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Abstract: Conditions under which compositions of component systems form a well-defined system-

of-systems here are formulated at a fundamental level. Statement of what defines a well -defined 

composition and sufficient conditions guaranteeing such a result offers insight into exemplars that 

can be found in special cases such as differential equation and discrete event systems. For any given 

global state of a composition, two requirements can be stated informally as: 1) the system can leave 

this state, i.e., there is at least one trajectory defined that starts from the state, and 2) the trajectory 

evolves over time without getting stuck at a point in time. Considered for every global state, these 

conditions determine whether the resultant is a well-defined system and if so, whether it is non-

deterministic or deterministic. We formulate these questions within the framework of iterative 

specifications for mathematical system models that are shown to be behaviorally equivalent to the 

Discrete Event System Specification (DEVS) formalism. This formalization supports definitions and 

proofs of the afore-mentioned conditions. Implications are drawn at the fundamental level of 

existence where the emergence of a system from an assemblage of components can be characterized. 

We focus on systems with feedback coupling where existence and uniqueness of solutions is 

problematic.   

Keywords: emergence; uniqueness; existence of solutions; input/output system; system 

specifications; discrete event system specification 

 

Introduction 

Emergence has been characterized as taking place in strong and week forms [5,12]. Mittal [6] 

pointed out that strong emergent behavior results in generation of new knowledge about the system 

representing previously unperceived complex interactions. This can occur in the form of one or more 

of new abstraction levels and linguistic descriptions, new hierarchical structures and couplings, new 

component behaviors, and new feedback loops. Once understood and curated, the behavior returns 

to the weak form, as it is no longer intriguing, and then can begin to be treated in regularized fashion. 

Emergent behavior is likely an inherent feature of any complex system model because abstracting a 

continuous real-world system (e.g. any complex natural system) to a constructed system-model must 

leave gaps of representation that may diverge in unanticipated directions Mittal [7] Philosophically, 

following Ashby [1] and Foo and Zeigler [4], the perceived global behavior (holism) of a model might 

be characterized as: components (reductionism) + interactions (computation) + higher -order effects 

where the latter can be considered as the source of emergent behaviors [5,12]. 

The Discrete Event Systems Specification (DEVS) formalism has been advocated as an 

advantageous vehicle for researching such structure-behavior relationships because it provides the 

components and couplings for models of complex systems and supports dynamic structure for 

genuine adaption and evolution. Furthermore, DEVS enables fundamental emergence modeling 

because it operationalizes the closure-under-coupling conditions that form the basis of well-defined 

resultants of system composition especially where feedback coupling prevails [10,15]  
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In this paper, we formulate conditions under which a composition of component systems form 

a well-defined system-of-systems at a fundamental level. Formal statement of what defines a well-

defined composition and sufficient conditions guaranteeing such a result offer insight into exemplars 

that can be found in special cases such as differential equation and discrete event systems. Informally 

stated, we show that for any given global state of a composition, two requirements can be stated as: 

1) the system can leave this state, i.e., there is at least one trajectory defined that starts from the state, 

and 2) the trajectory evolves over time without getting stuck at a point in time. Considered for every 

global state, these conditions determine whether the resultant is a well-defined system and if so, 

whether it is non-deterministic or deterministic. We formulate these questions within the framework 

of iterative specifications for mathematical system models that are shown to be behaviorally 

equivalent to the Discrete Event System Specification (DEVS) formalism. This formalization supports 

definitions and proofs of the afore-mentioned conditions and allows us to exhibit examples and 

counter-examples of condition satisfaction. Drawing on Turing machine halting decidability, we 

investigate the probability of legitimacy for randomly constructed DEVS models.  We close with 

implications for further research on the emergence of new classes of well-defined systems.  

  

Figure 1 Turing Machine decomposition and modular composition 

Let’s start with a well-known concept, the Turing Machine (TM) 

[https://en.wikipedia.org/wiki/Turing_machine].  Usually it is presented in a holistic, unitary 

manner but as in Figure 1a, we can decompose it into two stand-alone independent systems the TM 

Control, S1 and the Tape System, S2. Foo and Zeigler [4] argued that the re-composition of the two 

parts was an easily understood example of emergence wherein each standalone system has very 

limited power but their composition has universal computation capabilities.  Examining this in more 

depth, the Tape system shown in Figure 1b is the dumber of the two, serving a memory with a slave 

mentality, it gets a symbol (sym) and a move (mv) instruction as input, writes the symbol to the tape 

square under the head, moves the head according to the instruction, and outputs the symbol found 

at the new head location.  The power of the Tape system derives from its physicality – its ability to 

store and retrieve a potentially infinite amount of data – but this only can be exploited by a device 

that can properly interface with it. The TM Control by contrast has only finite memory but its capacity 

to make decisions (i.e., use its transition table to jump to a new state and produce state-dependent 

output) makes it the smarter executive.  The composition of the two exhibits “weak emergence” in 

that the resultant system behavior is of a higher order of complexity than those of the components 

(logically undecidable versus finitely decidable), the behavior that results can be shown explicitly to 

be a direct consequence of the component behaviors and their essential feedback coupling – cross-

connecting their outputs to inputs as shown by the dashed lines of Figure 1b.  We are going to use 

this example to discuss the general issues in dealing with such compositions.  

The interdependent form of the interaction between the TM control and the tape system 

illustrates a pattern found in numerous information technology and process control systems and 

recognized early on by simulation language developers [13]1.  In this interaction, each component 

system alternates between two phases, active and passive. When one system is active the other is 

passive - only one can be active at any time. The active system does two actions: 1) it sends an input 

                                                 

1 Though not necessarily in the modular form described here 
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to the passive system that activates it (puts it into the active phase), and 2) it transits to the passive 

phase to await subsequent re-activation. For example, in the re-composed Turing Machine, the TM 

control starts a cycle of interaction by sending a symbol and move instruction to the tape system then 

waiting passively for a new scanned symbol to arrive. The tape system waits passively for the sym,mv 

pair.  When it arrives it executes the instruction and sends the symbol now under the head to the 

waiting control. 

Such active-passive compositions provide a class of systems from which we can draw intuition 

and examples for generalizations about system emergence at the fundamental level. We will employ 

the modeling and simulation framework based on system theory formulated in [13] especially 

focusing on its concepts of iterative specification and the Discrete Event Systems Specification (DEVS) 

formalism. Special cases of memory-less systems and the pattern of active-passive compositions are 

discussed to exemplify the conditions resulting ill-definition, deterministic, and non-deterministic as 

well as probabilistic systems. We provide sufficient conditions, meaningful especially for feedback 

coupled assemblages,  under which iterative system specifications can be composed to create a well-

defined resultant and that moreover can be simulated in the DEVS formalism. 

However, to address more fundamental issues we need to start with a more primitive and 

perhaps more intuitive notion of a system. As in Figure 2, consider a concept of system with states, 

transitions, and times associated with transitions. For example there are transitions from state S1 to 

state S3 and from S3 to S4 which each takes1 time unit and there is a cycle of transitions involving 

S4…S7 each of which take zero time. There is a self-transition involving S2 which consumes an 

infinite amount of time (signifying that it is passive, remaining in that state forever.)  This is 

distinguished from the absence of any transitions out of S8. A state trajectory is a sequence of states 

following along existing transitions, e.g., S1, S3, S4 is such a trajectory.  

 

 

Figure 2 System with tuned transitions 

This example gives us a quick understanding of the conditions for system existence at the 

fundamental level: 

We say that the system is 

 not defined at S8 because there is no trajectory emerging from it 

 non-deterministic at S1 because there are two distinct outbound transitions defined for it 

 deterministic at S2 and S4 because there is only one outbound transition for each. 

We say that the system is well-defined if it is defined at all its states. These conditions are relative 

to static properties, i.e., they relate to states not how the states follow one another over time. In 

contrast, state trajectories relate to dynamic and temporal properties. When moving along a trajectory 

we keep adding the time advances to get the total traversal time, e.g., the time taken to go from S2 to 

S4 is 2.  Here a trajectory is said to be progressive in time if time always advances as we extend the 

trajectory. For example, the cycle of states S4…S7 is not progressive because as we keep adding the 

time advances the sum never increases. Conceptually, let’s start a clock at 0 and, starting from a given 
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state, we let the system evolve following existing transitions and advancing the clock according to 

the time advances on the transitions. If we then ask what the state of the system will be at some time 

later, we will always be able to answer if the system is well-defined and progressive. A well-defined 

system that is not progressive signifies that the system gets stuck in time and after some time, it 

becomes impossible to ask what the state of the system is in after that time.  Zeno’s paradox offers a 

well-known metaphor where the time advances diminish so that time accumulates to a point rather 

than continue to progress and offers an example showing that the pathology does not necessarily 

involve a finite cycle. Our concept of progressiveness generalizes the concept of legitimacy for DEVS 

[13] and deals with the “zenoness” property which has been much studied in the literature [9]. We 

return to it in more detail later. 

Thus we have laid the conceptual groundwork in which a system has to be well-defined (static 

condition) and progressive (temporal dynamic condition) if it is to have achieved independent 

existence when emerging from a composition of components.  

Formal background 

 

As presented in [14], a Discrete Event System Specification (DEVS) is a structure  

M =<X, S, Y, δint , δext , λ, ta> 

where 

X  is the set of input values 

S  is a set of states,  

Y  is the set of output values 

δδint:: S → S is the internal transition function 

δext : Q ×X → S is the external transition function,     where 

 Q = {(s,e)| s ϵS, 0 ≤ e ≤ ta(s)} is the total state where 

       e is the time elapsed since last transition 

λ: S → Y is the output function 

ta: S → R+
0  is the time advance function 

 

In the Turing machine example of Figure 1, the tape system and control engine are each atomic DEVS. 

For the tape system, a state is a triple ( , , )tape pos mv  where the tape is an infinite sequence of zeros 

and ones (symbols),  pos  represents the position of the head, and mv is a specification for moving 

left or right. An external transition accepts a symbol, move pair, writes the symbol in the square of 

the current head position and stores the move for the subsequent internal transition that executed the 

specified move.  For the control engine, a state is a pair ( , )st sym where st is a control state and 

sym is a stored symbol. An external transition stores the received symbol for subsequent use. An 

internal transition applies the TM transition table to the ( , )st sym pair and transitions to the specified 

control state. Appendix 1 provides more detail for this example. 

