The challenge of this work is to re-define the concept of intelligent agent as a building block of social networks by presenting it as a physical particle with additional non-Newtonian properties. The proposed model of an intelligent agent described by a system of ODE coupled with their Liouville equation has been introduced and discussed. Following the Madelung equation that belongs to this class, non-Newtonian properties such as superposition, entanglement, and probability interference typical for quantum systems have been described. Special attention was paid to the capability to violate the second law of thermodynamics, which makes these systems neither Newtonian, nor quantum. It has been shown that the proposed model can be linked to mathematical models of livings as well as to models of AI. The model is presented in two modifications. The first one is illustrated by the discovery of a stochastic attractor approached by the social network; as an application, it was demonstrated that any statistics can be represented by an attractor of the solution to the corresponding system of ODE coupled with its Liouville equation. It was emphasized that evolution to the attractor reveals possible micro-mechanisms driving random events to the final distribution of the corresponding statistical law. Special attention is concentrated upon the power law and its dynamical interpretation: it is demonstrated that the underlying micro- dynamics supports a “violent reputation” of the power-law statistics. The second modification of the model of social network associated with a decision-making process and applied to solution of NP-complete problems known as being unsolvable neither by classical nor by quantum algorithms. The approach is illustrated by solving a search in unsorted database in polynomial time by resonance between external force representing the address of a required item and the response representing the location of this item.
Keywords:
Subject: Computer Science and Mathematics - Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.