Preprint
Article

Zoology of Atlas-Groups: Dessins D’enfants, Finite Geometries and Quantum Commutation

Altmetrics

Downloads

1420

Views

1059

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

19 September 2016

Posted:

20 September 2016

You are already at the latest version

Alerts
Abstract
Every finite simple group P can be generated by two of its elements. Pairs of generators forP are available in the Atlas of finite group representations as (not necessarily minimal) permutation representations P . It is unusual but significant to recognize that a P is a Grothendieck’s dessin d’enfant D and that a wealth of standard graphs and finite geometries G - such as near polygons and their generalizations - are stabilized by a D. In our paper, tripods P − D − G of rank larger than two,corresponding to simple groups, are organized into classes, e.g. symplectic, unitary, sporadic, etc (as in the Atlas). An exhaustive search and characterization of non-trivial point-line configurationsdefined from small index representations of simple groups is performed, with the goal to recognize their quantum physical significance. All the defined geometries G's have a contextuality parameterclose to its maximal value 1.
Keywords: 
Subject: Computer Science and Mathematics  -   Geometry and Topology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated