Abstract
Our previous study has found the anti-tumor activity of oleandrin in osteosarcoma cells in vitro, but the signal transduction process of cell apoptosis induced by oleandrin is uncertain, which is explored in this study. Fluorescence staining and flow cytometry (FCM) was performed to detect the cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP). Caspase-3 activity was detected using a commercial kit. The protein expression of cytoplasmic cytochrome c, mitochondrial cytochrome c, bcl-2, bax, caspase-9, Fas, FasL, caspase-8 and caspase-3 was detected using western blot. A pan-caspase inhibitor, z-VAD-fmk, was applied to block the apoptotic pathway and the apoptosis status were re-tested. We found that oleandrin significantly induced the increased apoptosis of U2OS cells. Meanwhile, the intracellular ROS was elevated, but the MMP decreased. The cytochrome c in mitochondria was notably decreased but increased in cytoplasm. The caspase-3 activity was also enhanced with the increase of drug concentration and treatment time. Oleandrin also down-regulated the level of bcl-2, but remarkably up-regulated the expression of bax, cleaved caspase-9, Fas, FasL, cleaved caspase-8 and cleaved caspase-3. Furthermore, the pre-treatment with z-VAD-fmk almost completely reverted the oleandrin-induced apoptosis. The results suggested that oleandrin induces the apoptosis of osteosarcoma cells via mitochondrial- and death receptor-dependent pathways.