Preprint
Article

Bayesian estimation of the fractional Ornstein-Uhlenbeck instantaneous rate of asset return process: Evidence from high-frequency stock price data

Altmetrics

Downloads

2094

Views

1585

Comments

0

This version is not peer-reviewed

Submitted:

04 July 2016

Posted:

04 July 2016

You are already at the latest version

Alerts
Abstract
Using recent developments in econometrics and computational statistics we consider the estimation of the instantaneous rate of asset return process when the underlying Data Generating Mechanism (DGM) is an Ornstein-Uhlenbeck process, driven by fractional noise, and sampled at fixed intervals of length h. To address the problem we adopt throughout the paper an exact discretization approach. This enable us to exploit the fact that a flow sampling scheme arises naturally when observing the DGM. For, while the instantaneous rate of return process is unobservable at points in time, its time integral over successive observations is observable since it equals the increment of log-prices. Exact discretization delivers an ARIMA(1,1,1) model for log-prices with a fractional driving noise. Building on the resulting exact discretization formulae and covariance function, a new Markov Chain Monte Carlo (MCMC) scheme is proposed and we examine the properties of both the time and frequency domain likelihoods / posteriors through Monte Carlo. For the exact discrete model we adopt a general sampling interval of length h. This allow us to determine the optimal choice of h independent of the sample size. An empirical application using high frequency stock price data is presented showing the relevance of aggregation over time issues in modelling asset prices.
Keywords: 
Subject: Business, Economics and Management  -   Econometrics and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated