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Abstract: The mechanism of ciprofloxacin action involves interference with transcription and 
replication of bacterial DNA, which results in elevated oxidative stress, and bacterial cell death. 
Vorinostat was shown to induce oxidative DNA damage. In the current work, the possibility for 
interactive effect of vorinotat on ciprofloxacin-induced cytotoxicity against a number of reference 
bacteria was investigated. Standard bacterial strains were Escherichia coli ATCC 35218, 
Staphylococcus aureus ATCC29213, Pseudomonas aeruginosa ATCC 9027, Staphylococcus epidermidis 
ATCC 12228, Acinetobacter baumannii ATCC 17978, Proteus mirabilis ATCC 12459, Klebsiella 
pneumoniae ATCC 13883, methicillin-resistant Staphylococcus aureus (MRSA) (ATCC 43300), and 
Streptococcus pneumoniae (ATCC 25923). The antibacterial activity of ciprofloxacin with or without 
pretreatment of bacterial cells by vorinostat was examined using disc diffusion procedure and 
determination of the minimum inhibitory concentration (MIC) and zones of inhibition of bacterial 
growth. All tested bacterial strains showed sensitivity to ciprofloxacin. When pretreated with 
vorinostat, significantly larger zones of inhibition and smaller MIC values were observed in all 
bacterial strains compared ciprofloxacin alone. As a conclusion, current results showed the possible 
agonistic properties for vorinostat when it is used together with ciprofloxacin. Future research will 
be focus on molecular mechanisms possible for such interactive effect. 
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1. Introduction

Ciprofloxacin is the prototype member of the fluoroquinolones antibiotics group. It possesses both 
Gram-positive and Gram-negative activity. It is commonly used for the treatment of infections 
including urinary tract infections, chronic bacterial prostatitis, acute uncomplicated cystitis, and 
acute sinusitis [1]. The mechanism of action for the antibacterial properties of ciprofloxacin is not 
fully understood. Yet, the antibacterial action starts by interference with replication and 
transcription of DNA via inhibition of bacterial DNA gyrase/topoisomerase II and DNA 
topoisomerase IV, thus, prevention unwinding and duplication of bacterial DNA [2]. Eventually, 
quinolone-enzyme-DNA complexes are formed, which leads to “cellular poisons” generation and 
cell death [3,4]. Antibiotics including ciprofloxacin were shown to possess their antibacterial activity 
via induction of oxidative stress [5,6]. For instance, major reactive oxygen species including singlet 
oxygen (1O2) and superoxide anion (O2) were shown to be generated by ciprofloxacin [7]. Moreover, 
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multiple adverse effects for ciprofloxacin including phototoxicty and tendinopathies were associated 
with reactive oxygen species generation [7,8].  
Vorinostat (suberoylanilide hydroxamic acid) is a derivative of hydroxamic acid that inhibits both 
histone deacetylases classes I and II [9]. It has been approved in the USA for patients with refractory 
and relapsed cutaneous T-cell lymphoma with persistent, progressive or recurrent disease on/or 
following two systemic therapies [10-12]. The mechanism for vorinostat antiproliferative effect 
involves inhibiting the activity of histone deacetylase, leading to the accumulation of acetylated 
proteins, such as histones [9,13]. Additionally, vorinostat was shown to induce DNA damage that is 
related to oxidative lesions generation [14-16]. We have recently shown that vorinostat induce 
oxidative chromosomal damage leading its mutagenic effect in blood lymphocytes (ref). Recently, 
we showed that the antibacterial activity of ciprofloxacin is altered by major antioxidants, such as, 
vitamins E and C[17], tempol, pentoxifylline and melatonin [18].  Given that ciprofloxacin acts by 
inducement of bacterial oxidative damage [5,6], and the known oxidative cell-damaging activity of 
vorinostat [19], it is likely that vorinostat pretreatmnet enhances ciprofloxacin antibacterial activity. 
Therefore, in this study, the possibility of interaction between vorinostat and ciprofloxacin was 
investigated.  

2. Materials and Methods

Microbial culture and growth conditions 

Antibacterial activity of combinations of ciprofloxacin/vorinostat were investigated against a panel 
of reference bacteria that included Escherichia coli ATCC 35218, Staphylococcus aureus ATCC29213, 
Pseudomonas aeruginosa ATCC 9027, Staphylococcus epidermidis ATCC 12228, Acinetobacter baumannii 
ATCC 17978, Proteus mirabilis ATCC 12459, Klebsiella pneumoniae ATCC 13883, methicillin-resistant 
Staphylococcus aureus (MRSA) (ATCC 43300), and Streptococcus pneumoniae (ATCC 25923). The 
microorganisms were stored in 20% glycerol and trypticase-soy broth at -70 oC (BBL Microbiology 
Systems, Md, USA). Samples were thawed when ready for batch susceptibility testing. The MICs 
were evaluated as per the Clinical and Laboratory Standards Institute [20]. 

Testing of antimicrobial susceptibility 
On the day of use, solutions of antibiotic were prepared according to manufacturer’s 
recommendations. A panel of ciprofloxacin concentrations was used to test for susceptibility of 
various microorganisms. Two folds serial dilutions were added to plates containing molten BBL 
Muller-Hinton Gold II agar (BBL Microbiology Systems). The plates were slightly cooled and dried. 
Thereafter, aliquots of around 5x104 colony forming units per drop were added to each tested 
bacterial strain using a steer replicator. Plates were incubated at 37oC and read 24 hours later. In part 
of the experiments, combination of ciprofloxacin at 100µg/mL and vorinostat at 100µM were mixed 
with the agar [21-23]. The zones of growth inhibition surrounding the antibiotic containing discs 
were measured. Mean values of 3 independent experiments were recorded.  

Minimum inhibitory concentration (MIC) Determination 
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Serial dilution method was used for determination of MICs as per the National Committee for 
Clinical Laboratory Standards[20]. In Brief, drugs were serially diluted, and added to plates 
containing molten BBL Muller-Hinton Gold II agar (BBL Microbiology Systems). Then, plates were 
slightly cooled and dried. Thereafter, aliquots containing about 5x104 colony forming units per drop 
of different bacterial strains were placed in each plate using an a steer replicator. Plates were read 
after an 18-hour incubation period at 37°C. The MIC was defined as the lowest concentration at 
which no growth, a faint haze or fewer than 3 discrete colonies were detected. Plates reading were 
carried out in duplicate and the highest MIC values were recorded. The breakpoints indicated in the 
tables of the National Committee for CLSI [20], were used to determine susceptibility and resistance. 

Statistical Analysis: 

Statistical analysis was carried out via GraphPad Prism software, version 4.0, LA jolle, CA. tests used 
was One-way ANOVA followed by Tukey’s post-test.  P-values of less than 0.05 were considered 
significant. 

3. Results

In the current study, the possible interactive effect for vorinostat on ciprofloxacin antibacterial 
activity was investigated against various species of reference bacteria. Results (Table 1) showed that 
ciprofloxacin possessed antibacterial activity against several reference bacteria, namely, E. coli, S. 
aureus, P. aeruginosa, S. epidermidis, A. baumannii, P. mirabilis, and K. pneumoniae. A 15 mm zone of 
inhibition was selected to indicate susceptibility of bacteria to tested agents. When bacteria were 
treated with both vorinostat and ciprofloxacin, the zones of inhibition of the combination were 
significantly larger than those of ciprofloxacin alone in all tested bacterial species (Table 1).  

Table 1. A comparison between the zones of inhibition (mm) of ciprofloxacin (100 µg/mL) alone and 
ciprofloxacin in the presence of 100 µM of vorinostat against standard bacterial strains. 

Standard 

Bacterial Strains 

Zone of Inhibition (mm)* 

Ciprofloxacin Vorinostat 
Ciprofloxacin + 

Vorinostat 

Gram +ve: 

S. aureus  22.0±0.0 10.0±0.0 37.0±1.0

S. epidermidis 21.3±1.5 9.7±0.6 35.0±1.0

MRSA 10.7±0.6 4.3±0.6 19.3±1.5

S. pneumoniae 13.3±0.6 7.0±1.0 23.0±1.0

VRE 7.7±1.5 2.7±0.6 18.3±1.0

S. pyogenes 21.0±1.0 10.3±0.6 29.3±0.6

Gram –ve: 

E. coli  28.3±0.6 10.7±0.6 43.3±0.6

P. aeruginosa  23.3±0.6 10.0±0.0 38.0±1.0

P. mirabilis  19.7±0.6 7. 7±1.5 26.3±1.5

K. pneumoniae 22.3±0.6 5.3±0.6 29.0±1.0
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A. baumannii  13.0±1.7 4.3±0.6 19.0±1.0 

* The zones of inhibition values for ciprofloxacin alone were significantly (p < 0.05) lower than those 
of combination of ciprofloxacin with vorinostat for all tested bacterial strains. Results are presented 
as mean ± SD of three independent experiments. 

 
The minimal inhibitory concentrations (MICs) of ciprofloxacin alone and in combination with 
vorinostat were estimated. As Table 2 shows, pretreatment of reference bacteria with vorinostat 
enhanced the antibacterial activity of ciprofloxacin. This is shown by significantly smaller MIC 
values (Table 2) for the combination of all doses of vorinostat and ciprofloxacin as compared to 
either alone. 

Table 2. A comparison between the minimum inhibitory concentrations (MIC; µg/mL) of 
ciprofloxacin alone and ciprofloxacin in the presence of 100 µM of vorinostat against standard 
bacterial strains 

Standard 

Bacterial 

Strains 

MIC (µg/mL)* 

Ciprofloxacin Vorinostat  
Ciprofloxacin + 

Vorinostat 

Gram +ve:    

 E. coli  0.031±0.00 33.33±14.43 0.006±0.007 

S. aureus  0.052±0.018 83.33±14.43 0.003±0.001 

S. epidermidis  0.083±0.036 100.00±25.00 0.005±0.002 

MRSA  0.41±0.14 300.00±25.00 0.072±0.048 

S. pneumonia  0.33±0.14 275.00±25.00 0.035±0.025 

VRE  0.66±0.29 325.00±25.00 0.17±0.072 

S. pyogenes  0.16±0.072 116.7±28.87 0.038±0.022 

Gram –ve:    

P. aeruginosa  0.496±0.00 291.67±14.43 0.010±0.037 

P. mirabilis  0.17±0.072 116.67±28.87 0.009±0.009 

K. pneumonia  0.10±0.036 125.00±25.00 0.015±0.009 

A. baumannii  0.496±0.00 308.33±14.43 0.17±0.00 

* In each experiment, ciprofloxacin (100 µM) alone or in combination with a final concentration of 
100 µM of vorinostat were added to agar right before they were added to plates for 24 hrs incubation 
period. The MIC values for ciprofloxacin alone were significantly (p < 0.05) higher than those of 
combination of ciprofloxacin and vorinostat for all tested bacterial strains. Results are presented as 
mean ± SD of three independent experiments. 

4. Discussion 

The current study indicates enhanced antibacterial activity of ciprofloxacin when pretreating 
bacteria with vorinostat. Current results were produced using a variety of standard bacterial strains. 
These results could be important if ciprofloxacin and vorinostat are used concurrently for bacterial 
infections associated with cancer chemotherapy. 
These results indicate ciprofloxacin effectiveness on several bacterial strains such as E. coli, S. Aureus, 
P. aeruginosa, S. epidermidis, A. baumannii, P. mirabilis, and K. pneumonia. In agreement, ciprofloxacin 
susceptibility of these bacterial strains was previously shown [17,24,25].  Additionally, reactive 
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oxygen species had essential role in the antibacterial effect of ciprofloxacin against bacteria such as P. 
aeruginosa, E. coli, and S. aureus[5-7,17]. Moreover, common scavengers of reactive oxygen species, 
including vitamin E, vitamin C, vitamin B12 and other aniroxidants such as melatonin, tempol, and 
pentoxypheline were shown to reduce ciprofloxacin antibacterial activity [17]. During the course of 
its action against bacterial strains such as E. coli, Enterococcus faecalis, and S. aureus, ciprofloxacin 
systematically induced the production of reactive oxygen species[5]. Moreover, microorganisms that 
are sensitive to ciprofloxacin had elevated intracellular levels of superoxide as compared to ones that 
are resistant[6]. Treatment of E. coli with vitamin C or glutathione lead to reduced ciprofloxacin 
antibacterial activity, which was due to scavenging of hydrogen peroxide and superoxide anions 
species[26].  
Results show that combination of ciprofloxacin and vorinostat results in enhancement of the 
antibacterial activity of ciprofloxacin against variety of reference bacteria. As per our information, 
this study represents the first report of such effect or drug-drug interaction. Current results thus 
could indicate that simultaneous use of ciprofloxacin along with vorinostat might positively interact 
with ciprofloxacin antibacterial activity. Thus, combined usage of vorinostat and ciprofloxacin might 
need to be monitored. 
The mechanism for the observed interactive effect of ciprofloxacin and vorinostat is not known. 
Ciprofloxacin bactericidal effect is manifested via inhibition of bacterial DNA gyrase, type II 
topoisomorase [27,28].  However, multiple other effects for ciprofloxacin were reported including 
inhibiting the growth of various other cell types [29-33], through interference with cell cycle, 
reduction of cell size [33], inhibition of de novo pyrimidine synthesis [33], and oxidative stress 
[26,34].  
Vorinostat was shown to induce DNA damage, which is related to the generation of oxidative 
lesions [14-16]. We have recently shown that vorinostat induce oxidative chromosomal damage 
leading its mutagenic effect in blood lymphocytes [19]. Given the importance of reactive oxygen 
species, energy metabolism, mitochondrial functions for the antibacterial action of floroquinolones 
[5-7,17], it is probable that these mechanisms has a role in the observed enhancement of ciprofloxacin 
antibacterial activity by vorinostat. Thus, a drug-drug interaction between vorinostat and 
ciprofloxacin is a possibility. More studies are required to find the exact mechanism whereby 
vorinostat interact with floroquinolones action. 

5. Conclusions  

Ciprofloxacin antibacterial action is enhanced when it is combined with vorinostat. The importance 
of such observation is related to the wide usage of quinolones antibiotic and their great therapeutic 
value. Thus, studying of the clinical consequences of simultaneous use of vorinostat with 
ciprofloxacin in patients being treated against bacterial infections is recommended.  
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