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23 1. Introduction

24 The present work can be considered as a part of a series of studies concerning phase space, linear
25  canonical transformation and quantum theory that we have started and performed in our previous
26 works [1],[2]. Through history and scientific literature, it can be remarked that the description of
27  phase space in quantum theory and related problems like study of canonical transformations are
28  among of the most interesting subjects. We may quote many works since the beginning of quantum
29  physics and until nowadays; for instance we have [3-14]. A well known approach to tackle these
30  problems is based on the utilization of the Wigner distribution but other approaches may be also
31  considered. Our work is in this framework.

32 Through all the paper, we use the natural system of units in which the light speed ¢ and the
33 reduced Planck constant # are set to unity (¢ = 1,k = 1). We use also bold faced letter to denote
34  operators and normal letter for the eigenvalues. The matricial and tensorial notations used in the
35  section 4 are those of the reference [15].

36 The main result that we have obtained from [1] was the establishment of a phase space
37  representation of quantum mechanics which takes into account the uncertainty relation. It is
38 based on the introduction of quantum states, denoted |n, X, P,Ap), defined by the means values X, P
39  and statistical dispersions (Ax,)? = (2n+ 1)(Ax)?, (Ap,)? = (2n + 1)(Ap)? of coordinate x and
40  momentum p. Ax and Ap satisfying the relation (Ax)(Ap) = %

41 For the sake of simplicity of writing, we will use the notation a = Ax, & = Ap,A = (a)? =
42 (Ax)?,and B = (4)* = (Ap)?. For instance, the state |n, X, P, Ap)will be denoted by |n, X, P, &). The
43 wave functions corresponding to a state |n,X,P,4#) = |n,X,P,Ap)respectively in coordinate and
4 momentum representation are the Harmonic Hermite-Gaussian functions denoted by

5
46 (x|n, X, P, &) = @, (x,X,P, 4) = @, (x,X, P, Ap)
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47 and their Fourier transform denoted by
48 (pIn. X, P, &) = §n(p, X, P, &) = Gn(p, X, P, Ap)

49  These functions were introduced and used in our previous works [1], [2], [16]. Explicitly we have

o
Hn (%) .- (xZX)Z

50 (x|n,X,P,4) = @, (x,X,P,6) = —— +iPx )
2"n!V2nA
( ) (P-P)?* .
51 (pIn, X, P, 6) = ,(p,X,P, &) = %e—”T—mw-m @

2"n!v2nB
52 Asusual H, is the Hermite polynomial of degree n. Ax = a,Ap = &, A = (Ax)? = (a)? = and
53 B = (Ap)* = (4)? satisfying the relations

54 (Ax)(8p) = ab = )

55 (8x)*(4p)? = (a)?(6)* = =2 (4

|,_\[\J|P—‘

56  The state |n, X, P, 4)is the eigenstate of the coordinate and momentum dispersion operators Z,and
57  Z,respectively with the eigenvalues(2n + 1)(4#)? and (2n+ 1)(a)? . If we denote respectively p
g g and xthe momentum and coordinate operators [17] we have [1]

_1{@e-P? =X, 1 2 2 2
60 Zp—g[ AT ]w) =51 =P + 4By (x = X)*] 5)
_l(ID—P)2 x-X?, 2
61 zx—z[ 5ty ]() 5[4 — P + (x = X)?] ©)
62 Z,InX, P, &)= (2n+ 1)(4)*n, X, P,{r) =(2n+1)B|n,X,P, &) (7)
63 . nX,P,&)=(2n+1)(a)?|n,X,P, &)= (2n+ 1)A|n, X, P, &) (8)
64 In our work [2], it was remarked that a link may be established between linear canonical

65  transformation and the phase space representation of quantum mechanics. In the present work, we
66  show that this link can be described properly with the introduction of a Lie algebra that we may call
67  dispersion operators algebra. This Lie algebra is generated by the dispersion operators and some
68  other operators related to them. We have remarked during the design of the present work that
69  operators analogous to these operators have been already introduced and studied previously in
70  various works on linear canonical transformation [18]. As mentioned, our main contribution in this
71 paper is the exploitation of some properties of these operators in the introduction of the dispersion
72 operators algebra to describe properly the relations that can be established between this algebra, the
73 phase space representation and linear canonical transformation. We introduce also a generalization
74 of the results for the case of multidimensional theory.

75
76 2. Dispersion Operators Algebra

77  2.1. Definitions and properties

78 Let us consider the three hermitian operators

2 =5, = 5[~ P+ 4(B)x — XV

1
79 2 =2 [~ P ~ 4B (x - 1)) ©
=Bl -P)x - X) + (x = X)(p - P)]
80  Using the commutation relation of x and p,[x,p]- = i, we can deduce the following commutation

81 relations
[3*,27]_ = 4iB2*

82 [1-,2%]_ = —4iB2* (10)
[2%,2%]_ = 4iB2"
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83  Let g be the complex vectorial space generated by the linear combination
84 1=22"4+pu3” +va*

85 of the three operators 2*,27and 2*with A, u,v three complex numbers. It can be deduced easily
86  form the relation (10) that g is a complex Lie algebra of three dimensions. For any two elements

87 2 =22 + 2 + vy 2¢

88 2, = A2 + upd” 4+ v,2%

89  of g, it may be shown that

90 25 = [25,2,]- = 232% + 432 +v52%
91  with

92 Uz = 4iB(vid, — vy2,)

{’13 = —4iB(u1v; — vilt2)
vz = 4iB(App — Aoty)

93  isalso an element of g. The Lie algebra gmay be called dispersion operators algebra.

94 For future use and convenience, we introduce the following operators

( Z—=i[(p—p)—ziza(x—x)] (p—P)=i(Z'+Z+)
95 LV e 2 an
zt = 5 [(p — P) + 2iB(x — X)] = (z°)* (x—X) = 735 (z7—z"%)

=X (x-X) (x—-X)

f—mm— Tn = o = V2@p)(x—X) = V2b(x — X) = V2B(x ~ X)

96 12
= s = = = = V20 @ = ) = VEa(p ) = VZAp ~ ) ()
(__z _1[@-P) x-X|_1 .
o T el v vea) Tt )
zt = z =i (p—P)_H_(x—X)] =i[p—ix]
V2B V2| V2B V2A | V2
98 The following relations can be deduced
P =B[(P)?+ ®)?] =Bz 2zt +2'27)
99 {3_ = B[®)? — (%)?] = B[(")* + (£")%] (14)
2% = B(px + xp) = B[(27)* — (2")?]
100 We may remark that the sets
101 {®)? )% px + xp}, {(P)*, (%)*, px + xp}
102 {z7zt +zVz7,(27)%, (V)2 {z 2" + 2727, (27)2, (2%}
103 are also four basis of the dispersion operators algebra g.
104 We have the following commutation relations
105 [z7,z"] =2B (15)
106 =[R20 —a-n0.0-pl e =0 a9
107 [z,2%] = i[z‘,z+] =1 17

2B
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[ p]- = 2ix
pxp]l-=ip (18)
xp.p]-=ip
[(P)z»*]— = —21:19
[px,%]_ = —ix (19)
[*p, % |- = —ix

(@)% @) - = —2i(px + xp)
(@)% px]- = —2i(p)* (20)
()2, px]- = 2i(%)?

We may define the operators

+_3+_1 _l —— +,—
2= = (@) @) =g )
2 1 1
{37 = 2= L@+ ) = (@) + D) 21)
= = Lpxtap) = L () - @)
Tap T g PETAP)I TS #

The set {2*,27,2} is also a basis of the dispersion operator algebra g. It may be deduced easily
from the commutation relation of 1%,27 and 2* that 3*,2” and 2" satisfy to the following

commutation relations

[2*+,27]. = ia¥
[27,2¢]_ = —iat (22)
[2%,2%]_ =ia"
And we have
1
2%, p]- = Eix
_ 1
R.pl-= —5ix (23)
X 1
R5pl-=5ip
1
[mtﬂ_=—§w
1
[27,%]_. = —Eip (24)
1
[2*%, %] = —Eix

2.2. Representation of the dispersion operators algebra over the state space of a particle

To define a representation of the dispersion operators algebra g over the state space £ of a particle,
we have to find the matrix representation of the three operators 1*,27and 2* in a basis of &. Itis
obvious that an adequate basis is the basis {|n, X, P, &)} composed by the eigenstates of the

momentum dispersion operator 2*

2t n, X, P, 4) = 2n+ 1)B|n, X, P, &) (25)
2*is represented by a diagonal matrix with elements equal to (2n + 1)B.

Now we have to find the expressions of 27|n, X,P,4) and 2*|n, X, P, &). We consider the relation
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At =B(z 2" +2ztz)
128 1™ =B[(z)? + (24)?] (26)
X =iB[(#7)* - (#7)%]

129 Let us first search for the expression of # |n,X,P,&)and 2z*|n X,P,4). From the commutation

130  relation [#7,2']_ =1 we can deduce the relation

131 At =B(z 2" +2'27) =BReztz +1) =Bz 2" - 1) 27

132 and the commutation relations

[2t,27]_ = —2Bz

133 { [2t,27]_ = 2Bzt (28)
134 Then from the relations (27) and (28), it may be deduced after lengthy but straightforward
135  calculations that
136 Z_|n,X,P,{V)=\/H|n—1,X,P,/5’) 29

{z+|n,X,P,l%)=\/n+1|n+1,X,P,{”r) 29)
137 So
138 { (2 )%In,X,P, &) = 2 Vnln— 1,X,P, &) = yn(n — D|n — 2,X,P, &) (30)

) nX,P,&)=2z"Vn+1ln—-1L,X,P, &)= /(n+1)(n+2)|n+2,X,P, &)
139 As
1" =B[(=)* + ()]

140 b+ Z plGeye - ey 3D

141 we obtain for the representation of the three operators 2*,27and 1*in the basis {|n, X, P, #)} of the

142 state space of a particle
I*n, X, P, 4) = (2n + 1)B|n, X, P, &)

143 27 |In,X,P,4)=n(n—1)Bln—-2,X,P,6)+/(n+1)(n+2)Bln+2,X,P, &) (32)
W|n, X, P, &) = i [,/n(n —1DBIn—2,X,P,6)—J(n+ D(n + 2)Bln + 2,X, P,fr)]

144 We may also write these relations in the form

2*|n, X, P, &) = (2n + 1)B|n, X, P, &)

145 Q™ —-ix)InX,P,b)=2yn(n—1)Bln—2,X,P, &) (33)

@ +29)InX,P,6)=2y(n+1)(n+2)BIn+2,X,P, &)
146
147 3. Linear Canonical Transformations
148  3.1. Definitions and properties
149  In quantum mechanics, a linear canonical transformation can be defined as a linear transformation
150  mixing the coordinate operator xand the momentum operator p and leaving invariant the
151  commutator [x,p]_ =i.As xand pare linked with the operators xand p through the linear
152 relations (12), we may also take a definition of linear canonical transformation as linear

153  transformation mixing * and p

154

p =TIlp +Ox DN I
15 {x'=5p+Ax(:)(p )= %)(G)

> (1
N—

(34)

156  in which
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=X) _@'=Xx)

= = =26 (X' —X) =~/2B (x' - X’
157 SR (VM') VR0 = (35)

,_ (@—-P) (@ -P) et PRy — P

P = s T =V2a'(p’'—P) =2A'(p'— P

1

158 #,p] = o [ = X0, (' = P)] = 2, p') (36)

159  where x’and p’are the new coordinate and momentum operators resulting from the

160 transformation. If we have a linear canonical transformation, we must have

161 [x,pl-=[xpl-=i (37
162  So taking into account the relation (36), we must have
163 [#,p]- = [x'p]- = [x,p]- =i = [%p]- (38)

164 Then in our case the full definition of the linear canonical transformation is

p =TIlp +Ox
165 X =ZEp+ Ax (39)
[#,p]=[xpl=1i

166  The last condition [#/,p']- = [#,#]_ = i leads to the relation

167 A - ©Z = 1 <:>|g [E\|=1 (40)

168 If we consider real linear canonical transformation (the parameters I1, A, Eand ® are real), the

—_

169  relation (40) means that the matrix (g i) is an element of the special linear group SL(2,R). We

170  may write it in the form

T EY_ a_Of a)
171 (@ A)_e = eWM2 4 (41)
172 with M an element of the Lie algebra sI(2,R) of the Lie group SL(2,R), we have
- M M.

173 HA—@azl(:)M4:—M1<=M:(M; _}/3[1) (42)
174 Then, for an infinitesimal linear canonical transformation, we have

I =\ _ (1 0 M, M3\ (1+M, M,
175 (6 A)_1+M_(0 1)+(M2 _M1>_( a0, 1_M1) (43)
176  So
177 p,=1'£p+®x=p+]\/[1p+]v[2x (44)

% = Ep+ Ax =%+ Mzp—M %

178  3.2. Unitary representation and relation with the dispersion operators algebra
179  As the linear canonical transformation is a transformation which affects quantum operators, we may

180  represent it by an unitary transformation

181 p =Ilp + Ox = UpU* (45)
x¥ =Ep+ Ax = UxU"

182  where U is a unitary operator which can be considered as acting in the state space € of a particle. It
183  may be verified that the commutator [%,p] = i is invariant under the unitary representation defined

184  in (45) as expected for a linear canonical transformation

185 [#,p]_ = [UxUT, UpUT|_ = UxUTUpUT — UpUtUxU' = U[x,p|UT = iUUT =i (46)
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186 It can be shown that U may be written in the form
187 U=el= ei(9+;++ 0_27+60,2%) (47)
188  inwhich 2=6,3"+6_3" + 6,3 is an element of the dispersion operators algebra and
189 0,,0_,0, three real numbers. In fact, for an infinitesimal transformation, we have
190 U=1+i(0,27+60_237 +6,3%) Ut=1-i(6,2" +0_27 + 6,3
191  Then it can be deduced from (45) that

’ — . + . — . x
192 P =p+i0i[3%pl+ f9_[3_,i9]_ 6.2, p]- (48)

x =x+i0,[2%,x]_ +i6_[27,x]_ +i0,[2%,%]_
193 Taking into account the relations (23) and (24), we obtain
. 1 1 1 1 1
P=p—50xt 0x—cOp=p-—-0p+t;(0-—0)x
194 | 2 2 2 : ) (49)
x = x+59+p+§0_p+59><x = x+§(9_ + 0+)p+§6><x
195  identifying the relations (44) and (49) it can be deduced that
1
(10, = Lo,
1
196 M, = 5(9‘ -6,) (50)
1
M3 = 3 (6-+6,)
197 So briefly, we have for a linear canonical transformation
'=Tlp + Ox = UpU" oo 1 =

198 P, o - * 51

{x:Ep+Ax:UxU* @ #)=@ )(@ A) GD
199  with

My M. 1/ —0x 0,+6_
IT E\_ »_ Lo ]v[3) - ‘(9_—9 Yo, )

200 (8 A)—e —e< 2 M) = g2 + (52)
201  and
202 U= ei(9+3++9_;—+exax) (53)

203 The unitarity of Uresults from the hermiticity of the operators 2*,37and 2*.

204 3.2. Transformation law of the basis {3%,27,2%} of the dispersion operators algebra

205  Taking into account the relation (14) and (21), we may define the operators
M =B'(®)* + *)?)
206 17 =B ((®) - *)? (54)
¥ =B(px +xp)
+

(+' 2 1 2 2
W= == () + )

27 1
207 E—— 2 _ 2 55
3 == @) - )D) (55)
QX,_JX'_l o
=i T (PxHEP)

208  Taking into account the relations (51), we obtain
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2t = % [ID? + (©)%]a* + [(E)2 — (A)?]2” + (1O + EA)2* = UatUt
209 3 = % (D)2 + (©)2]2* — [(5)2 — (A3 + (11O — EA)2* = Ua-Ut (56)
= (IIZ + OA)2t + (HE - @A);r + (TTA + ®2)2% = U2XUt
|(3+’ = 1_{[(1‘[)2 +(©)*]2* + [( )2 — (A)?]2” + (IO + EA)I*} = U:‘fu‘r
210 17 = ;Z;; [D? + (©)2]2* - —[( )2 — (A2 + (11O — EA)2*} = —u: ut  (57)
B
9% = —{[(H_, +OM)I* + (I - O™ + (TA + O]} = — U2Vt
211 4. Multidimensional Generalization
212 4.1. Dispersion Operators Algebra
213 We may generalize the operators 2%,27,2% Dby the following tensor operators
D+ = E [ (pu u)(pv - Pv) + 4Buanﬁ(xa - Xa)(xﬁ - Xﬁ)]
1 58
21 T = 5[ (B~ By — R) — 48,85 (e — XY — X)) &9

%y = Byal(py — RIG — X%) + (2% — XY, — P,
215 in which By, are the components of the momentum dispersion-codispersion tensor [1]. Let 1,, be
216  the components of the symmetric bilinear form 7 associated with the considered space. For the case
217  of a general N-dimensional pseudo-Euclidian space, if (N, N_) is the signature of (N, + N_=N) ,
218  wehave
1 foru=v=01,.., N, -1

219 Nw =4—1 foru=v=N,N,+1,.. ,N-1 (59)
0 foru+v

220  for instance, in the case of Minkowski space, the signature of 1 is (1,3). So we have

1 foru=v=0
221 Nw =3—1 foru=v=1,2,3 (60)
0 foru#v

222 If we introduce the operators p,, and *"defined by the relations

{pu =\26)p, + P,

223
= V2alxt + X+

(61)
224 with a}, and 4, verifying the relations

1
Bua@® = by = Ny bl
225 2 (62)
atty = 55;

226 (8, being the components of the Kronecker’s symbol ) we obtain
2, = 606030,

227 = b 73 (63)
:;V = b, 6735,

228  inwhich
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1
gltv = Z (pupv + xu*v)
1
229 ;‘;_n/ = Z (pupv - *u*v) (64)
1
aﬁv = Z (pu*v + *vpu)

230  If we define also the operators

1
7 == @ — %)
231 ozt (65)

+

1 )
z, = ﬁ (pn + weu)
232  Wehave
1
2 = Z(z;zv +2,2))
1
233 3, = Z(zjzﬁ; +2,%,) (66)

2 =iz ), - et 2], + g %], ~ [.20],)

234 [z*, z, ]+being the anticomutator

235 [zf;,zv‘L =zlz, +2,2,"

236

237  From the commutation relation [p,,x”| =8y we may deduce the following commutators

238 [Bw 2] =inu (67)

239 22,7 =nu, (68)
[*u*v' 19,,]_ = —inypHy — iNyp%y

240 [19”96‘,, Pp]_ = —iTlvau (69)

[*upv' pp] _ = —inypPy

[pupvr *p]_ = iTvaPu + iTluva
241 [pu*v '*p]_ = inup*v (70)

[*upv' *p]_ = Myp%y

1 .
([QZV’ pp]— = __(anp% + Lnuva)
242 [ (lr]vpx + iNyup%y ) (71)
[;‘;iv' pp]— = _Envppu
[2), % (lnvpm + iNupPy)
243 [0 % (lnvpm + iNypPy) (72)

[ v p]— = nupx
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[Pubv %p%a]_ = N0 Pu¥p + iNpuPu¥a + iNau®pPy + iNpu%1Py
[Bupv Po¥a]_ = N PuPp + iN0uPoPy
[Pupy %,P2]_ = iNpuPuPa + i1, PPy
[xux,,, ppx,l]_ = —iNpy XXy — N, %%,
[2.%,, %,22] = —innxx, — in3,%,%, 73
[Bukn, Pp¥a]_ = —inpyPus + NP oy
[Pu¥0, %,P2]_ = —inaPu®, + iNpuPa%y
[%,8v, %,02]_ = inp,%,P2 — N %,Py

i
[[QZV’ 3;/1]_ ) [nvl (Qﬁp - 3;;#) + 1My (Qzl - ;‘;u) + M2 (31)/(11 - QIXW) + 13— aj{v)]
i
[Qﬁv' ;[_M]_ == § [nVl(;}l):P - 3;7(#) + Mvp (QZA - 3;.(#) + Nua (;;(p - 3;)(1/) + Nup (;}1)/(}. - ;;fv)] (74)

i
352521 = 5 (122 — 1paiv)

i
[;;V' 3;/1]_ =3 [lel (Qﬁp + ;;Xm) + Mvp (3;/1 + gjl(u) + nul(%p + 3;1') + 1 @oa + va)]
i
[;‘;V' 3;/1]_ =2 [77/11/ (Qltp + Qﬁp) + M (Q‘zv + 9‘;1/) + Moy (3;1 - 3;/1) + @3y — 3;,,)] (75)
i
B 3;/1]_ =72 [mva (35 + 220) + M (3;/1 + ;‘;/1) — (3 — 35v) — 1 (352 — 23]

It can be deduced easily from the relations (74) and (75) that the set {2};,,2,,, 2}, }is a basis of a Lie
algebra which is the dispersion operators algebra for the multidimensional case.
As the indices u,v,p,4 run from 0to N — 1, the dimension D of this dispersion operators algebra
which is equal to the numbers of the elements of the basis {2y, 24, 2, }is
N(N+1) NWN+1
poMOAD NN

2=N@2N +1) (76)

N(N+1)

7

In fact, from the relation (64) we can deduce that the number of operators 2, is equal to

N(N+1)

the number of operators 2, equal to and the number of operators 2 equal to N?.

4.2. Dispersion Operators Algebra

We may define the linear canonical transformation as the linear transformation given by the

relation
P, =ILp, + Oy, . n =
, = x)=P X 77
ey e 0@ D o
and which leave invariant the canonical commutation relations
[p..#)]_ =0
[%,,%,] =0 (78)

[p:u '%;/] = inuv
we obtain the following conditions
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000205 — O, I =0 (Mte — @'yl = 0

=NE7 0 =
=p A_ AP =l _ =t _ At s = m(I1l =
263 _#nplzzv /:”np,l_v_o = EnA— Az =0 (5 ) (—n 0) & %) 9
[I00 A AT — Evnpa®f =1 [I'nA-B@nE =17

264  If the signature of 7 is (N,0) , it is equal to the N x N identity matrix n = Iy(case of Euclidian

@4

265  space), the relation (79) becomes
AN =
266 6 & (5 96 3 ©0)

267  according to this relation the 2N X 2N matrix ( “) is in this case an element of the symplectic

T =
0 A
268  group Sp (2N). We may generalize this result for the general case of pseudo-Euclidian space i.e

fren)

269  with n having a signature (N,,N_) : in that case, we may call a matrix (g i) verifying the
270  relation (79) a pseudo-symplectic matrix and their set the pseudo-symplectic group. We may denote

271  thisLiegroup Sp (2N,,2N_) anditsLiealgebra sp(2N,,2N_). The matrix (g i) can be written

272  in the form

My M
I EY_ w_ e
273 (® A) =eM = e< 2 4) (81)
: . M, M) . .
274  inwhich M = ( M M ) is an element of the Lie algebra sp(2N,,2N_), we have
2 4
(M =nM;n
I =\°(0 n)n c) M, = —nMin
275 (0 ») (—n 0)e »)e {M‘l = —nMin (82)
L M3 =nMzn
276 It can be deduced easily from the relation (82) that the matrix M and his transpose M* are of the
277  form
My M M{ nMon
278 M=< ! ° ) Mfz( ! 2 ) 83
M, —nMin nMzn  —nMin (83)
279  If we introduce the parametrization
Ml = T]X
280 M, =Y (84)
M3 == 1’]2
281  weobtain for M and M*
nx. nz Xt Yn
282 a=( ) = ) 85
Yy —nxt Zn  —Xn (85)

283  Then for an infinitesimal linear canonical transformation, we have

S _ 1+nX nZ
284 @ =@ va+n=e o ")
185 {p =p+nXp+nyYx N {P,; =Pu + [TIX]XPV + [Tfy]}i*v
¥ =x+nZp—-nXtx  (x, =%, + n2Z]ipy — X%,
286 Pu = Pt g X7 Py + 1) Y%y (86)
Xy =%y + 15 Z° Py — N X P2,

287  We may introduce a unitary representation of the linear canonical transformation
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«=Up,UT
288 {”'f P 87)
x, = Ux,U
289  and we can verify that U and Ufcanbe given by the relations
. Ao+ PAL— pPASX
U= el(ef SR WY
290 {UT = e_i(e-ia;ga"'efagga"'eia;)e(a) (88)
291 In fact, for an infinitesimal transformation
292 {U =1+i(00%2}, + 02225, + 62°3%)) 9)
Ut =1—i(6573t, + 65922, + 05727,
293  So (87) become
: . pA . - . pA
294 {pu = pu + Lgf [;‘;AJ pu]— + lefl[ap/lﬂ pu]— + 195 [3;)(1: pu]— (90)
. . pA . - . pA
x, = %, + 6% (252 %,]- + i0PA] oa %]+ i6f (252 %,]-
295  Then, taking into account the relations (71) and (72), we obtain
. 1 1
Pp=Du+ Enpu(efv —02")%, + Eezpnpupv
296 ' 1 y 1 ., (91)
Xy =%y — Enpu(ef + 0¥P)p, — Enpuef Xy
297  Indefying the relations (86) and (91) gives
1 1
XPY = 59:’) X=§9§
1 1
298 Yr = E(evf” -0rv) ©41 Y= 50, -06.) (92)
1 1
ZPv = —E(ef” +06rv) |z = —5(0, - 6.)
299  then the relations in (83) and (85) become
M, M. nxX nZ 1 not -n(6; +6-)
300 Mz( ! ; >=( )z—( x ¥ ) 93
M, —nMin)  \nY -nX') 2\n(6; - 6-) —n0x ©3)
M M Xt yn\_1 Ox1 6+ —6_)n
301 Jvrt=( 1 2 )=( )=_< ) 94
nMsn  —nMin Zn  —Xn) 2\=(6,—6)n  —6in S
302 So briefly, we have for a linear canonical transformation in the case of multidimensional theory
303
pu, = HZ?V + @‘;xv = U}QMUJr , , I =
= x
304 {xu' = Ep, + AL, = Ux,UT ® D=0 N(g ) %)
305  with
= 1 nek  —m(B4+6-)
306 (g 5) =eM = ez<n(9+—9—) 76 > (96)
307 and
308 U= ei(9f13;l+9313;l+95}“§;1) 97)

309 5. Conclusions

310  The results obtained in this paper show that the introduction of the dispersion operators algebra

311  permits to perform a natural and well description of the link which can be established between the
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312 phase space representation of quantum mechanics and linear canonical transformation. This link is a
313 consequence of the existence of relationship between dispersion operators and the phase space
314  representation on one hand and dispersion operator algebra and linear canonical transformation on
315  the other hand. The phase space representation is built with the eigeinstates |n, X, P, &) of dispersion
316  operators; linear canonical transformation can be represented using the dispersion operators algebra.
317  Therelations (32), (33) and (53) allows to conclude that a right way to describe and to represent linear
318  canonical transformation over state space in framework of quantum mechanics is to use the basis
319 {InX,P, 6)}.

320 The calculations performed in the section 4 show that these main results obtained for the case of

321  one dimension quantum mechanics may be generalized in the case of multidimensional theory.

322 The results that we have established in this paper may have many interesting applications in
323 various scientific and technical fields.
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