Preprint
Article

Seismic Damage Recognition Based on Watershed Segmentation of SAR Image Texture Features

Altmetrics

Downloads

1669

Views

1020

Comments

0

This version is not peer-reviewed

Submitted:

05 August 2016

Posted:

05 August 2016

You are already at the latest version

Alerts
Abstract
The information of seismic damage of buildings in SAR images of different time phase, especially in SAR images after earthquake, is easily disturbed by other factors, which affects the accuracy of information discrimination. In order to identify and evaluate the distribution information of the seismic damage accurately and make full use of the abundant texture features in the SAR image. The conventional method of change detection based on texture features usually takes the pixel as the calculating unit. In this paper, a method of texture feature change detection of SAR images based on watershed segmentation algorithm is proposed. Based on the optimization of texture feature parameters, the feature parameters are segmented by the watershed segmentation algorithm, and the feature object image is obtained. This method introduces the idea of object oriented, and carries out the calculation of the difference map at the object level, Finally, the classification threshold value of different types of seismic damage types is selected, and the recognition of building damage is achieved. Taking the ALOS data before and after the earthquake in Yushu as an example to verify the effectiveness of the method, the overall accuracy of the building extraction is 88.9%, Compared with pixel-based methods, it is proved that the proposed method is effective.
Keywords: 
Subject: Environmental and Earth Sciences  -   Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated