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Abstract: Green hydrogen is gaining prominence as a strategic option for decarbonizing sectors that
are difficult to electrify, yet its economic potential differs across regions. This study develops a
comparative modeling framework enhanced by machine learning to project both the Levelized Cost
of Hydrogen (LCOH) and Net Present Value (NPV) for hydrogen projects in Costa Rica and the
United Kingdom (UK). By combining geospatial energy resource mapping, techno-economic
modeling, and advanced tools such as Random Forest algorithms, SHAP interpretability analysis,
and Monte Carlo simulations, the research investigates how hydrogen production costs shift under
varying policy and infrastructure scenarios. Findings show that Costa Rica’s LCOH ranges from $3.4
to $5.1 per kilogram, influenced by renewable energy type and system scale, while the UK benefits
from financial incentives that help offset its higher baseline costs. Across both countries, the key
determinants of cost were electricity pricing, capital expenditure, and electrolysis efficiency. The use
of machine learning significantly improved prediction accuracy and allowed for deeper exploration
of policy sensitivities. The outcomes not only align with each nation’s hydrogen strategy but also
point to actionable avenues for international cooperation, including joint technology development,
pilot programs, and hybrid financing models. This approach demonstrates how data-driven analysis
can support more equitable and resilient transitions to zero-carbon energy systems, particularly
when supported by interpretable artificial intelligence methods.

Keywords: green hydrogen; machine learning; techno-economic modeling; Levelized Cost of
Hydrogen (LCOH); comparative energy policy

1. Introduction

Green hydrogen is increasingly recognized as a cornerstone of global decarbonization efforts,
with the potential to mitigate up to 80 gigatons of CO, emissions by mid-century while supporting
energy demand in sectors that are difficult to electrify, such as heavy industry, aviation, and long-
duration storage (Hydrogen Council & McKinsey, 2021). Forecasts indicate that the global hydrogen
market could exceed 660 million metric tons per year, driven by ambitious policy initiatives and the
expansion of renewable energy systems. However, this momentum brings considerable
uncertainties, including volatile cost projections, substantial infrastructure requirements, and the
challenge of equitable deployment across diverse geopolitical contexts. While industrialized nations
such as China, Germany, and Japan are advancing rapidly in hydrogen development, countries in
the Global South face systemic barriers to aligning hydrogen deployment with broader goals of socio-
economic growth and climate equity (NewClimate Institute, 2023).
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The United Kingdom, for instance, envisions hydrogen as a flexible decarbonization tool,
targeting 10 GW of low-carbon hydrogen production by 2030 and up to 460 TWh in demand by 2050,
underpinned by policies such as the Hydrogen Business Model and Low Carbon Hydrogen Standard
(Royal Academy of Engineering, 2022). In contrast, Costa Rica’s hydrogen strategy leverages its
nearly 100% renewable electricity mix, exploring hydrogen applications in transport and agriculture,
with cost estimates ranging from $3.4-$5.1/kg depending on the renewable source (Stamm et al.,
2024). These contrasting trajectories highlight the spectrum of hydrogen development, from
industrial-scale export ambitions in the UK to localized, sustainability-oriented models in Costa Rica.

Existing literature provides valuable insights into the technical, policy, and economic aspects of
hydrogen systems. Studies by Deloitte (2023) and Taghizadeh-Hesary et al. (2022) use LCOH and
NPV modeling to evaluate hydrogen production costs under varying conditions, highlighting the
influence of CAPEX, electricity prices, and financing terms. In parallel, research on machine learning
(ML) has shown its value in improving forecasting accuracy and operational optimization. For
instance, Mukelabai et al. (2024) apply ML to enhance performance forecasting and component
modeling for renewable hydrogen systems, while Ukwuoma et al. (2024) demonstrate the benefits of
hybrid ensemble models in biomass-based hydrogen production, offering improved prediction and
explainability. These contributions underscore the potential of ML to optimize key system
parameters, better align with fluctuating renewable inputs, and reduce production costs by fine-
tuning LCOH. However, a significant gap remains in comparative ML-based studies that forecast
LCOH and NPV across countries with varying resource profiles and infrastructure maturity.
Moreover, the limited use of regional datasets in hydrogen economic modeling constrains the
generalizability of current frameworks. For example, while solar irradiance models have been used
in specific cases such as India, few have been integrated into broader hydrogen production models
to address renewable intermittency (Sareen et al., 2024).

Machine learning significantly enhances the optimization of green hydrogen production
processes, particularly in Solid Oxide Electrolysis Cells (SOECs). Models like XGBoost, Random
Forest, and Deep Neural Networks (DNN) are employed to predict key performance indicators such
as hydrogen production rates, current density, and Ohmic resistance. Notably, the XGBoost model
has demonstrated high accuracy, achieving R? values exceeding 0.95 for hydrogen production rates
and other relevant outputs. By integrating Genetic Algorithms (GA), the model further optimizes
input features to maximize hydrogen production while minimizing energy consumption.
Additionally, machine learning techniques improve cost-efficiency by fine-tuning parameters that
directly affect the Levelized Cost of Hydrogen (LCOH). This ensures that the production process can
adapt to dynamic variables like temperature, voltage, and gas flow rate, all of which are crucial when
dealing with the fluctuating nature of renewable energy inputs, such as solar and wind (Yang et al.,
2025).

In Latin America, the abundance of renewable energy sources—including wind, solar, and
hydropower —presents a significant advantage for the production of green hydrogen. Nations such
as Chile, Argentina, and Uruguay are particularly well-suited to become major exporters due to their
access to affordable clean energy, which enables hydrogen generation via electrolysis. Nevertheless,
these countries must navigate a range of barriers, including limited infrastructure, elevated
production costs, and fragmented regulatory environments that hinder the expansion of green
hydrogen initiatives. To address these obstacles, experts propose enhanced international
collaboration, targeted investment in infrastructure, and the creation of transparent certification
mechanisms to facilitate market growth (Torma, Németh, & Mendoza, 2024). It is also critical that
hydrogen policies in the region incorporate principles of social inclusion and environmental fairness,
ensuring that development benefits are distributed equitably and support a just transition (Dorn,
2022). According to Gischler et al. (2023), fostering regional cooperation and promoting partnerships
between the public and private sectors will be essential for Latin America to achieve sustainable and
socially responsible green hydrogen development, thereby strengthening its potential to emerge as a
global leader in this space.
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To fill these gaps, this study introduces a comparative, machine learning-driven modeling
framework to assess the techno-economic viability of green hydrogen in Costa Rica and the United
Kingdom. It forecasts key indicators such as Levelized Cost of Hydrogen (LCOH) and Net Present
Value (NPV) under varying scenarios of policy support, resource availability, and technology
configuration. The framework leverages models like XGBoost, Random Forest, and SHAP values to
improve predictive accuracy and explainability, while Monte Carlo simulations quantify uncertainty
across parameters such as electricity cost and infrastructure maturity. This approach offers a robust
way to assess the risk-return profiles of hydrogen investments in both developed and emerging
markets.

Accordingly, the study addresses three core questions:

(1) What are the most influential factors affecting LCOH and NPV in each country?

(2) How can machine learning improve the forecasting accuracy and interpretability of hydrogen
economic models?

(3) What comparative insights can inform investment and policy decisions across different
development contexts?

By answering these questions, the study positions green hydrogen not only as a climate
mitigation tool, but also as a pathway for equitable, economically resilient energy transitions. The
remainder of the paper is organized as follows: Section 2 reviews relevant literature; Section 3 details
the methodological framework; Section 4 presents LCOH and NPV findings; Section 5 introduces
machine learning models and sensitivity testing; and Section 6 offers a comparative discussion,
identifies limitations, and outlines future directions.

2. Literature Review

2.1. The Role of Green Hydrogen in Global Decarbonization

Green hydrogen is a critical tool for decarbonizing hard-to-abate sectors such as heavy transport,
industry, and power generation. In Thailand, it could comprise 12.2% of the energy mix by 2050,
driven by investments in electrolysis and renewables (Pradhan et al., 2024). Globally, demand may
increase fifteenfold by 2050, with the EU alone requiring 1,300 GW of electrolyser capacity (Tarvydas,
2022). Beyond emissions reduction, hydrogen also offers value in renewable energy storage and grid
balancing, though deployment remains constrained by high costs and infrastructure needs. The
climate effectiveness of hydrogen—particularly blue hydrogen—depends on stringent life-cycle
emissions tracking. Concerns around methane leakage and carbon capture performance have
triggered calls for global standards like ISO 19870 and mandatory third-party verification (Tatarenko
et al., 2024). Additionally, public acceptance plays a critical role, with trust in technology and
transparent communication proving more effective than consultation alone (Buchner et al., 2025).

Despite a growing global project pipeline, especially in China, most low-emissions hydrogen
initiatives remain unrealized. Achieving large-scale impact will require coordinated progress in
policy, infrastructure, and demand, especially across emerging regions like Latin America
(International Energy Agency, 2024). Countries such as the UK, EU members, Australia, and
Argentina are advancing through comprehensive legislative strategies. Measures like the EU’s
hydrogen premium auctions and the U.S. Inflation Reduction Act help close the cost gap with fossil
fuels, improving hydrogen’s competitiveness (Bird & Bird LLP et al., 2024). While the UK prioritizes
industrial-scale hydrogen production, countries like Costa Rica are pursuing decentralized models
tailored to renewable resource strengths and existing infrastructure.

2.2. Overview of Electrolysis Technologies (PEM, Alkaline, AEM, SOEC)

Green hydrogen production relies on various electrolysis technologies, each with unique
efficiencies, materials, and operational characteristics. Solid Oxide Electrolysis Cells (SOECs) operate
at high temperatures (700-1000 °C), achieving up to 97.6% efficiency (HHV) and low energy use (2.5~
3.5 kWh/Nm?), especially when coupled with industrial waste heat or solar thermal energy. However,
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thermal cycling and degradation currently limit their commercial viability (Norman et al., 2024).
Alkaline Electrolysis (AEC) is the most mature and cost-effective technology ($1,080-1,296/kW),
operating at 65-100 °C with 60-80% efficiency, though it responds poorly to variable renewable
inputs. Proton Exchange Membrane (PEM) systems offer high hydrogen purity (99.999%) and fast
response, but rely on expensive, scarce materials like Ir and Pt, pushing costs to $2,009-2,506/kW (El-
Shafie, 2023). Anion Exchange Membrane (AEM) electrolysis, a promising low-cost alternative, uses
non-precious catalysts and reaches up to 75% efficiency at lower temperatures (50-70 °C). Early
deployments by Ionomer and Versogen show potential, although stability under fluctuating loads
remains a challenge (Bernat et al., 2024).

For off-grid or decentralized applications, AEM and PEM are favored due to their flexibility, as
demonstrated in remote deployments across Europe and Australia, including unitized regenerative
fuel cells (URFCs) despite current efficiency limitations (Borm & Harrison, 2021). While SOECs may
align with the UK’s industrial-scale ambitions, Costa Rica’s decentralized model benefits more from
the adaptable, lower-cost PEM and AEM systems, which integrate efficiently with renewable sources
such as wind and hydropower.

Economic Modeling and LCOH Predictions

Economic modeling of Levelized Cost of Hydrogen (LCOH) and Net Present Value (NPV)
highlights the trade-offs between high-efficiency technologies like SOEC and more cost-effective
options like PEM and AEM. The UK, with large-scale plans and access to offshore wind, might justify
the higher costs of SOEC, while Costa Rica's decentralized hydrogen production strategy, utilizing
abundant renewable resources, could benefit from PEM or AEM due to their lower capital costs and
adaptability to variable energy sources.

Table 1 summarizes techno-economic assessments for different renewable energy sources and
electrolyzer technologies, offering a clearer picture of their economic viability in different contexts.

Table 1. Economic Comparison of Hydrogen Production Systems.

Electrolyzer Renewable Region LCOH Key Findings Reference
Technology Energy (USD/kg)
Source
AWE Onshore Uribia, 7.00 Lowest LCOH using AWE with Velasquez-
Wind Colombia onshore wind. Offshore wind has  Jaramillo, Garcia, &
higher LCOH. Vasco-Echeverri
(2024)

AWE Solar PV Spain 3.21-4.10 LCOH varies significantly based Matute et  al

on PPA pricing and policy (2023b)

support.
PEM Biomass - 2.94-3.32 PEM  electrolysis  efficiency Naqvi et al. (2024)
Gasification improves with better system
design.
AWE, PEM Wind + Solar Brazil 529 (AWE), Hybrid renewable system offers Pinheiro et al
PV 5.92 (PEM) significant LCOH reduction (2024)

potential.
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5 of 27
PEM Solar - 2.0-3.0 Sensitivity to financial and Rezaei, Akimov, &
technical ~ variables;  higher Gray (2024)
CAPEX leads to higher LCOH.
PEM Wind Finland $1.08/kg Wind integration reduces LCOH Javanshir et al
under high-price market (2024)
conditions.
Hybrid (Solar Solar, Wind, - $3.1/kg Hybrid renewable systems yield Baral & Sebo (2024)
PV, Wind, ORC) Geothermal the lowest LCOH; ORC improves
efficiency.

Economic modeling shows that LCOH depends heavily on electrolyzer type and renewable
energy source. SOEC suits large-scale projects with stable inputs like offshore wind, justifying higher
CAPEX. In contrast, PEM and AEM are better for decentralized, small-scale systems due to lower
costs and compatibility with variable renewables. These results highlight the importance of aligning
technology choice with local resources, infrastructure, and economic conditions.

2.3. Key Metrics: LCOH, NPV, Hydrogen Yield, Storage Cost

Evaluating green hydrogen viability hinges on key indicators such as Levelized Cost of
Hydrogen (LCOH), Net Present Value (NPV), hydrogen yield, and storage costs. In Brazil, wind-
powered alkaline electrolysis for urban buses achieved LCOH values between $25-56/MWh and NPV
as high as $21.8 million, with IRR reaching 90% —even when hydrogen was priced at zero—due to
revenue from oxygen sales and surplus electricity (Alcantara et al., 2025). A review of 334 European
projects found average green hydrogen costs at $5.02/kg, outperforming grid-based “yellow”
hydrogen at $6.80/kg. LCOH from onshore wind reached as low as $2.50/kg, and economies of scale
led to cost reductions of 0.20% per 1% increase in capacity (WeiSensteiner, 2025).

Global trade models identified ammonia as the most cost-effective export vector from Chile to
Rotterdam, unless reconversion was required, with delivered hydrogen prices between $3.37-
$4.77/kg. Storage in isolated systems could add up to $0.25/kg, emphasizing the need for dynamic,
scenario-based planning rather than static LCOH benchmarks (Aldren et al., 2025). In South Africa,
a solar-driven system produced 250 kg/day at $2.12/kg LCOH, though storage costs remained high
(918 ZAR/kg). Despite this, storage enabled long-duration supply in off-grid contexts, highlighting
the importance of integrated system design (Lebepe et al., 2025).

In Indonesia, cost analysis across five cities revealed extreme variation —ranging from $0.48/kg
in Ambon to $82/kg in Kupang—driven by disparities in renewable resources and infrastructure.
Hybrid systems offered the best trade-off between yield and cost, and a 20% component price
increase could raise LCOH by up to 30%, underscoring the importance of efficient electrolyser design
and supply chain resilience (Prasetyo et al., 2025).

2.4. Comparative Context: UK and Costa Rica

Renewable Energy Profiles of the UK and Costa Rica

Costa Rica generates 99% of its electricity from renewables—mainly hydro (74%), with
geothermal (13%), wind (11%), and solar (1%)—creating a stable year-round supply from flexible,
dispatchable sources. Between 2016 and 2021, renewable energy use rose significantly, boosting
energy self-sufficiency to 54%. These conditions support green hydrogen production from off-peak
hydro and wind, though challenges remain in grid balancing and matching supply with demand
across regions (IRENA, 2024).
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Meanwhile, the UK reached 50.5% renewable electricity in Q3 2024, led by wind (especially in
Scotland), solar, and biomass. Its decarbonizing grid, bolstered by interconnector capacity and
reduced fossil generation, offers strong potential for hydrogen production from surplus renewables.
Still, scaling hydrogen will require greater offshore wind resilience, energy storage, and agile grid
management (DESNZ, 2024a).

2.5. National Hydrogen Strategies and Targets

Costa Rica’s 2023 National Green Hydrogen Strategy targets 18—-20 kton/year hydrogen demand
by 2030 and 420 kton/year by 2050, with electrolysis capacity of 0.2-1 GW and LCOH as low as
$1.24/kg from wind. The strategy prioritizes domestic use due to high electricity costs and limited
infrastructure, supported by public-private efforts like Ad Astra Rocket and Cavendish S.A., and
donors such as GIZ and IADB. Political instability poses risks to continuity and financing (Stamm et
al., 2024). A flagship project, the Ad Astra Hydrogen Transportation Ecosystem, integrates wind and
solar with PEM electrolysis, piloting hydrogen mobility and innovative models like leasing and off-
take agreements in Guanacaste (Ad Astra, 2024).

The UK’s Hydrogen Strategy, launched in 2021 and updated in 2024, targets 10 GW low-carbon
hydrogen by 2030 (split between green and blue), aiming to produce up to 64 TWh annually. It
supports sectors like transport, heating, and power through mechanisms like the Net Zero Hydrogen
Fund and the Low Carbon Hydrogen Standard. Regional efforts, such as Scotland’s Orkney BIG HIT,
contribute to deployment. The sector could generate £7 billion GVA and 64,000 jobs by 2030, though
challenges remain in policy coordination and infrastructure scaling, especially for storage and
distribution (DESNZ, 2024b; UK Government, 2021).

2.6. Economic Modeling Approaches and Influencing Factors

Green hydrogen project modeling integrates cost, efficiency, and risk analysis to evaluate
viability. In Colombia, PEM and AWE electrolysis powered by various renewables yielded LCOH
between $7.02-$9.69/kg, with capacity factor, CAPEX, and financing as key cost drivers; offshore
wind remained economically unviable (Velasquez-Jaramillo et al., 2024). Spain’s PPA-backed alkaline
electrolysis projects showed electricity prices contributed over 70% of LCOH ($3.47-$4.43/kg), with
system sizing and grants (230%) boosting NPV and IRR (Matute et al., 2023b).

A comparative study found LCOH ranging from $2.94 to $4.11/kg across advanced technologies,
with PEM having the lowest CAPEX (~$600/kW), and cost influenced by electricity prices, stack life,
and learning curves (Naqvi et al., 2024). In Brazil, a 100 MW hybrid system showed alkaline
electrolysis outperformed PEM financially, with IRR near 29% and fast payback under $7/kg pricing
(Pinheiro et al., 2025).

Australia’s solar-powered PEM system emphasized the impact of financial structuring — CAPEX
comprised 80% of base cost, and LCOH ($6.36/kg) was highly sensitive to capital costs and subsidies
(Rezaei et al., 2024). In Finland, flexible PEM systems switching between hydrogen production and
grid export reduced LCOH to $2.16-$0.65/kg, with strong NPV/IRR under variable markets
(Javanshir et al., 2024).

Hybrid configurations using solar, wind, and ORC tech showed LCOH as low as $3.1/kg in 2023,
with projections down to $1.46/kg by 2050 due to tech gains and cost learning (Baral & Sebo, 2024).
Overall, regional resource differences (e.g., UK’s offshore wind vs. Costa Rica’s hydro) significantly
shape LCOH/NPV, and Monte Carlo simulations are widely used to capture uncertainties in input
variables.

2.7. Regression Models for Cost Prediction

Machine learning (ML) has become central to green hydrogen cost modeling, particularly
through regression techniques. While not ML-based, IRENA (2021) identified key LCOH drivers—
CAPEX, electricity price, efficiency, and deployment scale—laying the foundation for future
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predictive models. Advanced ML applications by Kabir et al. (2023) used algorithms like KNN and
Random Forest to optimize hydrogen production, achieving high accuracy (R? = 0.948) and
highlighting predictors like temperature and voltage. Similarly, Kim et al. (2022) applied CART®
models to nuclear-powered hydrogen systems, identifying top cost influencers and offering reliable
LCOH forecasts (e.g., $2.77/kg).

A broader review by Bassey & Ibegbulam (2023) emphasized the importance of data
preprocessing and called for the adoption of explainable Al tools for transparency. Kwon et al. (2024)
used neural networks with 71 inputs to forecast hydrogen demand, achieving R?=0.9936 and guiding
investment decisions with an LCOH of $5.63/kg. Allal et al. (2025) confirmed that models like
Random Forest and SHAP improve cost forecasting and policy planning by revealing variable
importance.

Despite progress, gaps remain—few studies compare multiple ML algorithms under uniform
conditions, and limited regional datasets hinder generalizability. Collaborative, open-access ML
frameworks are needed to improve model transferability and scalability. Overall, ML-driven
planning aligns with national strategies: the UK emphasizes industrial-scale infrastructure, while
Costa Rica focuses on decentralized renewables. Tools like Random Forest and XGBoost, combined
with SHAP values, offer interpretability and precision in modeling cost dynamics across diverse
hydrogen contexts.

3. Methodology

3.1. Spatial Resource Assessment

This study conducts a spatial analysis of wind and solar energy resources in Costa Rica and the
United Kingdom by leveraging geospatial raster datasets and administrative boundary shapefiles.
Python (v3.11) was used as the primary analytical platform, employing libraries such as rasterio,
geopandas, shapely, and numpy. For each country, high-resolution raster layers representing wind
speed or global horizontal irradiance (GHI) were clipped using province- or country-specific
polygons to isolate regional resource characteristics.

Zonal Statistics Extraction

To assess solar and wind potential, raster datasets were spatially masked and clipped. The 90th
percentile value of the dataset, representing the threshold for identifying high-potential zones, was
computed using:

Ty = Percentilegy(X)

e  Too: The 90th percentile threshold of the data values.
e  X: The vector of valid raster values (e.g., wind speed or solar irradiance) for a given region.

Pixels with values equal to or exceeding T90 were classified as part of the top 10% high-
performance zone:

Xtop 10% = {:*Et' e X | T = TQ'IJ}

®  Xiopio%: Subset of data values representing the top 10%.

e  xi: Individual raster values within the dataset X

3.2. Offshore Potential Mapping

To delineate offshore resource zones, a 20 km buffer was generated around each administrative
unit (province or country section). Offshore areas were calculated by subtracting the original
landmass from its buffered version:
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Aotfshore = BUffer(Areginm 20 kIIl) — Areginn

®  Aofishore: The resulting offshore area geometry.
®  Argion: The original land-based administrative area.
e  Buffer(Aregion,20km): Geometric expansion by 20 kilometers.

These areas were rasterized and used to isolate marine wind or solar data for offshore analysis.

3.3. Wind Power Density Estimation

Wind energy potential was quantified by converting wind speed into wind power density using
the kinetic energy formula:

P = 1 -p- v°
2
e P: Wind power density (W/m?).
e  0: Air density (assumed 1.225 kg/m? at sea level).
e v: Wind speed (m/s).
This equation reflects the theoretical amount of kinetic energy available per square meter and
assumes ideal conditions with no turbine losses.

3.4. Solar Irradiance Analysis

Solar resource potential was assessed using Global Horizontal Irradiance (GHI) datasets. High-
performance solar zones were isolated using the 90th percentile method:

T2 = Percentilegy(GHI)

Toosolar: The 90th percentile of GHI values in a given region.
GHI: Global Horizontal Irradiance values (in kWh/m?/day).

The top 10% solar performance zone was similarly defined as:

GHIop10% = {g: € GHI | g; > T3a™}

e GHlwpio%: Set of high-performing solar pixels.

gi: Individual irradiance values in the dataset.

3.5. High-Potential Zone Delineation

A consistent approach was used to extract high-resource areas for both wind and solar datasets.
The general form of the percentile-based extraction is:

Xiop10w = {xi € X | z; > Percentilegy(X)}

o  Xuwpiow: High-performing data subset.
e  xi: Individual data value.
e  X:Complete dataset for a given spatial zone.

These zones were retained for further modeling of hydrogen production costs and infrastructure
suitability.
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3.6. Hydrogen LCOH Modeling

This section details the methodology used to estimate the Levelized Cost of Hydrogen (LCOH)
for both the UK and Costa Rica. LCOH serves as a critical metric to assess the cost-effectiveness of
hydrogen production from renewable sources. The approach integrates annualized capital
expenditures (CAPEX), operational expenditures (OPEX), electricity prices, and electrolyzer
efficiency, while accounting for country-specific economic and technical conditions.

3.6.1. UK LCOH Model Inputs

For the UK, the Levelized Cost of Hydrogen (LCOH) was calculated using a set of input
parameters summarized in Table 2, which reflects current and projected techno-economic conditions
in the UK’s hydrogen sector.

The LCOH was estimated based on annualized CAPEX, OPEX, electricity prices, and
electrolyzer performance. The formula used is:

LCOH = (CAPEX erkg X CRF) + OPEXfixea + Electricity Cost ok,

where:

CAPEX;oa x CRF
Annual Hs Production

Annualized CAPEX er kg =

The Capital Recovery Factor (CRF) is calculated using:
r(1+7r)"
(1+7)m -1

CRF =

where:
e  r=0.06 (cost of capital)
e  n=20 years (plant lifetime)

Table 2. UK Hydrogen LCOH Modeling Inputs.

Category Variable Value/Description Notes Reference

CAPEX Electrolyzer Cost $2,990/kW For multi-MW EHO, 2025

scale systems

Electricity Avg Wholesale $93.83/MWh Conversion  of Statista,
Price Electricity Price €86.88 to USD (1 2025
GBP =1.29 USD)

Operating Operating Hours 4,000 hours Based on cost- EHO, 2025
Hours per Year optimal window
selection
Cost of Capital Capital Recovery 6% Used in EHO, 2025
Factor (CRF) NPV/LCOH

projections


https://doi.org/10.20944/preprints202503.2276.v2

OPEX (Fixed)

Stack
Degradation

Stack
Durability

Grid Fees and

Taxes

Investment

Strategy

Funding

Volume

Project

Duration

Funding

Mechanism

Climate

Impact

Private Sector

Investment

Other OPEX

Stack Performance
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investment
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Green Hydrogen
Project Budget

Green Hydrogen
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support schemes
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$0.02 per kg H,

0.0012 (1.2%o/h)

80,000 hours

~€100M (raw total) ($108

million)

Blended finance, PPPs,
and £960M ($1.238 billion
USD) Green Industries
Growth

(GIGA) fund

Accelerator

£960 million ($1,238.4
million) (GIGA Fund) +

private capital (£400M
($516 million) in HAR1)
2024-2030

Net Zero Hydrogen
Fund, Hydrogen
Allocation Rounds

(HAR1, HAR2), R&D tax

reliefs

70,000+ tCO.e (project);
650,000 tCOze (lifetime
potential)

£18 billion ($23.22 billion
USD) UK

Infrastructure Bank

from

Includes
maintenance,
stack

replacement

Impacts
performance

decline over time

Lifetime of stack
under nominal

conditions

Included

when

only
grid-
(e.g.,
offshore wind)

connected

UK DESNZ, 2024

UK DESNZ, 2024

UK DESNZ, 2024
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UK DESNZ, 2024
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(UKIB) for
CCUS, storage projects

hydrogen,

3.6.2. Costa Rica LCOH Model Inputs

The Levelized Cost of Hydrogen (LCOH) for Costa Rica was estimated using the same modeling
approach and formulas described in Section 3.6.1, including the Capital Recovery Factor (CRF).
Country-specific inputs, detailed in Table 3, were adapted to reflect Costa Rica’s unique techno-
economic context—particularly its lower infrastructure costs, reduced electricity rates, and favorable
financing conditions.

Table 3. Costa Rica Hydrogen Cost Modeling Inputs.

Category Variable Value/Description Notes Reference
CAPEX Initial Investment $2,000,000 3 MWe system, Ad Astra, 2018
(Fase 3) 300 kg Ho/day
OPEX Water Cost $2.88/m3 Industrial rate Ad Astra, 2018
OPEX Electricity Cost $0.15/kWh Industrial rate, (Tico Times, 2024)
off-peak rate
Revenue H, Selling Price $3.50/kg Ha Projected price Ad Astra, 2018
for viability
Revenue O; Selling Price $5.01/kg O, 220 cof tank = Ad Astra, 2018
¢26,000 CRC
Output H, Daily 300 kg/day Fase 3 projection Ad Astra, 2018
Production
System Electrolyzer 3 MWe Includes Ad Astra, 2018
Scale Capacity compression
and storage
Efficiency  Electrolyzer 70 kWh/kg Hs Based on Ad Astra, 2018
System (WtT) continuous
operation
Efficiency  Bus Fuel 8.86 km/kg H, Operational Ad Astra, 2018
Efficiency (WtW) demonstration
Projected Internal Rate of 3.7% 5-year payback  Ad Astra, 2018
Return Return (IRR)
Projected Net Present ~$500 USD Marginal Ad Astra, 2018
Return Value (NPV) without support
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Financing  Interest Rate 5% 20-year Ad Astra, 2018
assumed term
Investment Public-private Blended finance, PPPs, MINAE, 2019 GIZ, 2025
Strategy investment international donors
framework
Funding Green Hydrogen EUR 25 million Glz, IFC, GlZz, 2025
Volume Project Budget MINAE, SEPSE,
Hidrégeno
Verde S.A.
Project Green Hydrogen 2024-2030 GIZ, 2025 GIZ, 2025
Duration Project
Climate Direct CO, 70,303 tCOse (project); GIZ,2025 GIZ, 2025
Impact mitigation 650,000+ tCO»e (lifetime
(project/lifetime)  tech potential)
Fiscal Free Trade Zone Up to 15 years income BLP Legal, 2024 BLP Legal, 2024
Incentives ~ Regime tax exemption  +
VAT/import
duty/municipal tax
exemptions

3.7. Regional Adjustments for Costa Rica and the UK

For both Costa Rica and the UK, the LCOH is further adjusted based on regional variations in
wind and solar resources. These adjustments reflect the varying resource availability across regions
within each country, impacting the efficiency and cost of hydrogen production. The adjustments are
based on regional wind power densities (for wind energy) and Global Horizontal Irradiance (GHI)
values (for solar energy).

Formula for Regional Adjustments

Adjusted Electricity Cost

region

GHI, i Wind Power Density,.;
— Electricity Costy,g, X (1 - = ) X (1 y“*g“’“)

max GHI ~ max Wind Power Density

This formula is used to adjust the electricity cost based on both solar and wind energy potential
in each region.
e  GHI (Global Horizontal Irradiance) is used for solar resources.
e  Wind Power Density is calculated using the formula P=0.5xgxv3where 0=1.225 kg/m? (air density

at sea level) and v is the wind speed (in m/s).

These adjustments help capture the regional differences in resource availability and reflect their
impact on the hydrogen production cost integrated in Supplementary Tables 1 and 2.

The final LCOH for each region is calculated by adding the adjusted electricity cost, annualized
CAPEX per kg, and fixed OPEX. This provides the estimated cost of producing one kilogram of
hydrogen from renewable resources, taking into account both financial and technical factors.
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3.8. Economic Calculations

This section applies the previously defined modeling framework to evaluate the economic
performance of hydrogen production in Costa Rica and the United Kingdom, focusing on two core
indicators: Levelized Cost of Hydrogen (LCOH) and Net Present Value (NPV). LCOH results are
directly derived from the methodology described in Section 3.6, with regional comparisons reflecting
local cost drivers, renewable energy availability, and policy incentives. These metrics integrate capital
expenditures (CAPEX), operational expenditures (OPEX), electricity costs, and hydrogen output over
the system's lifetime. Country-specific modeling assumptions, including fiscal incentives and
efficiency degradation, are detailed in Table 4 (UK) and Table 5 (Costa Rica).

Net Present Value (NPV)

The Net Present Value (NPV) assesses the overall profitability of hydrogen projects by
discounting future net cash flows—defined as revenues minus costs—over a 20-year project lifetime.
It is calculated as:

NPV — zn: Revenue; — Cost;
= (1+r)t

where:

e  Revenue=Ho: PricexxAnnual Production.

o  Cost=CAPEXper kgxCRF+OPEXiixeatElectricity Costperkg

e ris the discount rate, and n is the project duration in years.

To capture uncertainty in hydrogen prices, electricity costs, and system efficiency, a Monte Carlo
simulation with 1,000 iterations was performed. This probabilistic approach enables a more nuanced
understanding of project risk and economic resilience under varying policy and market conditions.

By combining deterministic LCOH modeling with stochastic NPV simulation, this section
provides a comprehensive economic perspective on hydrogen viability across diverse geographies
and investment environments.

Table 4. Key Quantitative Data for UK Hydrogen Production, Pricing, and Financial Modeling.

Data Type Value or Range Reference
Hydrogen Price Range £112/MWh ($144.48/MWh) (2025) to UK Hydrogen Strategy,
£71/MWh ($91.59/MWh) (2050) 2021
Electrolyzer Efficiency Loss 0% to 2% UK Hydrogen Strategy,
2021

Electricity Price Simulation £0.04 ($0.0516/kWh) to £0.06 UK Hydrogen Strategy,

($0.0774/kWh) per kWh 2021
CAPEX Reduction 15% (due to fiscal incentives) UK Hydrogen Strategy,
2021

Monte Carlo Simulation NPV 1,000 simulations with varying UK Hydrogen Strategy,
inputs 2021

Revenue Simulation Range $3.00 to $4.00 per kg of H2 UK Hydrogen Strategy,
2021
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Table 5. Key Quantitative Data for Costa Rica Hydrogen Production, Pricing, and Financial Modeling.

Category Variable Value/Description Reference

Fiscal Incentives Adjusted CAPEX 15% reduction in CAPEX MINAE, 2025

(due to incentives)

Revenue H, Price Simulation = Between $3.00 to $4.00 per kg H, MINAE, 2022

Electricity Price Electricity Cost Between $0.04 to $0.06 per kWh MINAE, 2022
Simulation

Electrolyzer Efficiency Decline Efficiency degradation over 20 years Hydrogen

Efficiency Loss Over Time Optimized,

2025

NPV Simulation Monte Carlo Simulated over 1000 runs with Custom

Simulation varying hydrogen and electricity Simulation
prices

By integrating these formulas and tables, the methodology allows for the calculation of the
LCOH and NPV for hydrogen production in both Costa Rica and the UK. These metrics serve as key
tools for assessing the economic feasibility and long-term profitability of green hydrogen investments
in these countries.

3.9. Machine Learning-Driven Economic Forecasting for Green Hydrogen

Given the limitations of traditional economic modeling in capturing complex interactions under
uncertain policy and market conditions, this section explores the application of machine learning
(ML) to improve forecasting accuracy and interpretability of green hydrogen production costs.

A Random Forest Regressor was selected for its ability to model nonlinear relationships between
input variables and the Levelized Cost of Hydrogen (LCOH). Separate supervised regression models
were developed for Costa Rica and the UK, enabling scenario-based analysis under varying techno-
economic conditions.

Model Architecture

e  Costa Rica model inputs included: CAPEX, electricity price, OPEX, and operating hours
e UK model inputs included all Costa Rican inputs, plus: degradation rate and a binary subsidy
indicator
All variables were normalized using StandardScaler, and hyperparameter tuning was
performed via GridSearchCV, optimizing tree depth, number of estimators, and minimum samples
per split.
Cross-validation was used to assess model stability:
e  2-fold cross-validation for Costa Rica
e  5-fold cross-validation for the UK
To enhance interpretability, the model employed SHAP (SHapley Additive exPlanations) to
quantify the relative importance of each feature in driving LCOH predictions.
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4. Sensitivity Analysis for Green Hydrogen Economic Models

A two-dimensional sensitivity analysis was conducted to assess how variations in CAPEX,
electricity price, and OPEX affect the Levelized Cost of Hydrogen (LCOH) and Net Present Value
(NPV) for both Costa Rica and the UK. This analysis was designed to identify the most influential
economic drivers and evaluate project feasibility under diverse market and policy conditions.

The modeling approach varied two input parameters at a time while holding the third constant.
For Costa Rica, nested loops were implemented to iterate combinations of CAPEX and electricity
price, with OPEX held fixed. For the UK model, a modular function enabled a consistent structure
for testing parameter ranges and calculating corresponding LCOH and NPV values.

The outputs were used to generate contour plots that visualize the relationship between key
variables and economic performance metrics. These visualizations —presented in later sections—
support a more detailed understanding of model sensitivity and provide a foundation for identifying
effective policy levers and investment strategies.

5. Results

5.1. Wind and Solar Energy Potential in Costa Rica

A spatial analysis of Costa Rica’s wind and solar resources reveals substantial regional variation,
underscoring the country's strong potential for renewable energy generation. As illustrated in Figure
1, Guanacaste emerges as the most promising region for both wind and solar energy. The mean
onshore wind speed in Guanacaste is 6.59 m/s, with peaks reaching 19.17 m/s; its top 10% wind zones
average 11.21 m/s. By contrast, Limdn records the lowest wind speeds, with a mean of 2.40 m/s,
indicating limited wind energy potential. Offshore wind speeds are relatively uniform across coastal
provinces, averaging 4.57 m/s.

For solar energy, Guanacaste again leads with the highest mean Global Horizontal Irradiance
(GHI) at 2005.27 kWh/m?/day, and the top 10% of its solar zones reach 2113.09 kWh/m?/day.
Puntarenas follows with a mean GHI of 1885.08 kWh/m?/day, while Cartago and San José display
lower solar potential, at 1612.32 and 1747.36 kWh/m?/day, respectively.
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Figure 1. Wind and Solar Maps of Costa Rica. Caption: This figure illustrates the spatial distribution of wind
speed (panel a) and solar irradiance (GHI) (panel b) across Costa Rica. Panel (a) shows wind speeds ranging

from 2-12 m/s, with Guanacaste exhibiting the strongest values. Panel (b) presents solar irradiance from 1200-
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2200 kWh/m?/day, again with Guanacaste recording the highest GHI. Both maps include provincial boundaries
to support geographical context and aid in identifying priority areas for renewable energy development.

In summary, Guanacaste clearly stands out as the leading region for both wind and solar
deployment, positioning it as a focal point for renewable energy investment in Costa Rica.

5.2. Solar and Wind Energy Potential Across the United Kingdom and Northern Ireland

The solar irradiance (GHI) values across the four regions of the United Kingdom show regional
variations in solar potential. Figure 2 displays the solar potential in England, Wales, Scotland, and
Northern Ireland. In England (Figure 2a), the mean GHI is 2.73 kWh/m?/day, with the highest
recorded value of 3.17 kWh/m?/day and the lowest at 1.64 kWh/m?/day. The top 10% of solar zones
in England have a threshold of 2.91 kWh/m?/day, with a mean of 2.98 kWh/m?/day. In Wales (Figure
2b), the mean GHI is slightly lower at 2.67 kWh/m?/day, with values ranging from 1.57 kWh/m?/day
to 3.00 kWh/m?/day. The top 10% solar zones in Wales have a threshold of 2.83 kWh/m?/day and a
mean of 2.89 kWh/m?/day. Scotland (Figure 2c) shows a mean GHI of 2.35 kWh/m?/day, with the
minimum at 1.18 kWh/m?/day and the maximum at 2.76 kWh/m?/day. The top 10% solar zones in
Scotland have a threshold of 2.50 kWh/m?/day and a mean of 2.56 kWh/m?/day. Finally, Northern
Ireland (Figure 2d) has a mean GHI of 2.44 kWh/m?/day, ranging from 1.97 kWh/m?/day to 2.66
kWh/m?/day, with the top 10% solar zones having a threshold of 2.50 kWh/m?/day and a mean of
2.56 kWh/m?/day.
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Figure 2. Solar Potential (GHI) for England, Wales, Scotland, and Northern Ireland. Caption: This figure displays
the Global Horizontal Irradiance (GHI) for four regions of the United Kingdom: England, Wales, Scotland, and
Northern Ireland. Each region’s solar potential is shown in a separate subplot, labeled (a) for England, (b) for
Wales, (c) for Scotland, and (d) for Northern Ireland, with individual colorbars representing the average daily
solar irradiance (kWh/m?/day). The plasma colormap is used to visualize varying levels of solar energy intensity,
with brighter regions indicating higher irradiance levels. These maps provide valuable insights for assessing the

regional solar potential essential for renewable energy planning.

In terms of wind speed at 100m height, Figure 3 illustrates the wind potential for the same four
regions. For England (Figure 3a), the average wind power density is 456.21 W/m?, with a maximum
value of 2725.38 W/m? and a minimum of 55.03 W/m?. The top 10% wind zones in England have a
threshold of 612.94 W/m?, with a mean of 655.79 W/m?2. Wales (Figure 3b) shows onshore wind speeds
with a mean of 8.57 m/s and a maximum of 16.32 m/s. The offshore wind speed in Wales is slightly
higher, with a mean of 9.20 m/s and a maximum of 13.72 m/s. The top 10% wind zones in Wales have
a threshold of 9.90 m/s and a mean of 10.23 m/s. In Scotland (Figure 3c), the onshore wind speed has
a mean of 8.66 m/s, with a maximum of 18.78 m/s. Offshore wind speeds in Scotland are higher, with
a mean of 9.92 m/s and a maximum of 16.45 m/s, and the top 10% wind zones show a threshold of
10.21 m/s and a mean of 11.20 m/s. For Northern Ireland (Figure 3d), the onshore wind speed is 9.00
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m/s on average, with a maximum of 16.45 m/s, while offshore wind speeds have a mean of 9.33 m/s
and a maximum of 17.20 m/s. The top 10% wind zones in Northern Ireland show a threshold of 9.78
m/s and a mean of 10.34 m/s.
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Figure 3. Wind Speed (100m Height) for England, Wales, Scotland, and Northern Ireland. Caption: Figure 3
presents the wind speed data at 100 meters height across England, Wales, Scotland, and Northern Ireland. Each
subplot, labeled (a) for England, (b) for Wales, (c) for Scotland, and (d) for Northern Ireland, shows the wind
speed distribution with individual colorbars. The viridis colormap is used to visualize wind speed variations,
where brighter areas indicate stronger wind speeds. These maps are essential for evaluating the feasibility of

onshore wind energy generation, highlighting regions with higher wind potential.

These results indicate significant variability in both solar and wind potential across the regions.
The data highlights that offshore areas (such as those in Wales, Scotland, and Northern Ireland) tend
to have stronger wind speeds, which could be ideal for offshore wind energy projects. Similarly, the
solar potential across all regions varies slightly, with England and Wales showing the highest solar
irradiance values.

5.3. LCOH Estimations for Costa Rica and the United Kingdom

Hydrogen production costs, expressed as the Levelized Cost of Hydrogen (LCOH), were
evaluated across multiple locations in Costa Rica and the United Kingdom, incorporating local
renewable energy potentials, as well as region-specific CAPEX, OPEX, and electricity pricing. The
results indicate marked spatial disparities, with cost variations largely influenced by factors such as
solar irradiance, wind resource availability, and the degree of existing infrastructure development.

In Costa Rica, Guanacaste emerged as the most economically favorable region, with the lowest
LCOH of $1.03 per kg Ho, attributed to its exceptional wind and solar resource availability. This is
followed by Puntarenas at $1.66 and San José at $2.38 per kg H,. Regions such as Limon ($2.90),
Cartago ($3.09), Alajuela ($2.78), and Heredia ($2.84) exhibit comparatively higher LCOH due to less
favorable renewable profiles or slightly increased infrastructure and energy costs. Across Costa Rica,
solar adjustments showed minimal impact on final LCOH values, indicating the dominance of
baseline techno-economic parameters in driving cost outcomes.

In the United Kingdom, Northern Ireland recorded the lowest LCOH at $2.74 per kg H,,
primarily due to strong offshore wind potential. Scotland and Wales followed closely with LCOH
estimates of $2.92 and $2.96, respectively. England, by contrast, presented the highest cost, with an
LCOH of $3.17 per kg H,. The influence of offshore wind resources is evident, as regions with greater
access to these resources show noticeably lower production costs. Solar adjustments produced
marginal reductions across most UK regions, further narrowing the cost gap but without overturning
the regional hierarchy in cost competitiveness.

These regional results are visualized in Figure 4, which compares LCOH values across Costa
Rica and the UK using color-coded bar charts to highlight spatial cost differences.
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Figure 4. LCOH Comparison for Costa Rica and the United Kingdom. Caption: Figure 4 presents the Levelized
Cost of Hydrogen (LCOH) for various regions in Costa Rica and the United Kingdom. Panel (a) shows the LCOH
for Costa Rica, where regions like Guanacaste and Puntarenas exhibit the lowest costs, while panel (b) displays
the LCOH for the United Kingdom, with Northern Ireland showing the most favorable economics. The color
scale reflects the variations in LCOH across both countries, with brighter colors indicating higher costs. These
results provide insight into regional cost differences for hydrogen production, valuable for investment and

policy decisions in green hydrogen development.

These findings reinforce the critical role of local renewable energy potential in shaping hydrogen
production costs. While Costa Rica offers lower baseline costs due to abundant resources and lower
energy prices, the UK’s offshore wind advantage plays a pivotal role in enhancing its
competitiveness. Such spatial cost insights are essential for guiding targeted investment,
infrastructure planning, and policy incentives in the global transition to green hydrogen.

5.4. NPV Comparison for Hydrogen Production in Costa Rica and the United Kingdom

The Net Present Value (NPV) estimates for hydrogen production highlight significant contrasts
in the economic potential between Costa Rica and the United Kingdom. As shown in Figure 5, Costa
Rica achieves a higher NPV of approximately $4.76 million, driven by lower electricity costs and the
availability of abundant renewable resources, especially solar and wind. In contrast, the United
Kingdom's NPV is $3.20 million, reflecting the impact of higher electricity prices and greater capital
expenditures associated with offshore wind infrastructure.

This comparative result demonstrates that, under a consistent modeling framework and
investment scenario, Costa Rica presents a more favorable economic environment for green hydrogen
production. The elevated NPV in Costa Rica signals stronger return on investment, largely enabled
by efficient energy inputs and reduced operational costs. Meanwhile, the UK's resource structure and
cost profile contribute to tighter margins, though the market remains promising with policy-driven
support.
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Figure 5. Net Present Value (NPV) Comparison between Costa Rica and the United Kingdom. Caption: This
heatmap compares the Net Present Value (NPV) of hydrogen production for Costa Rica and the United Kingdom
using a consistent economic model. The visualization applies the Viridis colormap, where color intensity reflects
the magnitude of the NPV for each country. Costa Rica displays a more intense color, corresponding to its higher
NPV ($4.76M), while the United Kingdom appears with a less intense tone, aligned with its lower NPV ($3.20M).

The accompanying colorbar contextualizes the differences in value intensity across the two nations.

These results underscore the strategic influence of local energy economics and renewable
resource availability in shaping hydrogen investment potential. While the UK remains viable,
particularly with support for offshore wind, Costa Rica’s cost-efficient, renewables-rich energy
landscape positions it as a leading candidate for green hydrogen development under the current
assumptions.

5.5. Machine Learning Model Performance Comparison

To assess the predictive performance of the machine learning models used to estimate the
Levelized Cost of Hydrogen (LCOH) in Costa Rica and the United Kingdom, three core error metrics
were analyzed: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Cross-Validated MSE.
These metrics quantify both the accuracy and generalization ability of the trained Random Forest
models and are summarized in Figure 6.

Costa Rica’s model exhibited lower errors across all evaluated metrics, with a MAE of 0.301,
MSE of 0.091, and a Cross-Validated MSE of -0.076, indicating relatively strong performance despite
the limited dataset. However, the R? score could not be defined due to the small number of test
samples, highlighting a constraint in evaluating model generalization. In contrast, the UK model
achieved a higher MAE of 0.416, MSE of 0.296, and a Cross-Validated MSE of -0.815, but benefited
from a more robust dataset, resulting in a high R? score of 0.987. This suggests that while the UK
model performs well in explaining variance, it experiences greater variability in prediction error
when validated across folds.

(a) (b)

0.416 0.30 0.296

-0.076
0.275 o1

0.250 —0.2

0.301

0.20 0.225

0.200

0.175

(SIPMIA) A3isusyul Jo1i3
Value
o
-
7]
(SIPUIA) Aysusyug Joui3
Value
(s1P1IA) Ayisusyu) Jous3

0.10 0.091
0,150

0.32 0.05 0.125

0.100

Costa Rica United Kingdom Costa Rica United Kingdom Costa Rica United Kingdom

Figure 6. Machine Learning Error Metrics Comparison for Costa Rica and the United Kingdom. Caption: This

figure compares the performance of machine learning models used to predict the Levelized Cost of Hydrogen
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(LCOH) in Costa Rica and the United Kingdom, using three key error metrics: (a) Mean Absolute Error (MAE),
(b) Mean Squared Error (MSE), and (c) Cross-Validated MSE. Each subplot uses an independent Viridis
colormap to visualize the magnitude of errors, with higher color intensity indicating greater error values. The
Costa Rican model demonstrates lower errors across all metrics, suggesting better fit and lower variability,
though its R? score is undefined due to a limited test sample. In contrast, the UK model, while achieving high
R?, exhibits higher error values, particularly in cross-validation, indicating more variability in prediction

performance.

These findings emphasize the importance of both dataset size and variability in assessing model
reliability. They also demonstrate how different data environments influence predictive performance
when applying machine learning to techno-economic modeling in green hydrogen analysis.

5.6. Sensitivity Analysis of Hydrogen Economics in Costa Rica and the United Kingdom

To assess the robustness of hydrogen production economics in response to fluctuating input
costs, a detailed sensitivity analysis was conducted for both Costa Rica and the United Kingdom. This
analysis explored the impacts of capital expenditure (CAPEX) and electricity price on two critical
indicators: the Levelized Cost of Hydrogen (LCOH) and Net Present Value (NPV). The results reveal
significant disparities in cost sensitivity between the two countries. In Costa Rica, LCOH remained
below $5.00 per kg H, across a wide range of CAPEX and electricity prices, demonstrating strong
economic resilience. NPV values also maintained positive levels throughout much of the parameter
space, indicating attractive investment potential even under adverse cost conditions. In contrast, the
UK model showed greater sensitivity to increases in electricity price and CAPEX, with the LCOH
exceeding $10.00 per kg H, in several regions and a narrower window for achieving positive NPV.
The contour plots presented in Figure 7 help visualize these economic trade-offs, with distinct
gradients showing how modest adjustments in input parameters can drastically alter project viability.
Notably, the UK’s economic feasibility is tightly clustered in a limited range of low CAPEX and
electricity prices, suggesting that hydrogen projects in the UK require stricter cost control and
stronger policy support to remain viable.
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Figure 7. Sensitivity Analysis of LCOH and NPV for Costa Rica and the United Kingdom. Caption: Figure 7
presents a comparative sensitivity analysis of the Levelized Cost of Hydrogen (LCOH) and Net Present Value
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(NPV) for Costa Rica and the United Kingdom. Panels (a) and (b) show the sensitivity of LCOH and NPV to
variations in CAPEX and electricity price for Costa Rica, while panels (c) and (d) present the corresponding
analysis for the United Kingdom. The contour plots use color gradients to represent economic performance, with
contour lines highlighting zones of equal values for easier interpretation. Costa Rica demonstrates a broader
low-LCOH region and higher NPV resilience compared to the UK, indicating its greater economic advantage
under fluctuating cost conditions. These visualizations offer valuable insights into investment robustness and

help identify favorable techno-economic configurations in both countries.

Overall, this comparative sensitivity analysis underscores Costa Rica’s stronger economic
fundamentals for hydrogen production and highlights the critical role of input price management in
scaling green hydrogen deployment in more cost-sensitive regions.

6. Discussion

This comparative modeling study of green hydrogen development in Costa Rica and the UK
reveals several critical insights into how national contexts shape the techno-economic viability of
hydrogen production. While both countries aim to expand hydrogen capacity, their respective
strengths —Costa Rica’s abundant renewable resources and the UK'’s infrastructure and policy
maturity —lead to divergent cost drivers, investment risks, and strategic trajectories. In Costa Rica,
the sensitivity of Levelized Cost of Hydrogen (LCOH) to electricity prices and system scale
underscores the need for targeted incentives and optimization of small-scale, distributed systems.
These findings are reinforced by the country’s comprehensive Estrategia Nacional de Hidrogeno
Verde 2022-2050, which outlines a phased approach to hydrogen market development, promotes
decentralized production hubs, and projects up to 13 million tons of CO, abatement and significant
job creation by mid-century (MINAE, 2022). In contrast, the UK’s results highlight how policy
instruments like subsidies and carbon pricing can buffer high CAPEX scenarios, enabling more
ambitious infrastructure expansion and offshore integration. These outcomes align with the national
UK Hydrogen Strategy, which advances a twin-track production model, a 5GW hydrogen target by
2030, and a £240 million Net Zero Hydrogen Fund to catalyze private sector investment and
deployment (Department for Business, Energy & Industrial Strategy, 2021).

Machine learning techniques —especially Random Forest algorithms paired with SHAP value
analysis—proved effective not only in enhancing prediction accuracy but also in revealing the
relative influence of key input variables. Across both national models, electricity prices, capital
expenditure (CAPEX), and system efficiency consistently surfaced as the most significant drivers of
LCOH. Additionally, scenario-based assessments demonstrated that certain system configurations
maintain economic viability even amid policy shifts or market volatility. These outcomes highlight
the potential of ML-augmented cost models to inform both strategic investment and evidence-based
policy development, especially when reinforced by Monte Carlo simulations for uncertainty
quantification. This conclusion supports the work of Chen et al. (2023), who argue that machine
learning enhances the assessment of green technology innovation by detecting meaningful, policy-
relevant patterns in complex energy systems.

This study also extends the foundational work of Navarro Jiménez and Zheng (2024), who
modeled hydrogen production costs in Costa Rica using Monte Carlo simulations. Their research
provides valuable insights into spatial resource variability and local techno-economic performance
but focuses solely on a single national context. By contrast, the current comparative framework
incorporates both developed and emerging market perspectives and employs machine learning for
cross-scenario cost forecasting and model explainability. This broader approach enhances the
applicability of findings for a wider range of stakeholders, including investors and policymakers
navigating heterogeneous policy and resource environments.

Moreover, the broader infrastructural and technological challenges emphasized in this research
echo those identified by Jayachandran et al. (2024), who highlighted key barriers to green hydrogen
adoption, including electrolyzer efficiency limitations, storage safety, and infrastructure immaturity.
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These systemic constraints underscore the importance of coupling advanced forecasting models with
strategic infrastructure planning to bridge the gap between potential and implementation. The U.S.
National Clean Hydrogen Strategy and Roadmap reinforces this by advocating co-located Regional
Hydrogen Hubs and mobilizing over $9.5 billion in public funding —augmented by tax credits—to
reduce delivered costs and strengthen clean energy supply chains (U.S. Department of Energy, 2023).
Complementing this infrastructural focus, Mullanu et al. (2024) emphasize how Al—particularly
machine learning—can address operational complexities in hydrogen-integrated systems, from
supply-demand balancing to optimal energy flow coordination. Together, these perspectives
highlight the need for holistic solutions that integrate planning, investment, and intelligent control
systems to accelerate hydrogen deployment.

This discussion is further reinforced by the spatial modeling insights from Miiller et al. (2023),
who used a GIS-based least-cost optimization framework in Kenya to highlight the importance of
aligning production, transport, and demand zones. Their work illustrates how geospatial planning —
particularly in low- and middle-income countries—can minimize costs and maximize viability, a
principle equally relevant to Costa Rica’s decentralized hydrogen strategy.

A notable opportunity emerging from this comparative framework lies in potential bilateral
cooperation between Costa Rica and the UK. Their contrasting yet complementary profiles present a
compelling case for collaboration in areas such as electrolyser technology transfer, machine learning
applications in cost forecasting, and co-development of pilot projects. The UK’s experience with green
financing instruments and regulatory standards could support Costa Rica’s hydrogen market
maturity, while Costa Rica’s renewable expertise offers insights into sustainable, decentralized
hydrogen systems. International partnerships —facilitated through institutions like GIZ, IADB, or the
UK Infrastructure Bank—could enable blended financing models that support both technological
deployment and social equity goals in emerging markets.

Finally, the study identifies critical areas for future research. These include the development of
open, interoperable datasets for hydrogen cost modeling, greater integration of demand-side
forecasting, and benchmarking of ML models across geographic and economic contexts. A
compelling example of these priorities in action is Colombia’s hydrogen strategy, which combines
solar, wind, and biomass pathways to project a production capacity of 9 Mt/a by 2050 —surpassing
internal demand and capturing 1.2% of global market potential through a combined investment of
$244 billion (Rodriguez-Fontalvo et al., 2024). Like Costa Rica, Colombia leverages tropical resource
abundance to position itself as a competitive green hydrogen exporter. In contrast, the UK’s trajectory
emphasizes offshore integration, carbon pricing, and public-private financing to scale production.
Together, these national strategies highlight the importance of aligning hydrogen deployment with
geographic, economic, and infrastructural contexts. Such regionally tailored approaches will be
essential to advancing reliable, equitable green hydrogen deployment on a global scale.

This study demonstrates the value of integrated techno-economic and ML-based approaches for
advancing hydrogen strategies in both emerging and advanced economies.

7. Conclusion

This study offers a comparative, machine learning-driven modeling framework for assessing the
techno-economic feasibility of green hydrogen production in Costa Rica and the United Kingdom.
By leveraging regional renewable resource data, spatial analysis, and economic modeling integrated
with machine learning tools like Random Forest and SHAP values, the research identifies key drivers
influencing hydrogen costs across two distinct policy and infrastructure contexts. Costa Rica's
strength in renewable abundance contrasts with the UK’s policy maturity and industrial readiness,
resulting in different investment risk profiles and cost sensitivities. The integration of Monte Carlo
simulations further enriched the analysis by quantifying uncertainty in Net Present Value (NPV) and
Levelized Cost of Hydrogen (LCOH) estimates under varied policy and market conditions.

The findings underscore the value of interpretable Al tools in de-risking hydrogen investments,
especially in emerging markets. Importantly, the paper reveals how machine learning enhances not
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only forecast accuracy but also policy relevance through transparent model explainability. While
national strategies such as Costa Rica’s Estrategia Nacional de Hidrégeno Verde and the UK
Hydrogen Strategy lay foundational policy blueprints, this research bridges the gap between
aspirational planning and cost-grounded implementation. The study also suggests pathways for
international collaboration, including technology transfer, joint pilot programs, and blended finance
models, which can accelerate hydrogen deployment while aligning with climate and development
goals.

Future work should focus on refining regional datasets, expanding cross-country ML
benchmarking, and integrating dynamic demand modeling. Doing so will further improve model
generalizability and decision-making accuracy across global hydrogen markets. Ultimately, this
research contributes to a growing body of evidence that supports green hydrogen as both a
decarbonization tool and a vector for inclusive, resilient energy transitions worldwide.
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