Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

Article
Emergence at the Fundamental Systems Level:
Existence Conditions for Iterative Specifications

Bernard P. Zeigler 12* and Alexandre Muzy 3

1 Arizona Center for Integrative Modeling and Simulation (ACIMS), University of Arizona, Tucson, AZ
85721, USA

2 RTSync Corp. 12500 Park Potomac Ave. #905-S, Potomac, MD 20854, USA

3 I3S, CNRS, Université Cote d'Azur, France; alexandre. muzy@cnrs.fr

Correspondence: zeigler@rtsync.com

Abstract: Conditions under which compositions of component systems form a well-defined system-
of-systems here are formulated at a fundamental level. Statement of what defines a well-defined
composition and sufficient conditions guaranteeing such a result offers insight into exemplars that
can befound in special cases such as differential equation and discreteevent systems. For any given
global state of a composition, tworequirements canbe stated informally as:1) thesystem canleave
this state, i.e., thereis at least onetrajectory defined that starts from the state, and 2) thetrajectory
evolves over time without getting stuck at a point in time. Considered for every global state, these
conditions determine whether the resultant is a well-defined system and if so, whether it is non-
deterministic or deterministic. We formulate these questions within the framework of iterative
specifications for mathematical system models that areshown tobe behaviorally equivalent tothe
Discrete Event System Specification (DEVS) formalism. This formalization supports definitions and
proofs of the afore-mentioned conditions. Implications are drawn at the fundamental level of
existence where theemergence of a system from an assemblage of components can be characterized.
We focus on systems with feedback coupling where existence and uniqueness of solutions is
problematic.

Keywords: emergence; uniqueness; existence of solutions; input/output system; system
specifications; discrete event system specification

Introduction

Emergence has been characterized as taking place in strong and week forms [5,12]. Mittal [6]
pointed out that strongemergent behavior resultsin generation of new knowledge about the system
representing previously unperceived complex interactions. This can occur in the form of one or more
of new abstraction levels and linguistic descriptions, new hierarchical structures and couplings, new
component behaviors, and new feedback loops. Once understood and curated, the behavior returns
to theweak form, as it isnolonger intriguing, and then can begin tobetreated in regularized fashion.
Emergent behavior is likely an inherent feature of any complex system model because abstractinga
continuous real-world system (e.g. any complex natural system)toa constructed system-model must
leave gaps of representation that may divergein unanticipated directions Mittal [7] Philosophically,
following Ashby [1] and Foo and Zeigler [4], the perceived global behavior (holism)of a model might
be characterized as: components (reductionism) + interactions (computation) + higher -order effects
wherethe latter canbe considered as the source of emergent behaviors [5,12].

The Discrete Event Systems Specification (DEVS) formalism has been advocated as an
advantageous vehicle for researchingsuch structure-behavior relationships because it provides the
components and couplings for models of complex systems and supports dynamic structure for
genuine adaption and evolution. Furthermore, DEVS enables fundamental emergence modeling
because it operationalizes the closure-under-coupling conditions that form thebasis of well-defined
resultants of system composition especially where feedback coupling prevails [10,15]

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

20f18

In this paper, we formulate conditions under which a composition of component systems form
a well-defined system-of-systems at a fundamental level. Formal statement of what defines a well-
defined composition and sufficient conditions guaranteeing such a result offer insight into exemplars
that can be found in special cases such as differential equation and discrete event systems. Informally
stated, we show that for any given global state of a composition, two requirements can be stated as:
1) the system can leave this state, i.e., there is at least one trajectory defined that starts from the state,
and 2) the trajectory evolves over time without getting stuck at a point in time. Considered for every
global state, these conditions determine whether the resultant is a well-defined system and if so,
whether it is non-deterministic or deterministic. We formulate these questions within the framework
of iterative specifications for mathematical system models that are shown to be behaviorally
equivalent to the Discrete Event System Specification (DEVS) formalism. This formalization supports
definitions and proofs of the afore-mentioned conditions and allows us to exhibit examples and
counter-examples of condition satisfaction. Drawing on Turing machine halting decidability, we
investigate the probability of legitimacy for randomly constructed DEVS models. We close with
implications for further research on the emergence of new classes of well-defined systems.

TMControl
S,
Sl le— Sym (Sym’ mv)
—
Tape
FIGURE 1. Turing machine decomposition.

Figure 1 Turing Machine decomposition and modular composition

Let's start with a well-known concept, the Turing Machine (TM)
[https://en.wikipedia.org/wiki/Turing_machine]. Usually it is presented in a holistic, unitary
manner but as in Figure 1a, we can decompose it into two stand-alone independent systems the TM
Control, S1 and the Tape System, S2. Foo and Zeigler [4] argued that the re-composition of the two
parts was an easily understood example of emergence wherein each standalone system has very
limited power but their composition has universal computation capabilities. Examining this in more
depth, the Tape system shown in Figure 1b is the dumber of the two, serving a memory with a slave
mentality, it gets a symbol (sym) and a move (mv) instruction as input, writes the symbol to the tape
square under the head, moves the head according to the instruction, and outputs the symbol found
at the new head location. The power of the Tape system derives from its physicality — its ability to
store and retrieve a potentially infinite amount of data — but this only can be exploited by a device
that can properly interface with it. The TM Control by contrast has only finite memory but its capacity
to make decisions (i.e., use its transition table to jump to a new state and produce state-dependent
output) makes it the smarter executive. The composition of the two exhibits “weak emergence” in
that the resultant system behavior is of a higher order of complexity than those of the components
(logically undecidable versus finitely decidable), the behavior that results can be shown explicitly to
be a direct consequence of the component behaviors and their essential feedback coupling — cross-
connecting their outputs to inputs as shown by the dashed lines of Figure 1b. We are going to use
this example to discuss the general issues in dealing with such compositions.

The interdependent form of the interaction between the TM control and the tape system
illustrates a pattern found in numerous information technology and process control systems and
recognized early on by simulation language developers [13]'. In this interaction, each component
system alternates between two phases, active and passive. When one system is active the other is
passive - only one can be active at any time. The active system does two actions: 1) it sends an input

! Though not necessarily in the modular form described here

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

30f18

to the passive system that activates it (puts it into the active phase), and 2) it transits to the passive
phase to await subsequent re-activation. For example, in the re-composed Turing Machine, the TM
control starts a cycle of interaction by sending a symbol and move instruction to the tape system then
waiting passively for a new scanned symbol to arrive. The tape system waits passively for the sym,mv
pair. When it arrives it executes the instruction and sends the symbol now under the head to the
waiting control.

Such active-passive compositions provide a class of systems from which we can draw intuition
and examples for generalizations about system emergence at the fundamental level. We will employ
the modeling and simulation framework based on system theory formulated in [13] especially
focusing on its concepts of iterative specification and the Discrete Event Systems Specification (DEVS)
formalism. Special cases of memory-less systems and the pattern of active-passive compositions are
discussed to exemplify the conditions resulting ill-definition, deterministic, and non-deterministic as
well as probabilistic systems. We provide sufficient conditions, meaningful especially for feedback
coupled assemblages, under which iterative system specifications can be composed to create a well-
defined resultant and that moreover can be simulated in the DEVS formalism.

However, to address more fundamental issues we need to start with a more primitive and
perhaps more intuitive notion of a system. As in Figure 2, consider a concept of system with states,
transitions, and times associated with transitions. For example there are transitions from state S1 to
state 53 and from S3 to S4 which each takesl time unit and there is a cycle of transitions involving
54...57 each of which take zero time. There is a self-transition involving S2 which consumes an
infinite amount of time (signifying that it is passive, remaining in that state forever.) This is
distinguished from the absence of any transitions out of S8. A state trajectory is a sequence of states
following along existing transitions, e.g., S1, S3, 54 is such a trajectory.

S1

S7

Figure 2 System with tuned transitions

This example gives us a quick understanding of the conditions for system existence at the
fundamental level:

We say that the system is

o not defined at S8 because there is no trajectory emerging from it

e non-deterministic at S1 because there are two distinct outbound transitions defined for it

e deterministic at S2 and 54 because there is only one outbound transition for each.

We say that the system is well-defined if it is defined at all its states. These conditions are relative
to static properties, i.e., they relate to states not how the states follow one another over time. In
contrast, state trajectories relate to dynamic and temporal properties. When moving along a trajectory
we keep adding the time advances to get the total traversal time, e.g., the time taken to go from S2 to
S4 is 2. Here a trajectory is said to be progressive in time if time always advances as we extend the
trajectory. For example, the cycle of states 54...57 is not progressive because as we keep adding the
time advances the sum never increases. Conceptually, let’s start a clock at 0 and, starting from a given

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

40f18

state, we let the system evolve following existing transitions and advancing the clock according to
the time advances on the transitions. If we then ask what the state of the system will be at some time
later, we will always be able to answer if the system is well-defined and progressive. A well-defined
system that is not progressive signifies that the system gets stuck in time and after some time, it
becomes impossible to ask what the state of the system is in after that time. Zeno’s paradox offers a
well-known metaphor where the time advances diminish so that time accumulates to a point rather
than continue to progress and offers an example showing that the pathology does not necessarily
involve a finite cycle. Our concept of progressiveness generalizes the concept of legitimacy for DEVS
[13] and deals with the “zenoness” property which has been much studied in the literature [9]. We
return to it in more detail later.

Thus we have laid the conceptual groundwork in which a system has to be well-defined (static
condition) and progressive (temporal dynamic condition) if it is to have achieved independent
existence when emerging from a composition of components.

Formal background

As presented in [14], a Discrete Event System Specification (DEVS) is a structure
M=<X,S,Y, dint, Dext , A, ta>
where
X is the set of input values
S is aset of states,
Y is the set of output values
Osint: S — S is the internal transition function
Oext: Q xX — S is the external transition function, where
Q={(s,e)l seS, 0<e<ta(s)} is the total state where
e is the time elapsed since last transition
A: S — Yis the output function

ta: S — Rb = is the time advance function

In the Turing machine example of Figure 1, the tape system and control engine are each atomic DEVS.
For the tape system, a state is a triple (tape, P0S,MV) where the tape is an infinite sequence of zeros
and ones (symbols), POS represents the position of the head, and MV is a specification for moving
left or right. An external transition accepts a symbol, move pair, writes the symbol in the square of
the current head position and stores the move for the subsequent internal transition that executed the
specified move. For the control engine, a state is a pair (St,Sym)where Stis a control state and
Symis a stored symbol. An external transition stores the received symbol for subsequent use. An
internal transition applies the TM transition table to the (St,Sym) pair and transitions to the specified

control state. Appendix 1 provides more detail for this example.
The core of this concept simplifies when the system is input-free (or autonomous, i.e., not responding
to inputs) and outputs are not considered. Then we have a transition system

M =<Q,0d,ta>
0 <=QxQ
ta:QxQ >Ry

For example, in Figure 2, we have

Q={S1,52,53,54,55,56,S7},
5 ={(S1,53),(S3,54),..}
ta(S1,S3) =1 ta(S3,S4) =1,...

In this formal version of the informal statements above, the transition system, M is

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

50f18

e not defined at S8 because there is no transition pair with S8 as the left member in &

e non-deterministic at S1 because it is a left member of two transition pairs (S1,52) and (S1,53)

e deterministic at S2 and 54 because there is only one transition pair involving each one as a
left member.

Coupled DEVS Models

DEVS models can be coupled to form coupled models that themselves are DEVS models manifesting
closure under coupling. To keep the presentation as straightforward as possible in this paper we will
limit the discussion to coupling of two components without external inputs or outputs. This is
illustrated in Figure 1b) where the coupling recipe maps the output of the control engine (symbol,
move pair) to the input of the tape system and likewise, the output of the tape system (symbol) to the
input of the control engine. This mapping is assumed to take zero time (any delay in a real
manifestation can be modeled by inserting delay components.) To sketch the way the resultant of
coupling is computed and show that it is expressed as a DEVS, let

M=<X,S,Y, dint, dext , A, ta>

M’ =X’ S8, Y, i, ext,x, ta™>

Then the resultant is a DEVS:
M coup =< Qcoup ! 5coup ' ta, >

coup

where
Quop =QxQ°
tacoup :Qcoup - Rgo

5coup . Qcoup - Qcoup

ta((s,e),(s',e")) =min{ta(s) —e,ta'(s") —e'}

To explain, the next event will occur according the time advance and will be driven by the imminent
component (whose next event time is the minimum of the two - neglecting ties for simplicity here.)
For illustration, let t* be the time advance and let the second component be imminent. This
component generates its output and sends it to the first via the coupling which reacts to it using its
external transition function establishing its next state J,,(S,t*,1'(S")) ; at the same time the

imminent component applies its internal transition function to establish its next state 5., (S") . Thus

we have
oo ((5,€),(5",€) = (G, (8,1, 27(57)), 61 ()

Having briefly reviewed the basics of DEVS we are ready to consider the general case of iterative
specification of which DEVS is an example.

Iterative System Specifications

We briefly review an approach to Iterative Specification of Systems that was introduced in [14] and
provide more detail in Appendix 2. I/O systems describe system behavior with a global transition
function that determines the final state given the initial state and the applied input segment. Since
input segments are left segmentable and closed under composition, we are able to generate the state
and output values along the entire input interval. However, such an approach is not very practical.
What we need is a way to generate state and output trajectories in an iterative way going from one
state along the trajectory to the next.

Iterative specification of systems is a general scheme for defining systems by iterative applications of
generator segments. These are elementary segments from which all input segments of a system can be
generated. Having such a concept we define a generator state transition function and iteratively apply
generator segments to the generator state transition function. The results produced by the generator

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

6 of 18

state transitions constitute the state trajectory for the input segment resulting from the composition
of the generator segments. The general scheme of iterative specification forms a basis for more
specialized types of specifications of systems. System specification formalisms are special forms of
iterative specifications with their special type of generator segments and generator state transition
functions.

Consider (Z, T) the set of all segments {w: <0, 1> — Z | t1 €ET.ForasubsetI of (Z, T), the concatenation
closure of I' is denoted I'~ Example generators are bounded continuous segments, and constant
segments of variable length generating bounded piecewise continuous segments piecewise constant
segments, resp. Unfortunately, if I' generates (), we cannot expect each w €() to have a unique
decomposition by I'. A single representative, or canonical decomposition can be computed using a
maximal length segmentation (MLS). First we find wi, the longest generator in I' that is also a left
segment of w. This process is repeated with what remains of w after w1is removed, generating «z,
and so on. If the process stops after n repetitions, then w = wiwz. . . ws,. We say that I' is an admissible
set of generators for Q if I' generates Q) and for each w& (), a unique mls decomposition of w by I
exists. The following is the basis for further analysis in this paper:

Sufficient Conditions for Admissibility

If I satisfies the following conditions, it admissibly generates I'*:

1. Existence of longest initial segments: @ €I'*= max {t | wi €T } exists
2. Closure under right segmentation: w €I' = w« €I for allT €dom (w)

An iterative specification of a system is a structure
G =<T X,QcYQ, 0A >,

where T, X, Y, Q have the same interpretation as for I/O systems, Qcis an admissible set of input
segment generators, d: Q x Q¢ —~(Q is the single segment state transition function, A: Q x X —Y'is
the output function..

An iterative specification G=<T, X, Q, Y, Q, 06, A> specifies a time invariant system, Sc=<T, X, (X,

Y, Q, dc*, A> The system is well-defined if dc*, the extension of dc, has the composition property i.e.,
Ot (g1 ® w2) =0c* (0c* (g,w1),ar), for all 1 and w2 in OQrc.

For more details see Appendix 2.

DEVS Simulation of Iterative Specification

As reviewed in Appendix 2, the notion of iterative specification was introduced to characterize
diverse classes of systems such as differential equation systems and discrete time systems. With the
motivation of including discrete event systems under the same umbrella as more familiar systems,
DEVS was defined using iterative specification. Here we show that the converse is also true, namely,
that DEVS can directly represent iterative specifications.

Given an iterative specification G=<T, X, Qg, Y, Q, 0, A>, we construct a DEVS model M
=<X, S, Y, dint, Oext , A, ta> that can simulate it in a step-by-step manner moving from one input segment
to the next. The basic idea is that we build the construction around an encoding of the input segments
of G into the event segments of M as illustrated in Figure 3. This is based on the MLS which gives a
unique decomposition of input segments to G into generator subsegments. The encoding maps the
generator subsegments. wi in the order they occur into corresponding events which contain all the
information of the segment itself. To do the simulation, the model M stores the state of G. It also uses
its external transition function to store its version of G’s input generator subsegment when it receives
it. M then simulates G by using its internal transition function to apply its version of G’s transition
function to update its state maintaining correspondence with the state of G.

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

7 of 18

g l l i
DEVS

() @[@]d.)

g(w,)= [a)i] ¢1(m,.)

Figure 3 DEVS Simulation an Iterative Specification
Details of the construction are provided in Appendix 3. We note that the key to the proof is that
iterative specifications can be expressed within the explicit event-like constraints of the DEVS
formalism, itself defined through an iterative specification. Thus DEVS can be viewed as the
computational basis for system classes that can be specified in iterative form satisfying all the
requirements for admissibility.

Coupled Iterative Specification

\/\G;IM | 1sP1 Pl
time — {i\rrc/\%
ol =2 w2 = pl

ISP2

A

Figure 4 Input and output trajectories of coupled systems

Although closure of coupling holds for DEVS, the generalization to iterative specification does not
immediately follow. The problem is illustrated in Figure 4 where two iterative system specifications,
ISP1 and ISP2, are cross-coupled such as exemplified by the Turing machine example in Figure 1. The
cross-coupling introduces two constraints shown by the equalities in the figure, namely, the input of
ISP2, @2 must equal the output of ISP1, pl, and the input of ISP1, @lmust equal the output of

ISP2, p2.Here we are referring to input and output trajectories over time as suggested graphically

in Figure 4. Since each system imposes its own constraints on its input/output relation, the
conjunction of the four constraints (2 coupling-imposed, 2 system-imposed) may have zero, one, or
multiple solutions.

Definition:

A Coupled Iterative Specification is a network specification of components and coupling where the
components are iterative specifications at the I/O System level.

As indicated, in the sequel we deal with the simplified case of two coupled components. However,
the results can be readily generalized with use of more complex notation.

Definition:

The I/O Relation of an iterative specification is inherited from the I/O Relation of the system that it
specified. Likewise, the set of I/O Functions of an iterative specification is inherited from the system

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

80of18

it specifies. Formally, let Sc=<T, X, 0, Y, Q, dc*, A> be the system specified by G=<T, X, Qq, Y, Q,
0c, A>. Then the I/O Functions associated with G is

L:QxQ" Q"

where forqeQ,we Q"

£(a,) = A(6(q,))

Let fland 2 represent the I/O functions of the iterative specifications, ISP1 and ISP2, resp.
Applying the coupling constraints expressed in the equalities above, we make the:

Definition:

A pair of output trajectories (pl, p2) is a consistent output trajectory for the state pair (q1, q2) if
pL=pUAL p2) and p2=2(q2, pl).

Definition

A Coupled Iterative Specification has unique solutions if there is a function,

F:Q1xQ2 — Q where

F(qL.a2) = (oL p2)

where there is exactly one consistent pair (pl, p2) with infinite domain for every initial state (q1,q2).
Infinite domain is needed for convenience in applying segmentation.

Definition:

A Coupled Iterative Specifications is admissible if it has unique solutions.

The following theorems are proved in Appendix 4.

Theorem: An admissible Coupled Iterative Specification specifies a well-defined Iterative Specification
at the I/O System level

Theorem: The set of Iterative Specifications is closed under admissible coupling

Theorem
DEVS coupled model can component-wise simulate a coupled Iterative Spec.
Proof:

Coupled Iterative Spec Coupled DEVS

e IS1 E—) + DEVS1 (g1, dum)

pzr*;i —

p 1>

t*
Figure 5 DEVS Component-wise simulation of Coupled Iterative Specifications

The coupled model has components which are DEVS representations of the individual Iterative Specs
(according to the previous theorem) and also a coordinator as shown in the Figure. The coordinator
receives the current states of the components and applies the F function to compute unique consistent
output segments. After segmentation using the MLS as in the previous proof, it packages each as a
single event in a DEVS segment as shown. Each DEVS component computes the state of its Iterative
Spec at the end of the segment as in the theorem. Then it sends this state to the coordinator and the
cycle repeats.

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

90f18

The solution function F represents an idealization of the fixed point solutions required for DESS and
the local solution approaches of DTSS and Quantized DEVS. GDEVS polynomial representation of

trajectories is the closest realization but the approach opens the door to realization by other trajectory
prediction methods.

Special case: Memoryless Systems

Consider the case where each component’s output does not depend on its state but only on its input.
Let Qgr represent the ground state in which the device is always found (all states are represented by
this state since output does not depend on state.

pl=pl(gr,ol) < (o, pl) e R1

p2=L42(9r,w2) < (w2, p2) € R2

w2=pl

wl=p2

p2=42(02,02) < (pl,0l) e R2 = (wl, p1) e R27™*

i.e., (p2, pl) is consistent < (p2, pl) e RINR2!

pl=BUAL p2) = T (p2)

p2=2(q2, p1) =9g(pl)

SO

pl=1(p2)=1(9(pD)

SO

g = f " (considered as a relation)

and

F(q1.92) = (oL f (D))
e hasnosolutionsif ™ does not exist, yielding no resultant
e has a unique solution for every input if f ! exists, yielding a deterministic resultant and

e has multiple solutions for a given segment p if f N (p) is multivalued, yielding a non-
deterministic resultant

For examples consider an adder that always adds 1 to its input, i.e,
Baar.p)=f(p)=p+1
e, vteT,B(gr, p)(t)=p(t)+1

Cross-coupling a pair of adders does not yield a well-defined resultant because f N (p)=p-1=f1
. However, coupling an adder to a subtracter, its inverse

par,p)=p-1
, would yield a well-defined deterministic system.

For other examples, consider combinatorial elements whose output is a logic function of the input
and consider a pair of gates of the same type connected in a feedback loop:
e aNOT gate has an inverse 0 -1,1— 0, so the composition has two solutions one for
each of two complementary assignments, i,e,, F(gr,gr)={(10),(0,1)} yielding a non-
deterministic system.

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

10 of 18

e an AND gate with one of its input held to 0 always maps the other input into 0 so has a
solution only for inputs of 0 to each component, ,ie,, F(gr,gr)=(0,0), yielding a
deterministic system.

e an AND gate with a stuck-at input of 1 is the identity mapping and has multiple solutions
ie, F(gr,gr)={(0,0),(1,1)}, yielding a non-deterministic system.

Active-Passive Systems

We now show that active-passive systems as described earlier offer a class of systems for which
the iterative specifications of components satisfy the admissibility conditions specified in the above
Theorem. As in Figure 6a consider a pair of cross-coupled systems each having input generators
that represent null and non-null segments.

non — null/null active
-— passiv(_ active |—» System 1

passive

Non-null

‘-“-nq]]/non - null"/ Output M

non — null/null el active

*;. s System 2

passiv active |—> passive

M VN
QOutput

null/non — null

Figure 6 Active-Passive Example of Admissible Progressive Coupled Iterative Specifications

A null generator represents the output of a passive system whereas a non-null generator represents
the output of an active system. For example in the TM case, a non-null generator is a segment that
represents transmission of a symbol by the tape unit and of a symbol,move pair for the TM control.
As in Figure 6b let 51 and S2 start as active and passive, respectively. Then they output non-null and
null generators respectively. Since the null generator has infinite extent, the end-time of the non-null
generator determines the time of next event, t* (as defined earlier) and we apply the transition
functions in Figure 6a to find that at t* the systems have reversed phases with S1 in passive and S2 in
active.

Define a triple <Q,05,4> by

Q ={active. passive}x{active. passive}

t*(active, passive) = endtime of the non-null generator segment

and F (active, passive) = (non-null, null).

o, (active, passive)

= (d(active, null...), o(passive, non-null...))

= (passive, active)

A(active, passive) = (non-null, null)

Let the non-null and null generators stand for sets of concrete segments that are equivalent with
respect to state transitions and outputs. Then such a scheme can define a deterministic or non-
deterministic resultant depending on the number of consistent pairs of (non-null,null) generator

segments are possible from the (active, passive) state.
And mutatis-mutandis for the state (passive, active)

Temporal Progress: Legitimacy, Zenoness

Although we have shown how a DEVS coupled model can simulate a coupling of iterative
specifications, it does not guarantee that such a model is legitimate [14] . Indeed, backing up,

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

11 0f 18

legitimacy of the simulating DEVS is reflective of the temporal progress character of the original
coupling of specifications. We see that the time advance has a value provided that the function F is
defined for current state. However, as in the case of zenoness, a sequence of such values may
accumulate at a finite point thus not allowing the system to progress beyond this point.
Consequently, we need to extend the requirements for coupled iterative specifications to include
temporal progress in order to fully characterize the resultant composition of systems. Thus we can
extend the definitions:

Definition: An Iterative Specification is progressive if every sequence of time advances diverges in sum.
Definition: A Coupled Iterative Specification is progressively admissible if its components are each
progressive and the resultant Iterative Specification at the I/O System level is progressive,

Theorem:

A progressive Iterative Specification can be simulated by a legitimate DEVS.

A progressively admissible Coupled Iterative Specification can be component-wise simulated by a
legitimate DEVS.

Ref. 14 showed that the question of whether a DEVS is legitimate is undecidable. The approach was
to express a Turing Machine as a DEVS and showing that solving the halting problem is equivalent
to establishing legitimacy for this DEVS. We can transfer this approach to the formulation of the TM
in Figure 1 by setting the time advances of both components to zero except for a halt state which is a
passive state (has an infinite time advance). Then a TM DEVS is legitimate just in case the TM it
implements ever halts. Since there is no algorithm to decide whether an arbitrary TM will halt or not
the same is true for legitimacy. Since DEVS is an iterative specification, the problem of determining
whether an Iterative Specification is progressive is also undecidable. Likewise, the question of
whether a coupled iterative specification is progressive is undecidable.

Fundamental Systems Existence: Probabilistic Characterization of Halting

The existence of an iteratively specified system requires temporal progress and there is no algorithm
to guarantee in a finite time that such progress is true. The underlying point is that, given an arbitrary
TM, we have to simulate it step-by-step to determine if it will halt. And importantly, if a TM has not
halted after some time, however long, this gives us no further information on its potential halting in
the future. However, while this is true for individual TMs, the situation may be different for the
statistics of subclasses of TMs. In other words, for a given class of TMs, the probability of an instance
halting may be found to increase or decrease for the future given that it has not yet halted.

We performed an empirical study of randomly generated TMs described in Appendix 6. The results
seem to show that TMs break into two classes — those that halt within a small number of steps (e.g.16)
and those that do not halt. Indeed, the data suggest that approximately one-third of the sampled TMs
halt, while 2/3 do not. For those that halt, the probability of halting at the first step is greatest and
then decreases exponentially and so is well-described by a geometric distribution with probability of
success approximately 1/6. In other words the probability of halting is 1/6 at each step given the TM
has not halted earlier for the set that will eventually halt.

Summarizing, the existence of an iteratively specified system is not algorithmically decidable but
there may be useful probabilistic formulations that can be applied to sub-classes of such
specifications. For example, it seems to be that with high probability the halting of a 2-symbol, 3-state
TM can be decided within 16 simulation steps. Therefore, it might be tractable for an assemblage of
components to find a way to solve its composition problems in a finite time for certain classes of
components couplings.

Discussion: Future Research

The discussion presented here was limited to compositions having two components with cross-
coupled connections. However, this scope was sufficient to expose the essential effect of feedback in
creating the need for consistent assignments of input/output pairs and the additional - distinct-
requirement for time progression. Further development can extend the scope to arbitrary

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

12 0f 18

compositions generalizing the statement of consistent assignments to finite and perhaps, infinite sets
of components.

Further, when extending to arbitrary composition sizes, the analysis revealing fundamental
conditions for the emergent existence of systems from component systems suggests new classes of
systems that can be defined using iterative specifications. For example, we might consider the active-
passive systems in a more general setting. First allowing any finite number of them in a coupling can
satisfy the requirement for at most one active component at any time by restricting the coupling to a
single influencer for each component. In fixed coupling exhibiting feedback, this amounts to a cyclic
formation in which activity will travel around the cycle from one component to the next. Another
common pattern is a single component (root) influencing a set of components (branches) each of
which influences only the root. Several possibilities for interaction of the root with the branches can
result in admissible compositions. For example, the root might select a single branch to activate to
satisfy the single active component requirements. Or it might activate all branches and count the
number of branches as they successively go passive, becoming active when all the branches have
become passive. These alternative configuration require knowledge of the protocol underlying the
interaction but this only means that proofs of emergent well-defined resultants will be conditioned
to narrower sub-classes of systems rather than to broad classes such as all differential equation
systems.

After much progress in understanding how dynamic structure can be managed in DEVS-based
simulations [2,3,11], a framework that incorporates several insights has recently been developed [8].
This framework, formulated in the DEVS formalism, can be extended to iterative specifications and
investigated for conditions of existence as done here. The extension will probably increase the
complexity required to state and establish the conditions but would, if successful, bring us closer to
understanding the emergence of systems from assemblages of components in the real world.

Appendix 1 DEVS Representation of TM

Tape System
A state is a triple (tape, pos,mv) where tape: | —>{0.1}, posel, mve{-11}and | is the
integers; in other words the tape an infinite sequence of bits, POS represents the position of the

head, and MV is a specification for moving left or right.

An internal transition moves the head as specified; an external transition accepts a symbol, move
pair, stores the symbol in the current position of the head and stores the move for subsequent
execution. The slot for storing the move also can be null which indicates that a move has taken place.
o, (tape, pos, mv) = (tape, move(pos, mv), null)

O, ((tape, pos, null),e, (sym, mv)) = (store(tape, pos, sym), pos, mv)
ta(tape, pos,mv) =1

ta(tape, pos, null) =

A(tape, pos, mv) = getSymbol(tape, pos)

where

move(pos.mv) = pos + mv

store(tape, pos, sym) = tape' where tape'(pos) = sym, tape'(i) = tape(i)
getSymbol (tape, pos) = tape(pos)

TM Control
A state is a pair (St,Sym) where St is a control state and SyM is a stored symbol.

An internal transition applies the TM transition table to the (St,Sym)pair and transitions to the
specified control state.

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

13 of 18

An external transition stores the received symbol for subsequent use.

S,y (st, sym) = (TMState(st, sym), null)
Oy ((st,null), e, sym) = (st, sym)
ta(st,sym)=1

ta(st,null) =0

A(st, sym) = TMOutput(st, sym)
where

TMState(st, sym) =st'

TMOutput(st, sym) = sym'

Appendix 2: Iterative Specification of Systems

The following is extracted from [14] Chapter 5.

Generator Segments

Consider (Z, T) the set of all segments {w: <0, t1> — Z | #1 €T}, which is a semigroup under
concatenation. For a subset I of (Z, T), we designate by I'*the concatenation closure of I' (also called the
semigroup generated by I'). Example generators are bounded continuous segments, and constant
segments of variable length generating bounded piecewise continuous segments piecewise constant
segments, resp. Unfortunately, if I' generates (), we cannot expect each w €Q to have a unique
decomposition by I'; that is, there may be distinct decompositions w1, @, . . ., wrand wi, w2, . . ., Wy’
suchthatwi® wae ... e wn=wandwi’' ® w2’ ®...* w=w.

A single representative, or canonical decomposition can be computed using a maximal length
segmentation. First we find w;, the longest generator in I' that is also a left segment of w. This process
is repeated with what remains of w after w:is removed, generating wz, and so on. If the process stops
after n repetitions, then w = wiwz. . . wy,..

It is not necessarily the case that mls decompositions exist (i.e., that the just-mentioned processes will
stop after a finite number of repetitions). Thus, we are interested in checkable conditions on a set of
generators that will guarantee that each segment generated has an mls decomposition.

Fortunately, a segment can have at most one mls decomposition.

We say that I' is an admissible set of generators for Q) if I' generates () and for each w€(), a unique mls
decomposition of w by I' exists. (We also say I' admissibly generates €).) The following is proved in
[14]:

Theorem 1 Sufficient Conditions for Admissibility

If T satisfies the following conditions, it admissibly generates I'*:

Existence of longest initial segments: w €I'*= max {t | s €l'} exists

Closure under right segmentation: w €I’ = w<« €I for all T edom (w)

Generator State Transition Systems

Having established a terminating process for obtaining mls decompositions, we wish to use these
decompositions to help us generate a transition function given only that function’s action on the
generators. In other words, let Qcbe an admissible generating set for () and suppose we have defined
a function 0: Q x Qc— Q, which we call a single segment transition function.

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

14 of 18

Let wy, wy, . . ., wnbe the mls decomposition of w. Having 0 defined for each segment wi, we wish to
piece together these parts to obtain compound transition associated with w itself.
An iterative specification of a system is a structure

G =<T X,QcYQ, 0A >,

where T, X, Y, Q have the same interpretation as for I/O systems, Qcis the set of input segment
generators, 0: Q x Qc—Q is the single segment state transition function, A: Q x X —Y is the output
function, with the restriction that Qc € (X, T) and, most important, Qc is an admissible set of
generators and 0*: Q x (0*¢ — Q has the composition property.

An iterative specification G=<T, X, Qc, Y, Q, d, A> specifies a time invariant system, Sc=<T, X, (),

Y, Q, 8", M), where d*is the extension of d which is well-defined according to the following;:
Theorem 2 Sufficient Conditions for Iterative Specification

LetG=T, X, Qq, Y, Q, , A be a structure as just defined. Then if the following conditions hold, G
is an iterative specification and Scis a system.
(@) Existence of longest segments:

w €EQGt = max{Aw» €Qc} exists

(b) Closure under right segmentation:

w €Qc = w<€Qc for t edom()w

(c) Closure under left segmentation:

w EQc= wi>€Qc for t edom()w

(d) Consistency of composition: = 0" (q,w1® w2®...® wn)=0d((...d0d((qw1),w2),...)wn),

Conditions (b) and (c), requiring left and right segementability in the definition of iterative
specification, can be weakened while still enabling the theorem to be true. Replace (b) and (c) by

For® € Q¢, if max t *=max {t | @ »€Qc} and #<t *< t, then w <> €Qc and O« > Qg

Appendix 3
Theorem: DEVS atomic model can simulate an Iterative Spec.

Proof:
Given an iterative specification G=<T, X, Qg, Y, Q, &g, A>, we construct a DEVS model
M =<X, S, Y, Oint , Oext A, ta>

g:Qg > Qpys Using mls
g (C()) - [a)]l(w)> - |:a):|¢|(w)>
h:Q > QxQg

h(a) = (g, dummy)
Definition of the simulating DEVS:

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

15 0f 18

S=0QxQ,

5,,(0, @) = (54 (q, @), dummy)
ta(q, w) = l(w)

50i (0, @),8,0") = (56(9, @,.), ")
A(q, dummy) = A, (q)

In the Iterative Specification

5 (9, 00") = 6;(5; (0, ®), @)

In the DEVS
Let Opgys be the transition function of the system specified by the DEVS. We want to show:

h(9" (0, @@")) = Speys (N(Q), 9 (@)

Spevs (N(0), 9(w®)

= Opeys (0, dummy), g(@)g (@)

= Opeys ((, dummy), [a)]|(w)> ,[a)']|(a,-)>)
= Opevs (O (4, dummy), [a)])7 By) @' 1(09)
= Opevs (4 [a)])' ¢I(a))>)7 a)l|(m')>)

= Opeys (G (0 [a)])’ ¢I(a})>)’ a)'l(w’)>)

= Opeys (06 (0, @), dummy), I|(a,-)>)

= (05 (65 (0, @), @"), dummy)

So

h(s" (0, 0e))

=h(6; (65 (0, @), ®")

= (65 (65 (0, @), '), dummy)

= Opevs (W(A), 9 (00"))

Appendix 4

Theorem:

An admissible Coupled Iterative Specification specifies a well-defined Iterative Specification at the
I/O System level

Proof:

Given two iterative specifications, Gi and their state sets, Qi i=1,2, let Q= Q1 X Q2 , eventually
the state set of the iterative specification to be constructed. For any pair (q1,q2) in Q, let (o1, p2)
be a consistent output trajectory for (ql, q2), ie. pl=p(qL p2) and p2=/L£(q2, pl)
and F(qL q2) = (pL, p2).

Define an autonomous Iterative Specification <Q, 5,4 > by
I (AL,02) = (8(AL, P24q1.42)-): 6(A2, Pligrga-))

where t*(ql, q2) = min{t,*,t,*}

where t *,t,* are the times of the MLS for pland p2.

In other words, since each of the component iterative specifications have maximum length
segmentations we take the time of next update of the constructed specification to be determined by

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

16 of 18

earliest of the times of these segmentations for the consistent pair of output trajectories. This allows
us to define a step-wise transition for the constructed transition function. Closure under composition
for this transition function can be established using induction on the number of generators in the
segments under consideration. Similarly, the output function is defined by:

A(9L,92) = (A(q1), A(q2)) -

Theorem: The set of Iterative Specifications is closed under admissible coupling
Proof: this theorem is a corollary of the previous theorem.

Appendix 5: A statistical experiment sampling from 2-symbol, 3-state TMs

We performed a statistical experiment sampling from 2-symbol, 3-state TMs. Each sampled TM fills
in the x’s in the table below with values from the sets shown, where one of the rows is chosen at
random and its next state change to the halt state. The number of TMs in this class is (2¥2*3)23=12¢.
We generated 1000 samples randomly and simulated them until they halted or for a maximum of
1000 time steps.

State | Symbol | Next Move | Print
State {11} | Symbol
{A,B,C} {0,1}

A 0 X X X

A 1 X X X

B 0 X X X

B 1 X X X

C 0 X X X

C 1 X X X

The results are shown in the first two columns of the following table. They seem to show that TMs
break into two classes — those that halt within a small number of steps (e.g.16) and those that do not
halt. Indeed, the data in the table suggest that approx. one-third of the sampled TMs halt, while 2/3
do not. For those that halt, the probability of halting at the first step is greatest and then decreases
exponentially. The third row shows the probabilities computed from a geometric success model
using probability of success as 0.161. The agreement of the observed and predicted distributions are
in close agreement. This suggests that for the set that will eventually halt, the probability of a TM
halting at each step is approx. 1/6, given that it has not halted earlier.

Haltsat N Frequency = Geometric

Model
1 0.161 0.161
2 0.1 0.09
3 0.042 0.039
4 0.023 0.022
5 0.016 0.015
6 0.005 0.00488
7 0.004 0.00390
11 0.001 0.000990
16 0.001 0.000985

10000 0.647

Table 1: Empirical Frequency Distribution for halting step vs Geometric Model

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

17 of 18

Frequency Empirical vs Geometric Model

018
016
014
01z

0.1
0.08
0.06
0.04
0.02

o 2 4 6 8 10 12 14 16 13

=g—>5tatsForl0000 =——@=— Geometric

Summarizing, the existence of an iteratively specified system is not algorithmically decidable but
there may be useful probabilistic formulations that can be applied to sub-classes of such
specifications. For example, it seems to be that with high probability the halting of a 2-sysmbol, 3-
state TM can be decided within 16 simulation steps. Therefore, it might be tractable for an assemblage
of components to find a way to solve its composition problems in a finite time for certain classes of
components couplings.

References

Ashby, W. An Introduction to Cybernetics, University Paperbacks, Methuen, London, 1964.

2. Barros.F.J.,, “Modeling and Simulation of Dynamic Structure Heterogeneous Flow
Systems.” SIMULATION: Transactions of The Society for Modeling and Simulation International,
Vol. 78, No. 1, 18-27, 2002.

3. Barros. F.J.,, “Dynamic Structure Multi-Paradigm Modeling and Simulation,” ACM Transactions
on Modeling and Computer Simulation, Vol. 13, No. 3, pp. 259-275, 2003.

4. Foo, N. Y, and Zeigler, B. P. Emergence and computation. International Journal of General
Systems 10, 2-3 (1985), 163 168.

5. Kubik, A. Toward a formalization of emergence.Arti cial Life 9, 1 (2003), 41 65.

6. Mittal, S. Emergence in stigmergic and complex adaptive systems: A formal discrete event
systems perspective. Cognitive Systems Research 21 (2013), 22 39. Stigmergy in the Human
Domain.

7. Mittal, S., and Rainey, L. Harnessing emergence: The control and design of emergent behavior
in system of systems engineering. In Proceedings of the Conference on Summer Computer
Simulation, SummerSim ‘15, Society for Computer Simulation International (San Diego, CA,
USA, 2015), 1 10.

8. Muzy, A, and Zeigler, B. P,. Specification of dynamic structure discrete event systems using
single point encapsulated control functions. International Journal of Modeling, Simulation, and
Scienti ¢ Computing 05, 03 (2014), 1450012.

9. Nutaro, J. (2011). Building Software for Simulation: Theory and Algorithms with applications in
C++. Wiley.

10. Tuncer I. Oren and B.P. Zeigler, “System Theoretic Foundations of Modeling and Simulation: A
Historic Perspective and the Legacy of A. Wayne Wymore,” Simulation: Trans. Soc. Model. &
Sim., vol. 88, no. 9, pp. 1033-1046, September 2012.

11. Steiniger, A., and Uhrmacher, A. M. Intensional couplings in variable-structure models: An
exploration based on multilevel-devs. ACM Trans. Model. Comput. Simul. 26, 2 (Jan. 2016), 9:1
9:27.

12. Szabo, C., and Teo, Y. M. Formalization of weakemergence in multiagent systems. ACM Trans.
Model. Comput. Simul. 26, 1 (Sept. 2015), 6:1 6:25.

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2016 doi:10.20944/preprints201608.0163.v1

18 of 18
13. Uhrmacher, A. M. Dynamic structures in modeling and simulation: A reactive approach. ACM
Trans. Model. Comput. Simul. 11, 2 (Apr. 2001), 206 232.

14. Zeigler, B., Praehofer, H., and Kim, T. Theory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems. Academic Press, 2000.

15. Zeigler, B., Alexandre Muzy Some Modeling & Simulation Perspectives on Emergence in
System-of-Systems, Proceedings of SpringSim2016, 2016.

© 2016 by the authors; licensee Preprints, Basel, Switzerland. This article is an open
@ @ access article distributed under the terms and conditions of the Creative Commons

by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.20944/preprints201608.0163.v1
http://dx.doi.org/10.3390/systems4040034

	preprints-356 manuscript banner
	preprints201608.0163.v1

