Preprint
Article

The Analytical Solution of Parabolic Volterra Integro- Differential Equations in the Infinite Domain

Altmetrics

Downloads

1401

Views

1101

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

11 August 2016

Posted:

11 August 2016

You are already at the latest version

Alerts
Abstract
This article focuses on obtaining the analytical solutions for parabolic Volterra integro- differential equations in d-dimensional with different types frictional memory kernel. Based on theories of Laplace transform, Fourier transform, the properties of Fox-H function and convolution theorem, analytical solutions of the equations in the infinite domain are derived under three frictional memory kernel functions respectively. The analytical solutions are expressed by infinite series, the generalized multi-parameter Mittag-Leffler function, Fox-H function and convolution form of Fourier transform. In addition, the graphical representations of the analytical solution under different parameters are given for one-dimensional parabolic Volterra integro-differential equation with power-law memory kernel. It can be seen that the solution curves subject to Gaussian decay at any given moment.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated