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Abstract: This article focuses on obtaining the analytical solutions for parabolic Volterra integro‐ 
differential  equations  in  d‐dimensional with  different  types  frictional memory  kernel.  Based  on 

theories of Laplace transform, Fourier transform, the properties of Fox‐H function and convolution 

theorem,  analytical  solutions  of  the  equations  in  the  infinite  domain  are  derived  under  three 

frictional memory kernel  functions respectively. The analytical solutions are expressed by  infinite 

series,  the  generalized multi‐parameter Mittag‐Leffler  function,  Fox‐H  function  and  convolution 

form of Fourier transform. In addition, the graphical representations of the analytical solution under 

different parameters are given for one‐dimensional parabolic Volterra integro‐differential equation 

with power‐law memory kernel. It can be seen that the solution curves subject to Gaussian decay at 

any given moment. 

Keywords:  parabolic Volterra  integro‐differential  equations; memory  kernel;  Laplace  transform; 

Fourier transform; convolution theorem; analytical solution 

 

1. Introduction 

In  this  paper,  we  will  consider  the  following  -d dimensional  parabolic  Volterra  integro‐ 

differential equation with memory kernel ( )tK [1] 
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Where  function ( , )xf t and  memory  kernel  function ( )tK are  assumed  as  sufficiently  smooth 

functions, and is the  -d dimensional Laplacian operator. 

Parabolic Volterra integro‐differential equations have many important physical applications to 

model  dynamical  systems,  such  as  in  compression  of  viscoelastic  media[2],  nuclear  reactor 

dynamics [3], blow‐up problems [4], reaction diffusion problems [5]and heat conduction materials 

with  memory  functional  [6].etc.  At  present,  analysis  of  numerical  solution  of  Volterra 

integral‐differential  equations  is  taken  into  account by many  authors. Dehghan et  al.  [6] studied 

numerical solution of parabolic integro‐differential equations by variational iteration method. Han 

et  al.  [1]  proposed  the artificial boundary method  to solve parabolic Volterra  integro differential 

equations (one‐dimensional)  in the  infinite  spatial domains. Fakhar‐Izadi et  al.  [7] considered  the 

parabolic  Volterra  integro‐differential  equation  in  one  dimensional  finite  and  infinite  spatial 

domains by spectral collocation methods. However, to the authors’ knowledge, there are no studies 
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on the analytical solutions of parabolic partial Volterra integro‐ differential equation in the infinite 

domain.  In  this  article,  our  goal  is  mainly  to  discuss  analytical  solutions  of  Eq.(1) with  three 

different kinds memory kernel function in the infinite domain. 

This paper  is organized as  follows.  In Sec.2, some definitions and  lemmas are  introduced.  In 

Sec.3, the analytical solutions of parabolic Volterra integro‐differential equation with three different 

kinds of memory kernel are demonstrated  in  the  infinite domain.  In Sec.4, a typical example and 

some graphical representations of the solution are presented. Some conclusions are given in Sec.5. 

2. Preliminaries   

In this section, we give some definitions and lemmas that are used throughout this paper. 

Definition 1 Four‐parameter Mittag‐Leffler (M‐L) function is defined as [8] 

,
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where , , , , ( )z      � max   0, ( ) 1 , ( ) 0     ,  with  Pochammer’s  symbol ( )n  

can be expressed as 
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It is worth noting that when 1  , the three parameter Mittag‐Leffler function can be obtained as 

,1
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where , ( ) 0. , 0z      � . 

Note  that, when 1  , we  can  obtain  two  parameter Mittag‐Leffler  function
1
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where , ( ) 0.z    � ，  Note  that ,1( )E  reduces  to  Mittag‐Leffler  function  ( )E  when 

1  , then   
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where ( ) 0.z   � ，   In particular, we can obtain regular exponential function when 1  . 

Definition 2 An integral operator
; ,
; ,

w
a

 
 E is defined as [11] 
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It is worth noting that, when 0w  and 0a  , integral operator
; ,
; ,

w
a

 
 E   would correspond to 

the Riemann‐Liouville integral operator[8]. 

In this subsection, we will introduce some lemmas about Laplace transform, which will be help 

us handling some problems in the next section. 

Lemma 1. Let , , ,s b  n  � , then the following inverse Laplace transform (
1L ) is true [12]. 
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Lemma 2. The Laplace transform of three parameter Mittag‐Leffler function is given by [13] 
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where  / ( ) 1w s   . 

In fact, by Laplaceʹs transform definition, one easily gets 
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Through simplicity, the above formula finally reduces to 
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Therefore, above Lemma 3. can be proved. 

It is worth noting that in case  0  , the structure of Lemma 3 is equivalent to Lemma 2. 

Lemma 4 gives one important  -d dimensional integral formula about Mittag‐Leffler function. 

Lemma 4. For arbitrary  0  ,  is an arbitrary complex number, in addition  0  ，and  a R , 

then the following formula is established [14] 
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where /2 1( )dJ   is Bessel function, and 
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3. Analytical solution of parabolic Volterra integro‐differential equation in the infinite domain 

3.1. Analytical solution with frictional memory kernel of M‐L type  1
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In this case, Eq.(1) can be written as following 

1
,0

( , ) 1 ( )
( ) ( ) ( , )d ( , ) ( , ). 0
t du t t t
t t E u t t u t f t R t

t


 

   
          

  ，
x

x x x x  (11) 

where , , 0    , is the memory time. 

Theorem3.1. The analytical solution of parabolic Volterra integro‐differential Eq.(11) with boundary 

conditions and initial condition (2) can be expressed as the following form 
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In which ( , )G x t is the Green function, reads as 
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In  general,  denotes ( , ) ( , )d
d
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f t e f t   k xk x k is  the  Fourier  transform  of ( , )f tx with 

respect to the spatial variable x . 

Proof.    Denotes  ( , ) : ( , )x ku t u t F as  the Fourier  transform of  ( , )xu t with  respect  to variable 

x ,  ( , ) :xu tL ˆ( , )xu s   as  the Laplace  transform of  ( , )xu t with  respect  to variable  t . Taking 

the Laplace transform with respect to the time variable t and the Fourier transform with respect to 

the spatial variable x to Eq.(11), it can be written as the following result 
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Using the initial condition, it yields 
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Employing Lemma 2, we can get 
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Substituting Eq.(16) and Eq.(15) into the first term of Eq. (14), we have 
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By  applying  inverse  Laplace  transform,  the  convolution  definition  of  Laplace  transform  and 

definition 2, we can obtain the inverse Laplace transform of the first term in Eq.(14) as follows 

 1

2

1
( , ) ( ) ( )

1
( )

k
k

f t s t
s

s
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 

    






 
 
  
    

L L  

 
2

; ( ),1
0 ; ,( 1)( ) 1

0 0

1
( ) ( ) ( , ).

1/

k
k

i
i n i n

i n n
i n

i
f t

n

 
   



 
    

 

 
  

 
  E                                     (18) 

It follows that the inverse Laplace transform of the second term in Eq.(14) is 

1

2

1
( ) ( )

1
( )

k
k
g t

s
s

s

 

    






 
 
  
    

L  

2

( 1)( )+ ( )
,( 1)( ) 1

0 0

1
( ) ( ) ( ) ( ).

1/

i
i n i n n i n

i n n
i n

i
t E t g

n
   

   
 


   

   
 

 
  

 
 

k
k         (19) 

According to Eq.(18)‐(19), we can obtain  ( , )u t k from Eq.(14) 
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 
2

; ( ),1
0 ; ,( 1)( ) 1

0 0

1
( , ) ( ) ( ) ( , )

1/

k
k k

i
i n i n

i n n
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i
u t f t

n

 
   



 
    

 

 
   

 
   E  

 

2

( 1)( )+ ( )
,( 1)( ) 1

0 0

1
( ) ( ) ( ) ( ).

1/

i
i n i n n i n

i n n
i n

i
t E t g

n
   

   
 


   

   
 

 
  

 
 

k
k                         (20) 

Eq.(20) can be further manipulated by employing inverse Fourier transform 

 
2

; ( ),1
0 ; ,( 1)( ) 1

0 0

1 1
( , ) ( ) ( ) ( , )d

(2 ) 1/

k
x k k

d

i
i n i n d

i n nd R
i n

i
u t f t

n

 
    



 
    

 

 
   

 
  E  

2

( 1)( )+ ( )
,( 1)( ) 1

0 0

1 1
( ) ( ) ( ) ( )d .

(2 ) 1/d

i
i n i n n i n d

i n nd R
i n

i
t E t g

n
   

   
  


   

   
 

 
  

 
 

k
k k     (21) 

The second term in Eq.(21) can be further manipulated as follows 

2

( 1)( )+ ( )
,( 1)( ) 1

0 0

1 1
( ) ( ) ( ) ( )d

(2 ) 1/d

i
i n i n n i n d

i n nd R
i n

i
t E t g

n
   

   
  


   

   
 

 
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 
 

k
k k  
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2
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,( 1)( ) 1

0 0

1 1
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(2 ) 1/d d

i
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i
e t E t e g

n
   

   
  


      

   
 

      
 

  k x k xk
x x k

2

( ) ( 1)( )+ ( )
,( 1)( ) 1

0 0

1 1
( ) ( ) ( )d

(2 ) 1/d d

i
i i n i n n i n d

i n ndR R
i n

i
e t E t

n
   

   
  


      

   
 

  
     

    
   k x x k

k  

( )d .dg  x x                                   (22) 

Denote Green function ( , )xG t is   

2

( ) ( 1)( )+ ( )
,( 1)( ) 1

0 0

1 1
( , ) ( ) ( ) ( )d .

(2 ) 1/d

i
i i n i n n i n d

i n nd R
i n

i
G t e t E t

n
   

   
  


      

   
 

     
 

  k x x k
x x k

Therefore, we complete the proof of Theorem 3.1. 

3.2 Analytical solution with frictional memory kernel of power‐law type  ( ) ,0 1.
(1 )

t
t








  
 

K  

In this case, Eq.(1) can be written as the following form 

0

( , ) ( )
( , )d ( , ) ( , ),

(1 )

tu t t t
u t t u t f t

t





      
  
x

x x x  
dRx ， 0.t                        (23) 

Theorem3.2. The analytical solution of parabolic Volterra integro‐differential Eq.(23) with boundary 

conditions and initial condition (2) can be expressed as 

 2
; 1,1

0 ;1,(2 ) 1
0

1
( , ) ( 1) ( , ) d

(2 )
k k xx k k

d

jj i d
jd R

j

u t f t e


  
  



  E  
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    ( , ) ( )d .d
d

R
G t g    x x x x                                                             (24) 

The Green function ( , )xG t is given as 

2
2,0

1,2 1/2 0
2

(1 (2 ) ,1/ 2)1 ( )
( , ) .

( / 2,1/ 2), (1 ,1/ 2)!2 2

j

dd j

jt
G t H

d jj
t

 







    
 

 


x
x

x
  , dRx k  

There  ( ) : ( )g g x kF and  ( , ) : ( , )x kf t f t F are  the  Fourier  transform  of ( )g x and 

( , )xf t , respectively. 

Remark.  Employing  the  properties  of  the  Fox‐H  functions,  and  Green  function ( , )xG t can  be 

expressed as power series expansion [15] 

2
2

1/2 0 0
2

1 ( ) (1 / 2) ( 1)
( , )

! (1 (2 ) / 2) !
2

d k
j k

dd j k

t j k d
G x t

j j k d k
t






 

 

                 
 

x

x

2( 1)

1
0

2

( / 2 1) ( 1)
.

((1 ) ) !
2

k j
k

k

d j k

j k k
t



 





       
   

  


x

 

For  1

2

1

2t

x
� , therefore, the power‐law asymptotics behavior is given by 

2( 1)
2

1 1/2 0
2 2

1 ( ) (1 / 2) ( / 2 1)
( , ) .

! (1 (2 ) / 2) ((1 ) )
2 2

x x
x

x

d j
j

dd j

t j d d j
G t

j j d j
t t



 






                         
      

�  

Proof.    Employing  the Laplace  transform with  respect  to  variable  t and  Fourier  transform with 

respect to variable x , respectively. One obtains 

21 ˆˆ ˆ ˆ( , ) ( ,0) ( , ) ( , ) ( , ).su s u s u s u s f s    k k k k k k       
dRk                       (25) 

Taking into account the initial condition, Eq.(25) can be rewritten down as 

2 21 1

1 1ˆˆ( , ) ( , ) ( ).k k k
k k

u s f s g
s s s s  

 
   

                                              (26) 

Using the technique introduced by [12], we have                                                                                                                         

2 1

2 2 221 1

2

1 1 1
.

1
1

1

s

ss s s

s



 





 



  
 




k

k k k
                                                      (27) 

Expanding the third section of the right of the Eq.(27) and simplifying, one easy gets 

(1 ) 1
2

2 2 11
0

1
( ) .

( 1)

n
n

n
n

s

ss s





 

 


 
 

 k
k

（ ）

                                                      (28) 
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Employing Lemma 2 on Eq.(28), then the first term of the Eq. (26) can be expressed as 

21

1 ˆ ( , )f s
s s 

 k
k

2 1 2
2 , 1
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

         
 L L                 (29) 

According to Eq. (4), we have 
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j
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n
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n
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



 


 


 
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k
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22 1

1,(2 ) 1
0

( ) ( ).kj j
j

j

t E t



 

 


                                                                   (30) 

Applying convolution property of the Laplace transform and integral operator  ; ,
; ,

w
a

 
 E   definition, 

then the inverse Laplace transform of the first term in Eq.(26) can be obtained as follows 

 2
; 1,11

0 ;1,(2 ) 121
0

1
( , ) ( ) ( 1) ( , ).kk k

k

jj
j

j

f t s f t
s s




 
  



 
        

 L L E                         (31) 

Noting  that  the  relation  between  generalized Mittag‐Leffler  function  and  Fox‐H  function,  the 

inverse Laplace transform of the second term in Eq.(26) can be expressed as[15] 

21 (2 ) 1,1
1,221

0

( ,1)1 ( 1)
( ) ( ).

(0,1), ( (2 ) ,1)!

j
j

j

j
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jjs s


 


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

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         
 k k k

k
L             (32) 

Denote 

21,1
1,2

( ,1)
( , ) ,

(0,1), ( (2 ) ,1)

j
h t H t

j
  

    
k k                                               (33) 

and 

2

0

( )
( , ) ( , ).

!

j

j

t
G t h t

j






 k k                                                               (34) 

   Using the inverse Fourier transform to Eq.(33), we can obtain 

21,1
1,2

( ,1)1
( , ) d .

(0,1), ( (2 ) ,1)(2 )
k xx k k

d

i d
d R

j
h t H t e

j
  

    
                           (35) 

Using Lemma 4, we get the following result from Eq.(35) 

1 /2 /2 21,1
1,2 /2 1/2 0

( ,1)1
( , ) ( )d .

(0,1), ( (2 ) ,1)(2 )
x x k k x k k

d d d
dd

j
h t H t J

j




  
    

         (36) 

Employing Hankel transform and properties of the Fox‐H  functions [15,16,17], Then Eq.(36) can be 

written as 
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t
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x
x

x
                                  (37) 

Substituting Eq.(37) to the inverse Fourier transform of Eq.(34), we can obtain 

2
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2
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j
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Then Eq.(32) can also be written formally as 

 1 1
21

1
( ) ( , ) ( ) ( ) .g G s g

s s
 



 
       

k x k k
k

 L L F                                     (38) 

Applying an inverse Laplace transform to the Eq.(26), we can finally find 

   
2
; 1,1

0 ;1,(2 ) 1
0

( , ) ( 1) ( , ) ( , ) ( ) ( ).kk k x k kjj
j

j

u t f t G t g


 
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

    E F                             (39) 

The Eq.(39)can be  further manipulated by employing  inverse Fourier  transform and Fourier 

convolution theorem, respectively. Accordingly, the Theorem 3.2 is clearly demonstrated. 

3.3.Analytical solution with frictional memory kernel of exponential factor type  ( ) ,tt t e K 1.    

In this case, Eq.(1) can be written in the following form 

( )

0

( , )
( ) ( , )d ( , ) ( , ),
t t tu t
t t e u t t u t f t

t
          

 
x

x x x     0  , .dRx             (40) 

Theorem3.3. The analytical solution of parabolic Volterra integro‐differential Eq.(40) with boundary 

conditions and initial condition (2) can be expressed as the following analysis formula 

2 1 2
2, 1

0 0

1
( , ) ( 1) ( ) ( ) ( ) ( , ) d

(2 ) d

n
n t r n r n n i d

nd R
n r

n
u t e t E k t f t e

r
 

 



    

 
 

           
    

   k xx k k k  

  ( , ) ( )d ,
d

d

R
G t g    x x x x           , .dRx k                                       (41) 

Denoting ( 1)k    , using  the  asterisk( )denotes  a Laplace  convolution,  the Green  function 

( , )xG t is given by 

     
2 1 2

2, 1
0 0

1
( , ) ( 1) ( ) ( ) ( ) d .

(2 ) d

n
n t r n r n n i d

nd R
n r

n
G t e t E k t e

r
 

 



    

 
 

  
     

  
  k xx k k  

Proof.    Applying the Laplace and Fourier transform with respect to the time variable  t and spatial 
variable x to Eq.(40), respectively, and using the initial conditions, then Eq.(40) can be written as 

2(1 ) ˆˆ ˆ ˆ( , ) ( ,0) ( ) ( , ) ( , ) ( , ),su s u k s u s u s f s
        k k k k k k        .dRk             (42) 

From Eq.(42),we have 

2 2(1 ) (1 )

1 1ˆˆ( , ) ( , ) ( ).
( ) ( )

k k k
k k

u s f s g
s k s s k s 

     
 

     
                      (43) 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 August 2016            doi:10.20944/preprints201608.0129.v1 

 

  

  

Peer-reviewed version available at Entropy 2016, 18, 344; doi:10.3390/e18100344

http://dx.doi.org/preprints201608.0129.v1
http://www.preprints.org
http://dx.doi.org/10.3390/e18100344


 

Page 10 of 14 
 

Applying power series expanding, one obtains 

2 ( 1) 1

2 2 1(1 )
0

( ) ( )1
( 1) .

(( ) )( )

k

k

n n
n

n
n

s

s ks k s

 




 


  

  


 
 

   
                               (44) 

Combining Lemma 3, Eq.(44) can be expressed as 

2 1 2
2, 12(1 )

0

1
( 1) ( ) ( ) ( ).

( )
n t n n n

n
n

e t E k t s
s k s

 
 







  

  


         
 k

k
L                 (45) 

From Eq.(45), the first term in Eq.(43) can be written as formally 

 
2(1 )

1 ˆ ( , )
( )

f s
s k s 

   


  
 k

k
 

2 1 2
2, 1

0 0

( 1) ( ) ( ) ( ) ( ) ( , ) ( ).
n

n t r n r n n
n

n r

n
e t E k t s f t s

r
 

 


   
 

 

            
  k kL L   (46) 

Finally, the inverse Laplace transform of the first term in Eq.(43) can be rewritten down as 

1
2(1 )

1
( , ) ( )

( )
k

k
f t s

s k s 
 



 

 
        

L L  

2 1 2
2, 1

0 0

( 1) ( ) ( ) ( ) ( , ).
n

n t r n r n n
n

n r

n
e t E k t f t

r
 

 


   
 

 

  
     

  
  k k                   (47) 

After analogous manipulation, the inverse Laplace transform of  the second  term of Eq.(43) can be 

expressed as 

1
2(1 )

1
( )

( )
k

k
g

s k s 
 



 

 
 

    
L  

2 1 2
2, 1

0 0

( 1) ( ) ( ) ( ) ( ).
n

n t r n r n n
n

n r

n
e t E k t g

r
 

 


   
 

 

 
   

 
  k k                 (48) 

Performing an inverse Laplace transform in Eq.(43), we finally get 

 
2 1 2

2, 1
0 0

( , ) ( 1) ( ) ( ) ( ) ( , )
n

n t r n r n n
n

n r

n
u t e t E k t f t

r
 

 


   
 

 

  
       

  
   k k k  

2 1 2
2, 1

0 0

( 1) ( ) ( ) ( ) ( ).
n

n t r n r n n
n

n r

n
e t E k t g

r
 

 


   
 

 

  
    

  
  k k             (49) 

The solution is now obtained by performing inverse Fourier transform in Eq.(49), easy gets 

2 1 2
2, 1

0 0

1
( , ) ( 1) ( ) ( ) ( ) ( , )d

(2 ) d

n
n t r n r n n d

nd R
n r

n
u t e t E k t f t

r
 

 



   

 
 

  
       

  
  x k k k  
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2( ) 1 2

2, 1
0 0

1
( 1) ( ) ( ) ( ) d

(2 )d d

n
i n t r n r n n d

ndR R
n r

n
e e t E k t

r
 

 



      

 
 

   
      

    
   k x x k k  

( )d ,dg  x x                             (50) 

where the Green function is denoted as 

2( ) 1 2
2, 1

0 0

1
( , ) ( 1) ( ) ( ) ( ) d .

(2 ) d

n
i n t r n r n n d

nd R
n r

n
G t e e t E k t

r
 

 



      

 
 

        
  

  k x xx x k k  

Therefore, we complete the proof of Theorem 3.3. 

4. Example 

We  select  one‐dimensional  parabolic  Volterra  integro‐differential  equation with  power‐law 

memory  kernel  under  special  initial  conditions  (Dirac  delta  function)  in  the  infinite  domain. 

Let ( , ) 0f x t  , the initial boundary value problem in section 3.2 are 

0

( , ) ( )
( , )d ( , ) , 0 1, , 0

(1 )

( ,0) ( ), lim ( , ) 0, 0 , .

t

x

u x t t t
u x t t u x t x R t

t

u x x u x t t x R












            
    


                    (51) 

According to theorem3.2, the analytical solution can be expressed as following 

2
2,0

1,2 11/2
0

2

(1 (2 ) ,1/ 2)1 ( )
( , ) .

(1/ 2,1/ 2), (1 ,1/ 2)2 !
2

j

j

jxt
u x t H

jx j
t

 






    
 

 
                       (52) 

The  graphical  representation  of  solution  (52)  for  the  different  parameters  of   and  t are 
plotted in Figure.1, Figure.2 and Figure.3, Figure.4, respectively. 
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(c)  (d) 

(e) 

Figure 1.   Graphical representation of the solution at different times with  0.25, 0.85.   

 

 

 

 

 

 

 

 

 

 

Figure2.   Graphical representation of the solution with different parameters at times  0.2, 0.3.t   

 

 

 

 

 

 

 

 

Figure 3.   Graphical representation of the solution with  =0.25.  
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(f) 

 

 

Figure 4.    Graphical representation of the solution with  =0.85.  

5. Conclusions 

In a practical application, different types of the frictional memory kernel ( )tK have been used 

to describe a wide variety of complex dynamics and physical phenomena with memory effects. In 

this paper, by applying the method of the Laplace transform with respect to the time variable and 

Fourier  transform  with  respect  to  the  spatial  variable,  we  obtained  the  analytical  solutions  of 

parabolic Volterra integro‐differential equation with three different kinds of memory kernel in the 

infinite domain. The analytical solutions of the parabolic Volterra integro‐differential equation are 

consist  of  some  special  functions,  such  as  multi‐parameter  Mittag‐Leffler  function  and  Fox‐H 

function. It is worth mentioning that the analytical solution provided in Eq.(24) can also be obtained 

by taking the method of references [18‐20] to Eq.(23). In the end, some curves of analytical solution 

are  given.  Meanwhile,  the  analytical  solutions  we  obtained  from  parabolic  Volterra  integro‐ 

differential equation with different  types  frictional memory kernel provide much convenience  for 

practical applications. 
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