Preprint
Article

Comparison of Pixel- and Object-Based Approaches in Phenology-Based Rubber Plantation Mapping in Fragmented Landscapes

This version is not peer-reviewed.

Submitted:

06 August 2016

Posted:

06 August 2016

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Effectively mapping and monitoring rubber plantation is still changing. Previous studies have explored the potential of phenology features for rubber plantation mapping through a pixel-based approach (pixel-based phenology approach). However, in fragmented mountainous Xishuangbanna, it could lead to noises and low accuracy of resultant maps. In this study, we investigated the capability of an integrated approach by combining phenology information with an object-based approach (object-based phenology approach) to map rubber plantations in Xishuangbanna. Moderate Resolution Imaging Spectroradiometer (MODIS) data were firstly used to acquire the temporal profile and phenological features of rubber plantations and natural forests, which delineates the time windows of defoliation and foliation phases. Landsat images were then used to extract a phenology algorithm comparing three different approaches: pixel-based phenology, object-based phenology, and extended object-based phenology to separate rubber plantations and natural forests. The results showed that the two object-based approaches achieved higher accuracy than the pixel-based approach, having overall accuracies of 96.4%, 97.4%, and 95.5%, respectively. This study proved the reliability of a phenology-based rubber mapping in fragmented landscapes with a distinct dry/cool season using Landsat images. This study indicated that the object-based phenology approaches can effectively improve the accuracy of the resultant maps in fragmented landscapes.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

2071

Views

1427

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated