

OPEX Electricity Cost $0.15/kWh Industrial rate, 

off-peak rate 

(Tico Times, 2024) 

Revenue H₂ Selling Price $3.50/kg H₂ Projected price 

for viability 

Ad Astra, 2018 

Revenue O₂ Selling Price $5.01/kg O₂ 220 cf tank = 

¢26,000 CRC 

Ad Astra, 2018 

Output H₂ Daily 

Production 

300 kg/day Fase 3 projection Ad Astra, 2018 

System 

Scale 

Electrolyzer 

Capacity 

3 MWe Includes 

compression 

and storage 

Ad Astra, 2018 

Efficiency Electrolyzer 

System (WtT) 

70 kWh/kg H₂ Based on 

continuous 

operation 

Ad Astra, 2018 

Efficiency Bus Fuel 

Efficiency (WtW) 

8.86 km/kg H₂ Operational 

demonstration 

Ad Astra, 2018 

Projected 

Return 

Internal Rate of 

Return (IRR) 

3.7% 5-year payback Ad Astra, 2018 

Projected 

Return 

Net Present 

Value (NPV) 

~ $500 USD Marginal 

without support 

Ad Astra, 2018 
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Financing Interest Rate 5% 20-year 

assumed term 

Ad Astra, 2018 

Investment 

Strategy 

Public-private 

investment 

framework 

Blended finance, PPPs, 

international donors 

MINAE, 2019 GIZ, 2025 

Funding 

Volume 

Green Hydrogen 

Project Budget 

EUR 25 million GIZ, IFC, 

MINAE, SEPSE, 

Hidrógeno 

Verde S.A. 

GIZ, 2025 

Project 

Duration 

Green Hydrogen 

Project 

2024–2030 GIZ, 2025 GIZ, 2025 

Climate 

Impact 

Direct CO₂ 

mitigation 

(project/lifetime) 

70,303 tCO₂e (project); 

650,000+ tCO₂e (lifetime 

tech potential) 

GIZ, 2025 GIZ, 2025 

Fiscal 

Incentives 

Free Trade Zone 

Regime 

Up to 15 years income 

tax exemption + 

VAT/import 

duty/municipal tax 

exemptions 

BLP Legal, 2024 BLP Legal, 2024 

3.7. Regional Adjustments for Costa Rica and the UK 

For both Costa Rica and the UK, the LCOH is further adjusted based on regional variations in 

wind and solar resources. These adjustments reflect the varying resource availability across regions 

within each country, impacting the efficiency and cost of hydrogen production. The adjustments are 

based on regional wind power densities (for wind energy) and Global Horizontal Irradiance (GHI) 

values (for solar energy). 

Formula for Regional Adjustments 

 

This formula is used to adjust the electricity cost based on both solar and wind energy potential 

in each region. 

● GHI (Global Horizontal Irradiance) is used for solar resources. 

● Wind Power Density is calculated using the formula P=0.5×ρ×v3 where ρ=1.225 kg/m³ (air density 

at sea level) and v is the wind speed (in m/s). 

These adjustments help capture the regional differences in resource availability and reflect their 

impact on the hydrogen production cost integrated in Supplementary Tables 1 and 2. 

The final LCOH for each region is calculated by adding the adjusted electricity cost, annualized 

CAPEX per kg, and fixed OPEX. This provides the estimated cost of producing one kilogram of 

hydrogen from renewable resources, taking into account both financial and technical factors. 
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3.8. Economic Calculations 

This section applies the previously defined modeling framework to evaluate the economic 

performance of hydrogen production in Costa Rica and the United Kingdom, focusing on two core 

indicators: Levelized Cost of Hydrogen (LCOH) and Net Present Value (NPV). LCOH results are 

directly derived from the methodology described in Section 3.6, with regional comparisons reflecting 

local cost drivers, renewable energy availability, and policy incentives. These metrics integrate capital 

expenditures (CAPEX), operational expenditures (OPEX), electricity costs, and hydrogen output over 

the system's lifetime. Country-specific modeling assumptions, including fiscal incentives and 

efficiency degradation, are detailed in Table 4 (UK) and Table 5 (Costa Rica). 

Net Present Value (NPV) 

The Net Present Value (NPV) assesses the overall profitability of hydrogen projects by 

discounting future net cash flows—defined as revenues minus costs—over a 20-year project lifetime. 

It is calculated as: 

 
where: 

● Revenuet=H2 Pricet×Annual Production. 

● Costt=CAPEXper kg×CRF+OPEXfixed+Electricity Costper kg 

● r is the discount rate, and n is the project duration in years. 

To capture uncertainty in hydrogen prices, electricity costs, and system efficiency, a Monte Carlo 

simulation with 1,000 iterations was performed. This probabilistic approach enables a more nuanced 

understanding of project risk and economic resilience under varying policy and market conditions. 

By combining deterministic LCOH modeling with stochastic NPV simulation, this section 

provides a comprehensive economic perspective on hydrogen viability across diverse geographies 

and investment environments. 

Table 4. Key Quantitative Data for UK Hydrogen Production, Pricing, and Financial Modeling. 

Data Type Value or Range Reference 

Hydrogen Price Range £112/MWh ($144.48/MWh) (2025) to 

£71/MWh ($91.59/MWh) (2050) 

UK Hydrogen Strategy, 

2021 

Electrolyzer Efficiency Loss 0% to 2% UK Hydrogen Strategy, 

2021 

Electricity Price Simulation £0.04 ($0.0516/kWh) to £0.06 

($0.0774/kWh) per kWh 

UK Hydrogen Strategy, 

2021 

CAPEX Reduction 15% (due to fiscal incentives) UK Hydrogen Strategy, 

2021 

Monte Carlo Simulation NPV 1,000 simulations with varying 

inputs 

UK Hydrogen Strategy, 

2021 

Revenue Simulation Range $3.00 to $4.00 per kg of H2 UK Hydrogen Strategy, 

2021 
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Table 5. Key Quantitative Data for Costa Rica Hydrogen Production, Pricing, and Financial Modeling. 

Category Variable Value/Description Reference 

Fiscal Incentives Adjusted CAPEX 

(due to incentives) 

15% reduction in CAPEX MINAE, 2025 

Revenue H₂ Price Simulation Between $3.00 to $4.00 per kg H₂ MINAE, 2022 

Electricity Price Electricity Cost 

Simulation 

Between $0.04 to $0.06 per kWh MINAE, 2022 

Electrolyzer 

Efficiency Loss 

Efficiency Decline 

Over Time 

Efficiency degradation over 20 years Hydrogen 

Optimized, 

2025 

NPV Simulation Monte Carlo 

Simulation 

Simulated over 1000 runs with 

varying hydrogen and electricity 

prices 

Custom 

Simulation 

By integrating these formulas and tables, the methodology allows for the calculation of the 

LCOH and NPV for hydrogen production in both Costa Rica and the UK. These metrics serve as key 

tools for assessing the economic feasibility and long-term profitability of green hydrogen investments 

in these countries. 

3.9. Machine Learning-Driven Economic Forecasting for Green Hydrogen 

Given the limitations of traditional economic modeling in capturing complex interactions under 

uncertain policy and market conditions, this section explores the application of machine learning 

(ML) to improve forecasting accuracy and interpretability of green hydrogen production costs. 

A Random Forest Regressor was selected for its ability to model nonlinear relationships between 

input variables and the Levelized Cost of Hydrogen (LCOH). Separate supervised regression models 

were developed for Costa Rica and the UK, enabling scenario-based analysis under varying techno-

economic conditions. 

Model Architecture 

● Costa Rica model inputs included: CAPEX, electricity price, OPEX, and operating hours 

● UK model inputs included all Costa Rican inputs, plus: degradation rate and a binary subsidy 

indicator 

All variables were normalized using StandardScaler, and hyperparameter tuning was 

performed via GridSearchCV, optimizing tree depth, number of estimators, and minimum samples 

per split. 

Cross-validation was used to assess model stability: 

● 2-fold cross-validation for Costa Rica 

● 5-fold cross-validation for the UK 

To enhance interpretability, the model employed SHAP (SHapley Additive exPlanations) to 

quantify the relative importance of each feature in driving LCOH predictions. 
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4. Sensitivity Analysis for Green Hydrogen Economic Models 

A two-dimensional sensitivity analysis was conducted to assess how variations in CAPEX, 

electricity price, and OPEX affect the Levelized Cost of Hydrogen (LCOH) and Net Present Value 

(NPV) for both Costa Rica and the UK. This analysis was designed to identify the most influential 

economic drivers and evaluate project feasibility under diverse market and policy conditions. 

The modeling approach varied two input parameters at a time while holding the third constant. 

For Costa Rica, nested loops were implemented to iterate combinations of CAPEX and electricity 

price, with OPEX held fixed. For the UK model, a modular function enabled a consistent structure 

for testing parameter ranges and calculating corresponding LCOH and NPV values. 

The outputs were used to generate contour plots that visualize the relationship between key 

variables and economic performance metrics. These visualizations—presented in later sections—

support a more detailed understanding of model sensitivity and provide a foundation for identifying 

effective policy levers and investment strategies. 

5. Results 

5.1. Wind and Solar Energy Potential in Costa Rica 

A spatial analysis of Costa Rica’s wind and solar resources reveals substantial regional variation, 

underscoring the country's strong potential for renewable energy generation. As illustrated in Figure 

1, Guanacaste emerges as the most promising region for both wind and solar energy. The mean 

onshore wind speed in Guanacaste is 6.59 m/s, with peaks reaching 19.17 m/s; its top 10% wind zones 

average 11.21 m/s. By contrast, Limón records the lowest wind speeds, with a mean of 2.40 m/s, 

indicating limited wind energy potential. Offshore wind speeds are relatively uniform across coastal 

provinces, averaging 4.57 m/s. 

For solar energy, Guanacaste again leads with the highest mean Global Horizontal Irradiance 

(GHI) at 2005.27 kWh/m²/day, and the top 10% of its solar zones reach 2113.09 kWh/m²/day. 

Puntarenas follows with a mean GHI of 1885.08 kWh/m²/day, while Cartago and San José display 

lower solar potential, at 1612.32 and 1747.36 kWh/m²/day, respectively. 

 

Figure 1. Wind and Solar Maps of Costa Rica. Caption: This figure illustrates the spatial distribution of wind 

speed (panel a) and solar irradiance (GHI) (panel b) across Costa Rica. Panel (a) shows wind speeds ranging 

from 2–12 m/s, with Guanacaste exhibiting the strongest values. Panel (b) presents solar irradiance from 1200–
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2200 kWh/m²/day, again with Guanacaste recording the highest GHI. Both maps include provincial boundaries 

to support geographical context and aid in identifying priority areas for renewable energy development. 

In summary, Guanacaste clearly stands out as the leading region for both wind and solar 

deployment, positioning it as a focal point for renewable energy investment in Costa Rica. 

5.2. Solar and Wind Energy Potential Across the United Kingdom and Northern Ireland 

The solar irradiance (GHI) values across the four regions of the United Kingdom show regional 

variations in solar potential. Figure 2 displays the solar potential in England, Wales, Scotland, and 

Northern Ireland. In England (Figure 2a), the mean GHI is 2.73 kWh/m²/day, with the highest 

recorded value of 3.17 kWh/m²/day and the lowest at 1.64 kWh/m²/day. The top 10% of solar zones 

in England have a threshold of 2.91 kWh/m²/day, with a mean of 2.98 kWh/m²/day. In Wales (Figure 

2b), the mean GHI is slightly lower at 2.67 kWh/m²/day, with values ranging from 1.57 kWh/m²/day 

to 3.00 kWh/m²/day. The top 10% solar zones in Wales have a threshold of 2.83 kWh/m²/day and a 

mean of 2.89 kWh/m²/day. Scotland (Figure 2c) shows a mean GHI of 2.35 kWh/m²/day, with the 

minimum at 1.18 kWh/m²/day and the maximum at 2.76 kWh/m²/day. The top 10% solar zones in 

Scotland have a threshold of 2.50 kWh/m²/day and a mean of 2.56 kWh/m²/day. Finally, Northern 

Ireland (Figure 2d) has a mean GHI of 2.44 kWh/m²/day, ranging from 1.97 kWh/m²/day to 2.66 

kWh/m²/day, with the top 10% solar zones having a threshold of 2.50 kWh/m²/day and a mean of 

2.56 kWh/m²/day. 

 

Figure 2. Solar Potential (GHI) for England, Wales, Scotland, and Northern Ireland. Caption: This figure displays 

the Global Horizontal Irradiance (GHI) for four regions of the United Kingdom: England, Wales, Scotland, and 

Northern Ireland. Each region’s solar potential is shown in a separate subplot, labeled (a) for England, (b) for 

Wales, (c) for Scotland, and (d) for Northern Ireland, with individual colorbars representing the average daily 

solar irradiance (kWh/m²/day). The plasma colormap is used to visualize varying levels of solar energy intensity, 

with brighter regions indicating higher irradiance levels. These maps provide valuable insights for assessing the 

regional solar potential essential for renewable energy planning. 

In terms of wind speed at 100m height, Figure 3 illustrates the wind potential for the same four 

regions. For England (Figure 3a), the average wind power density is 456.21 W/m², with a maximum 

value of 2725.38 W/m² and a minimum of 55.03 W/m². The top 10% wind zones in England have a 

threshold of 612.94 W/m², with a mean of 655.79 W/m². Wales (Figure 3b) shows onshore wind speeds 

with a mean of 8.57 m/s and a maximum of 16.32 m/s. The offshore wind speed in Wales is slightly 

higher, with a mean of 9.20 m/s and a maximum of 13.72 m/s. The top 10% wind zones in Wales have 

a threshold of 9.90 m/s and a mean of 10.23 m/s. In Scotland (Figure 3c), the onshore wind speed has 

a mean of 8.66 m/s, with a maximum of 18.78 m/s. Offshore wind speeds in Scotland are higher, with 

a mean of 9.92 m/s and a maximum of 16.45 m/s, and the top 10% wind zones show a threshold of 

10.21 m/s and a mean of 11.20 m/s. For Northern Ireland (Figure 3d), the onshore wind speed is 9.00 
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m/s on average, with a maximum of 16.45 m/s, while offshore wind speeds have a mean of 9.33 m/s 

and a maximum of 17.20 m/s. The top 10% wind zones in Northern Ireland show a threshold of 9.78 

m/s and a mean of 10.34 m/s. 

 

Figure 3. Wind Speed (100m Height) for England, Wales, Scotland, and Northern Ireland. Caption: Figure 3 

presents the wind speed data at 100 meters height across England, Wales, Scotland, and Northern Ireland. Each 

subplot, labeled (a) for England, (b) for Wales, (c) for Scotland, and (d) for Northern Ireland, shows the wind 

speed distribution with individual colorbars. The viridis colormap is used to visualize wind speed variations, 

where brighter areas indicate stronger wind speeds. These maps are essential for evaluating the feasibility of 

onshore wind energy generation, highlighting regions with higher wind potential. 

These results indicate significant variability in both solar and wind potential across the regions. 

The data highlights that offshore areas (such as those in Wales, Scotland, and Northern Ireland) tend 

to have stronger wind speeds, which could be ideal for offshore wind energy projects. Similarly, the 

solar potential across all regions varies slightly, with England and Wales showing the highest solar 

irradiance values. 

5.3. LCOH Estimations for Costa Rica and the United Kingdom 

Hydrogen production costs, expressed as the Levelized Cost of Hydrogen (LCOH), were 

evaluated across multiple locations in Costa Rica and the United Kingdom, incorporating local 

renewable energy potentials, as well as region-specific CAPEX, OPEX, and electricity pricing. The 

results indicate marked spatial disparities, with cost variations largely influenced by factors such as 

solar irradiance, wind resource availability, and the degree of existing infrastructure development. 

In Costa Rica, Guanacaste emerged as the most economically favorable region, with the lowest 

LCOH of $1.03 per kg H₂, attributed to its exceptional wind and solar resource availability. This is 

followed by Puntarenas at $1.66 and San José at $2.38 per kg H₂. Regions such as Limón ($2.90), 

Cartago ($3.09), Alajuela ($2.78), and Heredia ($2.84) exhibit comparatively higher LCOH due to less 

favorable renewable profiles or slightly increased infrastructure and energy costs. Across Costa Rica, 

solar adjustments showed minimal impact on final LCOH values, indicating the dominance of 

baseline techno-economic parameters in driving cost outcomes. 

In the United Kingdom, Northern Ireland recorded the lowest LCOH at $2.74 per kg H₂, 

primarily due to strong offshore wind potential. Scotland and Wales followed closely with LCOH 

estimates of $2.92 and $2.96, respectively. England, by contrast, presented the highest cost, with an 

LCOH of $3.17 per kg H₂. The influence of offshore wind resources is evident, as regions with greater 

access to these resources show noticeably lower production costs. Solar adjustments produced 

marginal reductions across most UK regions, further narrowing the cost gap but without overturning 

the regional hierarchy in cost competitiveness. 

These regional results are visualized in Figure 4, which compares LCOH values across Costa 

Rica and the UK using color-coded bar charts to highlight spatial cost differences. 
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Figure 4. LCOH Comparison for Costa Rica and the United Kingdom. Caption: Figure 4 presents the Levelized 

Cost of Hydrogen (LCOH) for various regions in Costa Rica and the United Kingdom. Panel (a) shows the LCOH 

for Costa Rica, where regions like Guanacaste and Puntarenas exhibit the lowest costs, while panel (b) displays 

the LCOH for the United Kingdom, with Northern Ireland showing the most favorable economics. The color 

scale reflects the variations in LCOH across both countries, with brighter colors indicating higher costs. These 

results provide insight into regional cost differences for hydrogen production, valuable for investment and 

policy decisions in green hydrogen development. 

These findings reinforce the critical role of local renewable energy potential in shaping hydrogen 

production costs. While Costa Rica offers lower baseline costs due to abundant resources and lower 

energy prices, the UK’s offshore wind advantage plays a pivotal role in enhancing its 

competitiveness. Such spatial cost insights are essential for guiding targeted investment, 

infrastructure planning, and policy incentives in the global transition to green hydrogen. 

5.4. NPV Comparison for Hydrogen Production in Costa Rica and the United Kingdom 

The Net Present Value (NPV) estimates for hydrogen production highlight significant contrasts 

in the economic potential between Costa Rica and the United Kingdom. As shown in Figure 5, Costa 

Rica achieves a higher NPV of approximately $4.76 million, driven by lower electricity costs and the 

availability of abundant renewable resources, especially solar and wind. In contrast, the United 

Kingdom's NPV is $3.20 million, reflecting the impact of higher electricity prices and greater capital 

expenditures associated with offshore wind infrastructure. 

This comparative result demonstrates that, under a consistent modeling framework and 

investment scenario, Costa Rica presents a more favorable economic environment for green hydrogen 

production. The elevated NPV in Costa Rica signals stronger return on investment, largely enabled 

by efficient energy inputs and reduced operational costs. Meanwhile, the UK's resource structure and 

cost profile contribute to tighter margins, though the market remains promising with policy-driven 

support. 
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Figure 5. Net Present Value (NPV) Comparison between Costa Rica and the United Kingdom. Caption: This 

heatmap compares the Net Present Value (NPV) of hydrogen production for Costa Rica and the United Kingdom 

using a consistent economic model. The visualization applies the Viridis colormap, where color intensity reflects 

the magnitude of the NPV for each country. Costa Rica displays a more intense color, corresponding to its higher 

NPV ($4.76M), while the United Kingdom appears with a less intense tone, aligned with its lower NPV ($3.20M). 

The accompanying colorbar contextualizes the differences in value intensity across the two nations. 

These results underscore the strategic influence of local energy economics and renewable 

resource availability in shaping hydrogen investment potential. While the UK remains viable, 

particularly with support for offshore wind, Costa Rica’s cost-efficient, renewables-rich energy 

landscape positions it as a leading candidate for green hydrogen development under the current 

assumptions. 

5.5. Machine Learning Model Performance Comparison 

To assess the predictive performance of the machine learning models used to estimate the 

Levelized Cost of Hydrogen (LCOH) in Costa Rica and the United Kingdom, three core error metrics 

were analyzed: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Cross-Validated MSE. 

These metrics quantify both the accuracy and generalization ability of the trained Random Forest 

models and are summarized in Figure 6. 

Costa Rica’s model exhibited lower errors across all evaluated metrics, with a MAE of 0.301, 

MSE of 0.091, and a Cross-Validated MSE of -0.076, indicating relatively strong performance despite 

the limited dataset. However, the R² score could not be defined due to the small number of test 

samples, highlighting a constraint in evaluating model generalization. In contrast, the UK model 

achieved a higher MAE of 0.416, MSE of 0.296, and a Cross-Validated MSE of -0.815, but benefited 

from a more robust dataset, resulting in a high R² score of 0.987. This suggests that while the UK 

model performs well in explaining variance, it experiences greater variability in prediction error 

when validated across folds. 

 

Figure 6. Machine Learning Error Metrics Comparison for Costa Rica and the United Kingdom. Caption: This 

figure compares the performance of machine learning models used to predict the Levelized Cost of Hydrogen 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 April 2025 doi:10.20944/preprints202503.2276.v2

https://doi.org/10.20944/preprints202503.2276.v2


 20 of 27 

 

(LCOH) in Costa Rica and the United Kingdom, using three key error metrics: (a) Mean Absolute Error (MAE), 

(b) Mean Squared Error (MSE), and (c) Cross-Validated MSE. Each subplot uses an independent Viridis 

colormap to visualize the magnitude of errors, with higher color intensity indicating greater error values. The 

Costa Rican model demonstrates lower errors across all metrics, suggesting better fit and lower variability, 

though its R² score is undefined due to a limited test sample. In contrast, the UK model, while achieving high 

R², exhibits higher error values, particularly in cross-validation, indicating more variability in prediction 

performance. 

These findings emphasize the importance of both dataset size and variability in assessing model 

reliability. They also demonstrate how different data environments influence predictive performance 

when applying machine learning to techno-economic modeling in green hydrogen analysis. 

5.6. Sensitivity Analysis of Hydrogen Economics in Costa Rica and the United Kingdom 

To assess the robustness of hydrogen production economics in response to fluctuating input 

costs, a detailed sensitivity analysis was conducted for both Costa Rica and the United Kingdom. This 

analysis explored the impacts of capital expenditure (CAPEX) and electricity price on two critical 

indicators: the Levelized Cost of Hydrogen (LCOH) and Net Present Value (NPV). The results reveal 

significant disparities in cost sensitivity between the two countries. In Costa Rica, LCOH remained 

below $5.00 per kg H₂ across a wide range of CAPEX and electricity prices, demonstrating strong 

economic resilience. NPV values also maintained positive levels throughout much of the parameter 

space, indicating attractive investment potential even under adverse cost conditions. In contrast, the 

UK model showed greater sensitivity to increases in electricity price and CAPEX, with the LCOH 

exceeding $10.00 per kg H₂ in several regions and a narrower window for achieving positive NPV. 

The contour plots presented in Figure 7 help visualize these economic trade-offs, with distinct 

gradients showing how modest adjustments in input parameters can drastically alter project viability. 

Notably, the UK’s economic feasibility is tightly clustered in a limited range of low CAPEX and 

electricity prices, suggesting that hydrogen projects in the UK require stricter cost control and 

stronger policy support to remain viable.  

 

Figure 7. Sensitivity Analysis of LCOH and NPV for Costa Rica and the United Kingdom. Caption: Figure 7 

presents a comparative sensitivity analysis of the Levelized Cost of Hydrogen (LCOH) and Net Present Value 
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(NPV) for Costa Rica and the United Kingdom. Panels (a) and (b) show the sensitivity of LCOH and NPV to 

variations in CAPEX and electricity price for Costa Rica, while panels (c) and (d) present the corresponding 

analysis for the United Kingdom. The contour plots use color gradients to represent economic performance, with 

contour lines highlighting zones of equal values for easier interpretation. Costa Rica demonstrates a broader 

low-LCOH region and higher NPV resilience compared to the UK, indicating its greater economic advantage 

under fluctuating cost conditions. These visualizations offer valuable insights into investment robustness and 

help identify favorable techno-economic configurations in both countries. 

Overall, this comparative sensitivity analysis underscores Costa Rica’s stronger economic 

fundamentals for hydrogen production and highlights the critical role of input price management in 

scaling green hydrogen deployment in more cost-sensitive regions. 

6. Discussion 

This comparative modeling study of green hydrogen development in Costa Rica and the UK 

reveals several critical insights into how national contexts shape the techno-economic viability of 

hydrogen production. While both countries aim to expand hydrogen capacity, their respective 

strengths—Costa Rica’s abundant renewable resources and the UK’s infrastructure and policy 

maturity—lead to divergent cost drivers, investment risks, and strategic trajectories. In Costa Rica, 

the sensitivity of Levelized Cost of Hydrogen (LCOH) to electricity prices and system scale 

underscores the need for targeted incentives and optimization of small-scale, distributed systems. 

These findings are reinforced by the country’s comprehensive Estrategia Nacional de Hidrógeno 

Verde 2022–2050, which outlines a phased approach to hydrogen market development, promotes 

decentralized production hubs, and projects up to 13 million tons of CO₂ abatement and significant 

job creation by mid-century (MINAE, 2022). In contrast, the UK’s results highlight how policy 

instruments like subsidies and carbon pricing can buffer high CAPEX scenarios, enabling more 

ambitious infrastructure expansion and offshore integration. These outcomes align with the national 

UK Hydrogen Strategy, which advances a twin-track production model, a 5GW hydrogen target by 

2030, and a £240 million Net Zero Hydrogen Fund to catalyze private sector investment and 

deployment (Department for Business, Energy & Industrial Strategy, 2021). 

Machine learning techniques—especially Random Forest algorithms paired with SHAP value 

analysis—proved effective not only in enhancing prediction accuracy but also in revealing the 

relative influence of key input variables. Across both national models, electricity prices, capital 

expenditure (CAPEX), and system efficiency consistently surfaced as the most significant drivers of 

LCOH. Additionally, scenario-based assessments demonstrated that certain system configurations 

maintain economic viability even amid policy shifts or market volatility. These outcomes highlight 

the potential of ML-augmented cost models to inform both strategic investment and evidence-based 

policy development, especially when reinforced by Monte Carlo simulations for uncertainty 

quantification. This conclusion supports the work of Chen et al. (2023), who argue that machine 

learning enhances the assessment of green technology innovation by detecting meaningful, policy-

relevant patterns in complex energy systems. 

This study also extends the foundational work of Navarro Jiménez and Zheng (2024), who 

modeled hydrogen production costs in Costa Rica using Monte Carlo simulations. Their research 

provides valuable insights into spatial resource variability and local techno-economic performance 

but focuses solely on a single national context. By contrast, the current comparative framework 

incorporates both developed and emerging market perspectives and employs machine learning for 

cross-scenario cost forecasting and model explainability. This broader approach enhances the 

applicability of findings for a wider range of stakeholders, including investors and policymakers 

navigating heterogeneous policy and resource environments. 

Moreover, the broader infrastructural and technological challenges emphasized in this research 

echo those identified by Jayachandran et al. (2024), who highlighted key barriers to green hydrogen 

adoption, including electrolyzer efficiency limitations, storage safety, and infrastructure immaturity. 
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These systemic constraints underscore the importance of coupling advanced forecasting models with 

strategic infrastructure planning to bridge the gap between potential and implementation. The U.S. 

National Clean Hydrogen Strategy and Roadmap reinforces this by advocating co-located Regional 

Hydrogen Hubs and mobilizing over $9.5 billion in public funding—augmented by tax credits—to 

reduce delivered costs and strengthen clean energy supply chains (U.S. Department of Energy, 2023). 

Complementing this infrastructural focus, Mullanu et al. (2024) emphasize how AI—particularly 

machine learning—can address operational complexities in hydrogen-integrated systems, from 

supply-demand balancing to optimal energy flow coordination. Together, these perspectives 

highlight the need for holistic solutions that integrate planning, investment, and intelligent control 

systems to accelerate hydrogen deployment. 

This discussion is further reinforced by the spatial modeling insights from Müller et al. (2023), 

who used a GIS-based least-cost optimization framework in Kenya to highlight the importance of 

aligning production, transport, and demand zones. Their work illustrates how geospatial planning—

particularly in low- and middle-income countries—can minimize costs and maximize viability, a 

principle equally relevant to Costa Rica’s decentralized hydrogen strategy. 

A notable opportunity emerging from this comparative framework lies in potential bilateral 

cooperation between Costa Rica and the UK. Their contrasting yet complementary profiles present a 

compelling case for collaboration in areas such as electrolyser technology transfer, machine learning 

applications in cost forecasting, and co-development of pilot projects. The UK’s experience with green 

financing instruments and regulatory standards could support Costa Rica’s hydrogen market 

maturity, while Costa Rica’s renewable expertise offers insights into sustainable, decentralized 

hydrogen systems. International partnerships—facilitated through institutions like GIZ, IADB, or the 

UK Infrastructure Bank—could enable blended financing models that support both technological 

deployment and social equity goals in emerging markets. 

Finally, the study identifies critical areas for future research. These include the development of 

open, interoperable datasets for hydrogen cost modeling, greater integration of demand-side 

forecasting, and benchmarking of ML models across geographic and economic contexts. A 

compelling example of these priorities in action is Colombia’s hydrogen strategy, which combines 

solar, wind, and biomass pathways to project a production capacity of 9 Mt/a by 2050—surpassing 

internal demand and capturing 1.2% of global market potential through a combined investment of 

$244 billion (Rodríguez-Fontalvo et al., 2024). Like Costa Rica, Colombia leverages tropical resource 

abundance to position itself as a competitive green hydrogen exporter. In contrast, the UK’s trajectory 

emphasizes offshore integration, carbon pricing, and public-private financing to scale production. 

Together, these national strategies highlight the importance of aligning hydrogen deployment with 

geographic, economic, and infrastructural contexts. Such regionally tailored approaches will be 

essential to advancing reliable, equitable green hydrogen deployment on a global scale. 

This study demonstrates the value of integrated techno-economic and ML-based approaches for 

advancing hydrogen strategies in both emerging and advanced economies. 

7. Conclusion 

This study offers a comparative, machine learning-driven modeling framework for assessing the 

techno-economic feasibility of green hydrogen production in Costa Rica and the United Kingdom. 

By leveraging regional renewable resource data, spatial analysis, and economic modeling integrated 

with machine learning tools like Random Forest and SHAP values, the research identifies key drivers 

influencing hydrogen costs across two distinct policy and infrastructure contexts. Costa Rica's 

strength in renewable abundance contrasts with the UK’s policy maturity and industrial readiness, 

resulting in different investment risk profiles and cost sensitivities. The integration of Monte Carlo 

simulations further enriched the analysis by quantifying uncertainty in Net Present Value (NPV) and 

Levelized Cost of Hydrogen (LCOH) estimates under varied policy and market conditions. 

The findings underscore the value of interpretable AI tools in de-risking hydrogen investments, 

especially in emerging markets. Importantly, the paper reveals how machine learning enhances not 
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only forecast accuracy but also policy relevance through transparent model explainability. While 

national strategies such as Costa Rica’s Estrategia Nacional de Hidrógeno Verde and the UK 

Hydrogen Strategy lay foundational policy blueprints, this research bridges the gap between 

aspirational planning and cost-grounded implementation. The study also suggests pathways for 

international collaboration, including technology transfer, joint pilot programs, and blended finance 

models, which can accelerate hydrogen deployment while aligning with climate and development 

goals. 

Future work should focus on refining regional datasets, expanding cross-country ML 

benchmarking, and integrating dynamic demand modeling. Doing so will further improve model 

generalizability and decision-making accuracy across global hydrogen markets. Ultimately, this 

research contributes to a growing body of evidence that supports green hydrogen as both a 

decarbonization tool and a vector for inclusive, resilient energy transitions worldwide. 
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