Exploiting Symmetric Energy Harvesting Protocol in Wireless Sensor Networks with Outdated Channel State Information: Protocol Design and Performance Analysis
Wireless Powered Communication Networks (WPCN), which has attracted much attention of researchers, also been recently recommended in 5th generation (5G) wireless networks. With the help of the WPCN, the reliability and battery life of wireless low-power devices can be improved. In this paper, we investigate throughput and ergodic capacity in WPCN-assisted amplify-and-forward (AF) relaying system, considering two transmission modes including delay-tolerant and delay-limited. As important achievement, we propose symmetric energy harvesting protocol, namely time power switching relaying (TPSR) in order to find maximal throughput. In particular, both time switching and power switching coefficients in this schemes are considered. Unlike most of the previous works, we further focus on impact of outdated channel state information (CSI) in this WPCN. In order to evaluate information processing efficiency, the performance can be substantially improved by optimally harvesting time and power coefficients of the received signal at relay node for energy and information extraction, and by deploying several scenarios. By deploying Monte Carlo simulation, it is confirmed that the system performance is more sensitive to CSI estimation error, noise variance, signal-to-noise ratio (SNR) and resulting in other reasonable computations of TPSR need be deployed to obtain QoS requirement.
Keywords:
Subject: Engineering - Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.