The core of this concept simplifies when the system is input-free (or autonomous, i.e., not responding 

to inputs) and outputs are not considered. Then we have a transition system 

0

, ,

:

M Q ta

Q Q

ta Q Q R






 

 

 

 

For example, in Figure 2, we have 

 

{ 1, 2, 3, 4, 5, 6, 7},

{( 1, 3), ( 3, 4),...}

( 1, 3) 1, ( 3, 4) 1,...

Q S S S S S S S

S S S S

ta S S ta S S







 

 

In this formal version of the informal statements above, the transition system, M is 
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 not defined at S8 because there is no transition pair with S8 as the left member in   

 non-deterministic at S1 because it is a left member of two transition pairs (S1,S2) and (S1,S3) 

 deterministic at S2 and S4 because there is only one transition pair involving each one as a 

left member. 

Coupled DEVS Models 

 

DEVS models can be coupled to form coupled models that themselves are DEVS models manifesting 

closure under coupling. To keep the presentation as straightforward as possible in this paper we will 

limit the discussion to coupling of two components without external inputs or outputs. This is 

illustrated in Figure 1b) where the coupling recipe maps the output of the control engine (symbol, 

move pair) to the input of the tape system and likewise, the output of the tape system (symbol) to the 

input of the control engine. This mapping is assumed to take zero time (any delay in a real 

manifestation can be modeled by inserting delay components.) To sketch the way the resultant of 

coupling is computed and show that it is expressed as a DEVS, let 

M =<X, S, Y, δint , δext , λ , ta>  

M’ =<X’, S’, Y’, δ’int , δ’ext , λ’, ta’> 

 

Then the resultant is a DEVS: 

0

, ,

'

:

:

coup coup coup coup

coup

coup coup

coup coup coup

M Q ta

where

Q Q Q

ta Q R

Q Q







 

 





 

(( , ),( ', ')) min{ ( ) , '( ') '}ta s e s e ta s e ta s e    

To explain, the next event will occur according the time advance and will be driven by the imminent 

component (whose next event time is the minimum of the two - neglecting ties for simplicity here.)  

For illustration, let t* be the time advance and let the second component be imminent. This 

component generates its output and sends it to the first via the coupling which reacts to it using its 

external transition function establishing its next state ( , *, '( '))ext s t s  ; at the same time the 

imminent component applies its internal transition function to establish its next state int' ( ')s .  Thus 

we have 

int(( , ),( ', ')) ( ( , *, '( ')), ' ( '))coup exts e s e s t s s     

Having briefly reviewed the basics of DEVS we are ready to consider the general case of iterative 

specification of which DEVS is an example. 

Iterative System Specifications 

 

We briefly review an approach to Iterative Specification of Systems that was introduced in [14] and 

provide more detail in Appendix 2.  I/O systems describe system behavior with a global transition 

function that determines the final state given the initial state and the applied input segment. Since 

input segments are left segmentable and closed under composition, we are able to generate the state 

and output values along the entire input interval. However, such an approach is not very practical. 

What we need is a way to generate state and output trajectories in an iterative way going from one 

state along the trajectory to the next. 

Iterative specification of systems is a general scheme for defining systems by iterative applications of 

generator segments. These are elementary segments from which all input segments of a system can be 

generated. Having such a concept we define a generator state transition function and iteratively apply 

generator segments to the generator state transition function. The results produced by the generator 
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state transitions constitute the state trajectory for the input segment resulting from the composition 

of the generator segments. The general scheme of iterative specification forms a basis for more 

specialized types of specifications of systems.  System specification formalisms are special forms of 

iterative specifications with their special type of generator segments and generator state transition 

functions. 

Consider (Z, T) the set of all segments {ω: <0, t1> → Z | t1 ∈T. For a subset Γ of (Z, T), the concatenation 

closure of Γ is denoted Γ+.  Example generators are bounded continuous segments, and constant 

segments of variable length generating bounded piecewise continuous segments piecewise constant 

segments, resp. Unfortunately, if Γ generates Ω, we cannot expect each ω ∈Ω to have a unique 

decomposition by Γ. A single representative, or canonical decomposition can be computed using a 

maximal length segmentation (MLS). First we find ω1, the longest generator in Γ that is also a left 

segment of ω. This process is repeated with what remains of ω after ω1 is removed, generating ω2, 

and so on. If the process stops after n repetitions, then ω = ω1ω2 . . . ωn,. We say that Γ is an admissible 

set of generators for Ω if Γ generates Ω and for each ω∈Ω, a unique mls decomposition of ω by Γ 

exists. The following is the basis for further analysis in this paper: 

 

Sufficient Conditions for Admissibility 

 

If Γ satisfies the following conditions, it admissibly generates Γ+: 

1. Existence of longest initial segments: ω ∈Γ+ ⇒ max {t   ωt > ∈Γ} exists 

2. Closure under right segmentation: ω ∈Γ ⇒ ω<t ∈Γ for all τ ∈dom (ω) 

An iterative specification of a system is a structure 

G = T X,,ΩG,Y Q, ,δ λ , 

where T, X, Y, Q have the same interpretation as for I/O systems, ΩG is an admissible set of input 

segment generators, δ: Q × ΩG →Q is the single segment state transition function,  λ: Q × X →Y is 

the output function.. 

An iterative specification G= <T, X, ΩG, Y, Q, δG, λ> specifies a time invariant system,  SG =<T, X, Ω+G, 

Y, Q, δG+ , λ> The system is well-defined if δG+, the extension of δG, has the composition property i.e., 

 δG+ (q,ω1 • ω2  ) = δG+ ( δG+ (q,ω1),ω2 ), for all ω1  and ω2  in Ω+G. 

For more details see Appendix 2.  

DEVS Simulation of Iterative Specification 

 

As reviewed in Appendix 2, the notion of iterative specification was introduced to characterize 

diverse classes of systems such as differential equation systems and discrete time systems. With the 

motivation of including discrete event systems under the same umbrella as more familiar systems, 

DEVS was defined using iterative specification. Here we show that the converse is also true, namely, 

that DEVS can directly represent iterative specifications.  

Given an iterative specification G= <T, X, ΩG, Y, Q, δG, λ>, we construct a DEVS model  M 

=<X, S, Y, δint , δext , λ, ta> that can simulate it in a step-by-step manner moving from one input segment 

to the next. The basic idea is that we build the construction around an encoding of the input segments 

of G into the event segments of M as illustrated in Figure 3. This is based on the MLS which gives a 

unique decomposition of input segments to G into generator subsegments. The encoding maps the 

generator subsegments. ωi in the order they occur into corresponding events which contain all the 

information of the segment itself. To do the simulation, the model M stores the state of G. It also uses 

its external transition function to store its version of G’s input generator subsegment when it receives 

it. M then simulates G by using its internal transition function to apply its version of G’s transition 

function to update its state maintaining correspondence with the state of G. 
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Figure 3 DEVS Simulation an Iterative Specification 

Details of the construction are provided in Appendix 3.  We note that the key to the proof is that 

iterative specifications can be expressed within the explicit event-like constraints of the DEVS 

formalism, itself defined through an iterative specification. Thus DEVS can be viewed as the 

computational basis for system classes that can be specified in iterative form satisfying all the 

requirements for admissibility. 

Coupled Iterative Specification 

 

 
 

Figure 4 Input and output trajectories of coupled systems 

 

Although closure of coupling holds for DEVS, the generalization to iterative specification does not 

immediately follow. The problem is illustrated in Figure 4 where two iterative system specifications, 

ISP1 and ISP2, are cross-coupled such as exemplified by the Turing machine example in Figure 1. The 

cross-coupling introduces two constraints shown by the equalities in the figure, namely, the input of 

ISP2, 2  must equal the output of ISP1, 1 , and the input of ISP1, 1 must equal the output of 

ISP2, 2 . Here we are referring to input and output trajectories over time as suggested graphically 

in Figure 4. Since each system imposes its own constraints on its input/output relation, the 

conjunction of the four constraints (2 coupling-imposed, 2 system-imposed) may have zero, one, or 

multiple solutions.   

Definition: 

A Coupled Iterative Specification is a network specification of components and coupling where the 

components are iterative specifications at the I/O System level. 

As indicated, in the sequel we deal with the simplified case of two coupled components. However, 

the results can be readily generalized with use of more complex notation. 

Definition: 

The I/O Relation of an iterative specification is inherited from the I/O Relation of the system that it 

specified. Likewise, the set of I/O Functions of an iterative specification is inherited from the system 
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it specifies. Formally, let SG =<T, X, Ω+G, Y, Q, δG+ , λ> be the system specified by  G= <T, X, ΩG, Y, Q, 

δG, λ>. Then the I/O Functions associated with G is 

:

,

( , ) ( ( , ))

Q

where for q Q

q q





    

 



 

 



Ω Ω

Ω  

Let 1 and 2    represent the I/O functions of the iterative specifications, ISP1 and ISP2, resp. 

Applying the coupling constraints expressed in the equalities above, we make the: 

Definition: 

A pair of output trajectories ( 1, 2)   is a consistent output trajectory for the state pair (q1, q2) if  

1 1( 1, 2)q    and 2 2( 2, 1)q   .   

Definition  

A Coupled Iterative Specification has unique solutions if there is a function, 

: 1 2  where

( 1. 2) ( 1, 2)

F Q Q

F q q p

 


 

where there is exactly one consistent pair ( 1, 2)  with infinite domain for every initial state (q1,q2). 

Infinite domain is needed for convenience in applying segmentation. 

Definition: 

A Coupled Iterative Specifications is admissible if it has unique solutions. 

The following theorems are proved in Appendix 4. 

Theorem: An admissible Coupled Iterative Specification specifies a well-defined Iterative Specification 

at the I/O System level 

Theorem: The set of Iterative Specifications is closed under admissible coupling 

 

Theorem 

DEVS coupled model can component-wise simulate a coupled Iterative Spec. 

Proof: 

 

Figure 5 DEVS Component-wise simulation of Coupled Iterative Specifications 

 

The coupled model has components which are DEVS representations of the individual Iterative Specs 

(according to the previous theorem) and also a coordinator as shown in the Figure.  The coordinator 

receives the current states of the components and applies the F function to compute unique consistent 

output segments. After segmentation using the MLS as in the previous proof, it packages each as a 

single event in a DEVS segment as shown. Each DEVS component computes the state of its Iterative 

Spec at the end of the segment as in the theorem. Then it sends this state to the coordinator and the 

cycle repeats. 
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The solution function F represents an idealization of the fixed point solutions required for DESS and 

the local solution approaches of DTSS and Quantized DEVS.  GDEVS polynomial representation of 

trajectories is the closest realization but the approach opens the door to realization by other trajectory 

prediction methods. 

 

Special case: Memoryless Systems 

 

Consider the case where each component’s output does not depend on its state but only on its input. 

Let gr represent the ground state in which the device is always found (all states are represented by 

this state since output does not depend on state. 

1

1

1 1( , 1) ( 1, 1) 1

2 2( , 2) ( 2, 2) 2

2 1

1 2

2 2( 2, 2) ( 1, 1) 2 ( 1, 1) 2

. ., ( 2, 1) ( 2, 1) 1 2

gr R

gr R

q R R

i e is consistent R R

    

    

 

 

      

   





  

  





    

  

 

1

1

1 1( 1, 2) ( 2)

2 2( 2, 1) ( 1)

1 ( 2) ( ( 1))

( 1. 2) ( 1, ( 1))

q f

q g

so

f f g

so

g f  (considered as a relation)

and

F q q f

   

   

  

 





 

 

 





 

 has no solutions if 
1f 
 does not exist, yielding no resultant  

 has a unique solution for every input if 
1f 
 exists, yielding a deterministic resultant and 

 has multiple solutions for a given segment 
1 if ( )f 

is multivalued, yielding a non-

deterministic resultant 

 

For examples consider an adder that always adds 1 to its input, i.e,  

 ( , )  ( ) 1

. ., , ( , )( ) ( ) 1

gr f p

i e t T gr t p t

  

 

  

   
 

Cross-coupling a pair of adders does not yield a well-defined resultant because
1( ) 1f p f   

. However, coupling an adder to a subtracter, its inverse 

 ( , ) 1gr p     

 

, would yield a well-defined deterministic system. 

 

For other examples, consider combinatorial elements whose output is a logic function of the input 

and consider a pair of gates of the same type connected in a feedback loop: 

 a NOT gate has an inverse 0 1,1 0  , so the composition has two solutions one for 

each of two complementary assignments, i,e,,  ( , ) {(1,0),(0,1)}F gr gr   yielding a non-

deterministic system. 
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 an AND gate with one of its input held to 0 always maps the other input into 0 so has a 

solution only for inputs of 0 to each component, , i,e,,  ( , ) (0,0)F gr gr  , yielding a 

deterministic system. 

 an AND gate with a stuck-at input of 1 is the identity mapping and has multiple solutions 

i,e,,  ( , ) {(0,0),(1,1)}F gr gr  , yielding a non-deterministic system. 

 

Active-Passive Systems 

 

We now show that active-passive systems as described earlier offer a class of systems for which 

the iterative specifications of components satisfy the admissibility conditions specified in the above 

Theorem.  As in Figure 6a consider a pair of cross-coupled systems each having input generators 

that represent null and non-null segments.  

 

Figure 6 Active-Passive Example of Admissible Progressive Coupled Iterative Specifications 

A null generator represents the output of a passive system whereas a non-null generator represents 

the output of an active system. For example in the TM case, a non-null generator is a segment that 

represents transmission of a symbol by the tape unit and of a symbol,move pair for the TM control. 

As in Figure 6b let S1 and S2 start as active and passive, respectively. Then they output non-null and 

null generators respectively. Since the null generator has infinite extent, the end-time of the non-null 

generator determines the time of next event, t* (as defined earlier) and we apply the transition 

functions in Figure 6a to find that at t* the systems have reversed phases with S1 in passive and S2 in 

active. 

Define a triple , ,GQ     by 

{ . } { . }Q active passive active passive   

 endtime of the non-null generator segment

an

*( , )

( , )d ( - , ).F

t active passive

active passiv non nulle null


 

* *

( , )

( ( , ), ( , - )) 

= ( , )

G

t t

active passive

active null passive non null

passive active



    

( , ) ( - , )active passive non null null   

Let the non-null and null generators stand for sets of concrete segments that are equivalent with 

respect to state transitions and outputs. Then such a scheme can define a deterministic or  non-

deterministic resultant  depending on the number of consistent pairs of (non-null,null) generator 

segments are possible from the (active, passive) state. 

And mutatis-mutandis for the state (passive, active) 

 

Temporal Progress: Legitimacy, Zenoness 

 

Although we have shown how a DEVS coupled model can simulate a coupling of iterative 

specifications, it does not guarantee that such a model is legitimate [14] . Indeed, backing up, 
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legitimacy of the simulating DEVS is reflective of the temporal progress character of the original 

coupling of specifications. We see that the time advance has a value provided that the function F is 

defined for current state. However, as in the case of zenoness, a sequence of such values may 

accumulate at a finite point thus not allowing the system to progress beyond this point.  

Consequently, we need to extend the requirements for coupled iterative specifications to include 

temporal progress in order to fully characterize the resultant composition of systems. Thus we can 

extend the definitions: 

Definition: An Iterative Specification is progressive if every sequence of time advances diverges in sum. 

Definition: A Coupled Iterative Specification is progressively admissible if its components are each 

progressive and the resultant Iterative Specification at the I/O System level is progressive, 

Theorem: 

A progressive Iterative Specification can be simulated by a legitimate DEVS. 

A progressively admissible Coupled Iterative Specification can be component-wise simulated by a 

legitimate DEVS. 

Ref. 14 showed that the question of whether a DEVS is legitimate is undecidable. The approach was 

to express a Turing Machine as a DEVS and showing that solving the halting problem is equivalent 

to establishing legitimacy for this DEVS. We can transfer this approach to the formulation of the TM  

in Figure 1 by setting the time advances of both components to zero except for a halt state which is a 

passive state (has an infinite time advance). Then a TM DEVS is legitimate just in case the TM it 

implements ever halts. Since there is no algorithm to decide whether an arbitrary TM will halt or not 

the same is true for legitimacy. Since DEVS is an iterative specification, the problem of determining 

whether an Iterative Specification is progressive is also undecidable. Likewise, the question of 

whether a coupled iterative specification is progressive is undecidable. 

Fundamental Systems Existence: Probabilistic Characterization of Halting  

 

The existence of an iteratively specified system requires temporal progress and there is no algorithm 

to guarantee in a finite time that such progress is true. The underlying point is that, given an arbitrary 

TM, we have to simulate it step-by-step to determine if it will halt. And importantly, if a TM has not 

halted after some time, however long, this gives us no further information on its potential halting in 

the future. However, while this is true for individual TMs, the situation may be different for the 

statistics of subclasses of TMs. In other words, for a given class of TMs, the probability of an instance 

halting may be found to increase or decrease for the future given that it has not yet halted.  

We performed an empirical study of randomly generated TMs described in Appendix 6. The results 

seem to show that TMs break into two classes – those that halt within a small number of steps (e.g.16) 

and those that do not halt. Indeed, the data suggest that approximately one-third of the sampled TMs 

halt, while 2/3 do not. For those that halt, the probability of halting at the first step is greatest and 

then decreases exponentially and so is well-described by a geometric distribution with probability of 

success approximately 1/6. In other words the probability of halting is 1/6 at each step given the TM 

has not halted earlier for the set that will eventually halt.  

Summarizing, the existence of an iteratively specified system is not algorithmically decidable but 

there may be useful probabilistic formulations that can be applied to sub-classes of such 

specifications. For example, it seems to be that with high probability the halting of a 2-symbol, 3-state 

TM can be decided within 16 simulation steps. Therefore, it might be tractable for an assemblage of 

components to find a way to solve its composition problems in a finite time for certain classes of 

components couplings. 

Discussion: Future Research  

 

The discussion presented here was limited to compositions having two components with cross-

coupled connections. However, this scope was sufficient to expose the essential effect of feedback in 

creating the need for consistent assignments of input/output pairs and the additional - distinct- 

requirement for time progression. Further development can extend the scope to arbitrary 
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compositions generalizing the statement of consistent assignments to finite and perhaps, infinite sets 

of components. 

Further, when extending to arbitrary composition sizes, the analysis revealing fundamental 

conditions for the emergent existence of systems from component systems suggests new classes of 

systems that can be defined using iterative specifications. For example, we might consider the active-

passive systems in a more general setting. First allowing any finite number of them in a coupling can 

satisfy the requirement for at most one active component at any time by restricting the coupling to a 

single influencer for each component. In fixed coupling exhibiting feedback, this amounts to a cyclic 

formation in which activity will travel around the cycle from one component to the next.  Another 

common pattern is a single component (root) influencing a set of components (branches) each of 

which influences only the root. Several possibilities for interaction of the root with the branches can 

result in admissible compositions. For example, the root might select a single branch to activate to 

satisfy the single active component requirements. Or it might activate all branches and count the 

number of branches as they successively go passive, becoming active when all the branches have 

become passive.  These alternative configuration require knowledge of the protocol underlying the 

interaction but this only means that proofs of emergent well-defined resultants will be conditioned 

to narrower sub-classes of systems rather than to broad classes such as all differential equation 

systems. 

After much progress in understanding how dynamic structure can be managed in DEVS-based 

simulations [2,3,11], a framework that incorporates several insights has recently been developed [8]. 

This framework, formulated in the DEVS formalism, can be extended to iterative specifications and 

investigated for conditions of existence as done here. The extension will probably increase the 

complexity required to state and establish the conditions but would, if successful, bring us closer to 

understanding the emergence of systems from assemblages of components in the real world. 

 

Appendix 1 DEVS Representation of TM 

 

Tape System 

A state is a triple ( , , )tape pos mv  where : {0.1}tape I  , pos I , { 1,1}mv  and I  is the 

integers; in other words the tape an infinite sequence of bits,  pos  represents the position of the 

head, and mv  is a specification for moving left or right.  

An internal transition moves the head as specified; an external transition accepts a symbol, move 

pair, stores the symbol in the current position of the head and stores the move for subsequent 

execution. The slot for storing the move also can be null which indicates that a move has taken place. 

int

t

( , , ) ( , ( , ), )

(( , , ), , ( , )) ( ( , , ), , )

( , , ) 1

( , , )

( , , ) ( , )

( . )

ex

tape pos mv tape move pos mv null

tape pos null e sym mv store tape pos sym pos mv

ta tape pos mv

ta tape pos null

tape pos mv getSymbol tape pos

where

move pos mv pos mv

sto













 



 

( , , ) ' '( ) , '( ) ( )

( , ) ( )

re tape pos sym tape where tape pos sym tape i tape i

getSymbol tape pos tape pos

  



 

 

TM Control 

A state is a pair ( , )st sym where st is a control state and sym is a stored symbol. 

An internal transition applies the TM transition table to the ( , )st sym pair and transitions to the 

specified control state. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2016            doi:10.20944/preprints201608.0163.v1 

 

  

Peer-reviewed version available at Systems 2016, 4, 34; doi:10.3390/systems4040034

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034


 13 of 18 

 

An external transition stores the received symbol for subsequent use. 

int

t

( , ) ( ( , ), )

(( , ), , ) ( , )

( , ) 1

( , )

( , ) ( , )

( , ) '

( , ) '

ex

st sym TMState st sym null

st null e sym st sym

ta st sym

ta st null

st sym TMOutput st sym

where

TMState st sym st

TMOutput st sym sym













 







 

Appendix 2: Iterative Specification of Systems 

 

The following is extracted from [14] Chapter 5. 

Generator Segments 

Consider (Z, T) the set of all segments {ω: <0, t1> → Z | t1 ∈T}, which is a semigroup under 

concatenation. For a subset Γ of (Z, T), we designate by Γ+ the concatenation closure of Γ (also called the 

semigroup generated by Γ).  Example generators are bounded continuous segments, and constant 

segments of variable length generating bounded piecewise continuous segments piecewise constant 

segments, resp. Unfortunately, if Γ generates Ω, we cannot expect each ω ∈Ω to have a unique 

decomposition by Γ; that is, there may be distinct decompositions ω1, ω2, . . ., ωn and ω1′, ω 2′, . . ., ωn′ 

such that ω 1 • ω 2 • . . . • ωn = ω and ω1′ • ω2′ • . . . • ω′n = ω. 

A single representative, or canonical decomposition can be computed using a maximal length 

segmentation. First we find ω1, the longest generator in Γ that is also a left segment of ω. This process 

is repeated with what remains of ω after ω1 is removed, generating ω2, and so on. If the process stops 

after n repetitions, then ω = ω1ω2 . . . ωn,.. 

It is not necessarily the case that mls decompositions exist (i.e., that the just-mentioned processes will 

stop after a finite number of repetitions). Thus, we are interested in checkable conditions on a set of 

generators that will guarantee that each segment generated has an mls decomposition. 

Fortunately, a segment can have at most one mls decomposition. 

We say that Γ is an admissible set of generators for Ω if Γ generates Ω and for each ω∈Ω, a unique mls 

decomposition of ω by Γ exists. (We also say Γ admissibly generates Ω.) The following is proved in 

[14]: 

Theorem 1 Sufficient Conditions for Admissibility 

If Γ satisfies the following conditions, it admissibly generates Γ+: 

Existence of longest initial segments: ω ∈Γ+ ⇒ max {t   ωt > ∈Γ} exists 

Closure under right segmentation: ω ∈Γ ⇒ ω<t ∈Γ for all τ ∈dom (ω) 

Generator State Transition Systems 

 

Having established a terminating process for obtaining mls decompositions, we wish to use these 

decompositions to help us generate a transition function given only that function’s action on the 

generators. In other words, let ΩG be an admissible generating set for Ω and suppose we have defined 

a function δ: Q × ΩG → Q, which we call a single segment transition function. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2016            doi:10.20944/preprints201608.0163.v1 

 

  

Peer-reviewed version available at Systems 2016, 4, 34; doi:10.3390/systems4040034

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034


 14 of 18 

 

Let ω1, ω2, . . ., ωn be the mls decomposition of ω. Having δ defined for each segment ωi, we wish to 

piece together these parts to obtain compound transition associated with ω itself.  

An iterative specification of a system is a structure 

G = T X,,ΩG,Y Q,, ,δ λ , 

where T, X, Y, Q have the same interpretation as for I/O systems, ΩG is the set of input segment 

generators, δ: Q × ΩG →Q is the single segment state transition function,  λ: Q × X →Y is the output 

function, with the restriction that ΩG ⊆ (X, T ) and, most important, ΩG is an admissible set of 

generators and δ+: Q × Ω+G → Q has the composition property. 

An iterative specification G= <T, X, ΩG, Y, Q, δ, λ> specifies a time invariant system,  SG =<T, X, Ω+G, 

Y, Q, . where δ+ is the extension of δ which is well-defined according to the following: 

Theorem 2 Sufficient Conditions for Iterative Specification 

Let G = T, X, ΩG, Y, Q, δ, λ be a structure as just defined. Then if the following conditions hold, G 

is an iterative specification and SG is a system. 

(a) Existence of longest segments: 

ω ∈ΩG+ ⇒ max{tωt > ∈ΩG} exists 

(b) Closure under right segmentation: 

 ω ∈ΩG ⇒ ω<t ∈ΩG for t ∈dom( )ω 

(c) Closure under left segmentation: 

 ω ∈ΩG ⇒ ωt > ∈ΩG for t ∈dom( )ω 

(d) Consistency of composition: ⇒ δ+ (q,ω1 • ω2 • . . .• ωn ) = δ δ( ( . . . δ δ( (q,ω1),ω2 ), . . . ),ωn),  

Conditions (b) and (c), requiring left and right segementability in the definition of iterative 

specification, can be weakened while still enabling the theorem to be true. Replace (b) and (c) by 

For , if max t • = max {t | ω t> ∈ΩG} and tk <t ∗ < tk+1, then ω <tk,t∗> ∈ΩG  and   

 

Appendix 3 

Theorem: DEVS atomic model can simulate an Iterative Spec. 

 

Proof: 

Given an iterative specification G= <T, X, ΩG, Y, Q, δG, λ>, we construct a DEVS model  

M =<X, S, Y, δint , δext , λ, ta> 

 

    ( )( )

:  using mls

( )  

:

( ) ( , )

G DEVS

ll

G

g

g

h Q Q

h q q dummy


    

 

 

 



 

Definition of the simulating DEVS: 
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int

t

( , ) ( ( , ), )

( , ) ( )

(( , ), , ') ( ( , ), ')

( , ) ( )

G

G

ex G e

G

S Q

q q dummy

ta q l

q e q

q dummy q

   

 

     

 



 









 

In the Iterative Specification 

( , ') ( ( , ), ')G G Gq q        

 

In the DEVS 

Let DEVS be  the transition function of the system specified by the DEVS. We want to show: 

( ( , ')) ( ( ), ( '))G DEVSh q h q g      

 

   

 

 

 

( ) ( ')

( ) ( ')

( ) ( ')

int ( ) ( ')

( ( ), ( '))

(( , ), ( ) ( '))

(( , ), , ' )

( (( , ), ), ), ' )

(( , ), ), ' )

( ( , ), ), ' )

(( ( , ),

DEVS

DEVS

DEVS l l

DEVS ext l l

DEVS l l

DEVS l l

DEVS G

h q g

q dummy g g

q dummy

q dummy

q

q

q

 

 

 

 

 

  

  

    

   

    

  

 

 

 

 











 ( ')), ' )

( ( ( , ), '), )

l

G G

dummy

q dummy



   





 

So  

( ( , '))

( ( ( , ), '))

( ( ( , ), '), )

( ( ), ( '))

G

G G

G G

DEVS

h q

h q

q dummy

h q g

 

   

   

 









  

 

Appendix 4 

Theorem: 

An admissible Coupled Iterative Specification specifies a well-defined Iterative Specification at the 

I/O System level 

Proof: 

Given two iterative specifications, Gi  and their state sets, Qi  i= 1,2,  let 1 2Q Q Q  , eventually 

the state set of the iterative specification to be constructed. For any pair (q1,q2) in Q,  let ( 1, 2)   

be a consistent output trajectory for (q1, q2), i.e. 1 ( 1, 2)q    and 2 ( 2, 1)q  

( 1, 2and 1, 2) .( )F q q    

Define an autonomous Iterative Specification , ,GQ     by 

*( 1, 2) *( 1, 2)( 1, 2) ( ( 1, 2 ), ( 2, 1 )) G t q q t q qq q q q       

1 2*( 1, 2) min{ *, *}where t q q t t  

1 2 *, *      1 2.where t t are the times of the MLS for and   

In other words, since each of the component iterative specifications have maximum length 

segmentations we take the time of next update of the constructed specification to be determined by 
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earliest of the times of these segmentations for the consistent pair of output trajectories. This allows 

us to define a step-wise transition for the constructed transition function. Closure under composition 

for this transition function can be established using induction on the number of generators in the 

segments under consideration. Similarly, the output function is defined by: 

( 1, 2) ( ( 1), ( 2))q q q q   . 

 

Theorem: The set of Iterative Specifications is closed under admissible coupling 

Proof: this theorem is a corollary of the previous theorem. 

 

Appendix 5: A statistical experiment sampling from 2-symbol, 3-state TMs 

We performed a statistical experiment sampling from 2-symbol, 3-state TMs. Each sampled TM fills 

in the x’s in the table below with values from the sets shown, where one of the rows is chosen at 

random and its next state change to the halt state.  The number of TMs in this class is (2*2*3)2*3=126 . 

We generated 1000 samples randomly and simulated them until they halted or for a maximum of 

1000 time steps. 

State Symbol Next 

State 

{A,B,C} 

Move 

{1,-1} 

Print 

Symbol 

{0,1} 

A 0 x x x 

A 1 x x x 

B 0 x x x 

B 1 x x x 

C 0 x x x 

C 1 x x x 

 

The results are shown in the first two columns of the following table.  They seem to show that TMs 

break into two classes – those that halt within a small number of steps (e.g.16) and those that do not 

halt. Indeed, the data in the table suggest that approx. one-third of the sampled TMs halt, while 2/3 

do not. For those that halt, the probability of halting at the first step is greatest and then decreases 

exponentially.   The third row shows the probabilities computed from a geometric success model 

using probability of success as 0.161. The agreement of the observed and predicted distributions are 

in close agreement. This suggests that for the set that will eventually halt, the probability of a TM 

halting at each step is approx. 1/6, given that it has not halted earlier.  

 

Halts at N Frequency Geometric 

Model 

1 0.161 0.161 

2 0.1 0.09 

3 0.042 0.039 

4 0.023 0.022 

5 0.016 0.015 

6 0.005 0.00488 

7 0.004 0.00390 

11 0.001 0.000990 

16 0.001 0.000985 

10000 0.647  

 

Table 1: Empirical Frequency Distribution for halting step vs Geometric Model  
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Summarizing, the existence of an iteratively specified system is not algorithmically decidable but 

there may be useful probabilistic formulations that can be applied to sub-classes of such 

specifications. For example, it seems to be that with high probability the halting of a 2-sysmbol, 3-

state TM can be decided within 16 simulation steps. Therefore, it might be tractable for an assemblage 

of components to find a way to solve its composition problems in a finite time for certain classes of 

components couplings. 
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