Preprint
Article

Predicting the Outcome of NBA Playoffs Based on Maximum Entropy Principle

Altmetrics

Downloads

2390

Views

1105

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

26 September 2016

Posted:

27 September 2016

You are already at the latest version

Alerts
Abstract
Predicting the outcome of a future game between two National Basketball Association (NBA) teams poses a challenging problem of interest to statistical scientists as well as the general public. In this article, we formalize the problem of predicting the game results as a classification problem and apply the principle of maximum entropy to construct NBA maximum entropy (NBAME) model that fits to discrete statistics for NBA games, and then predict the outcomes of NBA playoffs by the NBAME model. The best NBAME model is able to correctly predict the winning team 74.4 percent of the time as compared to some other machine learning algorithms which is correct 69.3 percent of the time.
Keywords: 
Subject: Computer Science and Mathematics  -   Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated