Preprint
Article

Microphytobenthos Primary Production Estimated by Hyperspectral Reflectance

Altmetrics

Downloads

1483

Views

1041

Comments

0

Submitted:

28 September 2016

Posted:

28 September 2016

You are already at the latest version

Alerts
Abstract
Monitoring photosynthesis is a great challenge to improve our knowledge of plant productivity at the ecosystem level, which may be achieved using remote-sensing techniques with synoptic abilities. The main objective of the current study is to take up this challenge for microphytobenthos (MPB) primary production in intertidal mudflats. This was achieved by coupling hyperspectral radiometry (reflectance, ρ and second derivative, δδ) and PAM-fluorometry (non-sequential light curve, NSLC) measurements. The later allowed the estimation of the primary production via the light use efficiency (LUE) and the electron transport rate (ETR) whereas ρ allowed to estimate pigment composition and optical absorption cross-section (a*). Five MPB species representative of the main growth forms: epipelic (benthic motile), epipsammic (benthic motile and non motile) and thycoplanktonic (temporarily resuspended in the water column) were lighted at increasing light intensity from dark to 1950 µmol photons.m-2.s-1. After spectral measurements, a* was retrieved using a radiative transfer model and several radiometric indices were tested for their capacity to predict LUE and ETR. The spectral estimation of these two photosynthetic variables was subsequently compared to the values estimated by PAM-fluorometry. Results showed that different responses related to the xanthophyll cycle (de-epoxydation state) were observed for the three growth-forms with increasing light levels. However, a single relationship with radiometric index was not affected by species/growth-forms, i.e. δδ496/508, called the MPBLUE index to predict LUE and ETR. This index has the potential to be applied to air borne hyperspectral imagery for large-scale assessment of MPB production.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated