Preprint
Article

Visual Symmetry: From Geometry to Sensation and Preference

Altmetrics

Downloads

1809

Views

1201

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

04 August 2016

Posted:

05 August 2016

You are already at the latest version

Alerts
Abstract
Evolution and geometry generate complexity in similar ways. Evolution drives natural selection while geometry may capture the logic of this selection and express it visually, in terms of specific generic properties representing some kind of advantage. Geometry is ideally suited for expressing the logic of evolutionary selection for symmetry, which is found in the shape curves of vein systems and other natural objects such as leaves, cell membranes, or tunnel systems built by ants. The topology and geometry of symmetry is controlled by numerical parameters, which act in analogy with a biological organism's DNA. The introductory part of this paper reviews findings from experiments illustrating the critical role of two-dimensional design parameters and shape symmetry for visual or tactile shape sensation, and for perception-based decision making in populations of experts and non-experts. Thereafter, results from a pilot study on the effects of fractal symmetry, referred to herein as the symmetry of things in a thing, on aesthetic judgments and visual preference are presented. In a first experiment (psychophysical scaling procedure), non-expert observers had to rate (scale from 0 to 10) the perceived beauty of a random series of 2D fractal trees with varying degrees of fractal symmetry. In a second experiment (two-alternative forced choice procedure), they had to express their preference for one of two shapes from the series. The shape pairs were presented successively in random order. Results show that the smallest possible fractal deviation from "symmetry of things in a thing" significantly reduces the perceived attractiveness of such shapes. The potential of future studies where different levels of complexity of fractal patterns are weighed against different degrees of symmetry is pointed out in the conclusion.
Keywords: 
Subject: Social Sciences  -   Cognitive Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated