Modern companies accumulate a vast amount of customer data that can be used for creating a personalized experience. Analyzing this data is difficult and most business intelligence tools cannot cope with the volume of the data. One example is churn prediction, where the cost of retaining existing customers is less than acquiring new ones. Several data mining and machine learning approaches can be used, but there is still little information about the different algorithm settings to be used when the dataset doesn't fit into a single computer memory. Because of the difficulties of applying feature selection techniques at a large scale, Incremental Probabilistic Component Analysis (IPCA) is proposed as a data preprocessing technique. Also, we present a new approach to large scale churn prediction problems based on the mini-batch Stochastic Gradient Decent (SGD) algorithm. Compared to other techniques, the new method facilitates training with large data volumes using a small memory footprint while achieving good prediction results.
Keywords:
Subject: Computer Science and Mathematics - Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.