Caveolin-1 (Cav-1) is 22 kDa caveolae protein, acts as a scaffold within caveolar membranes. It interacts with alpha subunits of G-protein and thereby regulates their activity. Earlier studies reported elevated or up-regulated levels of caveolin-1 in the serum of prostate cancer patients. Secreted Cav-1 promotes angiogenesis, cell proliferation and anti-apoptotic activities in prostate cancer patients. Cav-1 upregulation is mainly related to prostate cancer metastasis. Keeping above facts in view, the present study was designed to explore Cav-1 as a target for prostate cancer therapy using computational approach. Molecular docking, structural base molecular modelling and molecular dynamics simulations were performed to investigate Cav-1 inhibitors. A predictive model was generated and validated to establish a stable structure. ZINC database of biogenic compounds was used for induced fit docking (IFD) and high throughput virtual screening. The H-bond interactions of the compounds with active site residues of Cav-1 were estimated by IFD and 100 ns long molecular dynamic simulations. The reported compounds showed significant binding and thus can be considered as potent therapeutic inhibitors of Cav-1. This study provides a valuable insight into biochemical interactions of Cav-1 for therapeutic applications and warrants for experimental validation of the predicted ‘active(s)’.
Keywords:
Subject:
Medicine and Pharmacology - Oncology and Oncogenics
supplementary.pdf (432.57KB )
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.