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Abstract

Caveolin-1 (Cav-1) is 22 kDa caveolae protein, acts as a scaffold within caveolar membranes.
It interacts with alpha subunits of G-protein and thereby regulates their activity. Earlier studies
reported elevated or up-regulated levels of caveolin-1 in the serum of prostate cancer patients.
Secreted Cav-1 promotes angiogenesis, cell proliferation and anti-apoptotic activities in
prostate cancer patients. Cav-1 upregulation is mainly related to prostate cancer metastasis.
Keeping above facts in view, the present study was designed to explore Cav-1 as a target for
prostate cancer therapy using computational approach. Molecular docking, structural base
molecular modelling and molecular dynamics simulations were performed to investigate Cav-
1 inhibitors. A predictive model was generated and validated to establish a stable structure.
ZINC database of biogenic compounds was used for induced fit docking (IFD) and high
throughput virtual screening. The H-bond interactions of the compounds with active site
residues of Cav-1 were estimated by IFD and 100 ns long molecular dynamic simulations. The
reported compounds showed significant binding and thus can be considered as potent
therapeutic inhibitors of Cav-1. This study provides a valuable insight into biochemical
interactions of Cav-1 for therapeutic applications and warrants for experimental validation of

the predicted ‘active(s)’.
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IFD Induced fit docking

MD Molecular dynamics

VSW Virtual screening workflow

STRING Search Tool for the Retrieval of Interacting Genes
SP Standard precision

XP Extra precision
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HTVS High throughput virtual screening
RMSD Root mean-square deviation
RMSF Root mean-square fluctuation
PPI Protein-protein interaction

TGFBRI1 Transforming growth factor beta receptor 1

PTPNI1 Protein tyrosine phosphatase, non-receptor type 1

TRPCI Transient receptor potential cation channel 1

LRP6 Low density lipoprotein receptor-related protein 6

SRC v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog
EGF Epidermal growth factor

NOS;3 Nitric oxide synthase 3

Introduction

Prostate cancer is the third most common cancer and the second leading cause of death in males
in the western countries', and surgery or radiotherapy is generally used to treat prostate
adenocarcinoma. This non-localized disease generally erupts during the course of androgen
suppression at the start of the primary therapy?. Till now, not a single effective therapeutic
strategy is available after the failure of the primary treatment. Earlier studies have identified a
large number of candidate genes involved in prostate cancer metastasis®. Caveolin-1 (Cav-1)

has been found upregulated in mouse cell lines with metastatic prostate cancer*. Cav-1is a 21-
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24 kDa multi-functional signalling protein and lipid transporter’. Caveolae, which are
specialized plasma membrane invaginations, found in smooth muscle cells, adipocytes and
endothelium, comprises Cav-1 as its major structural component®. Cav-1 mediated oncogenic
mechanisms in prostate cancer involves two pathways, first, interaction of enhanced Cav-1
expression with cellular signalling factors to stimulate the proliferation and activation of anti-
apoptotic mechanisms’. Also, PI3K/Akt pathway remains constantly active in cultured prostate
cancer cells because of the binding of upregulated Cav-1 to protein phosphatases PP1 and
PP2A®. The progression and development of prostate tumors is significantly reduced in Cav-1
negative mice, and prostatic hyperplasia is caused in prostatic epithelial cells due to
overexpression of Cav-1°. Second, Cav-1 secreted by the prostate cancer cells into the tumor
micro-environment promotes the cell growth and angiogenesis'®!'!. Elevated Cav-1 in the
metastasis-derived cells suggests that Cav-1 is correlated with prostate cancer metastasis®’.
Cav-1 has been found as a potential therapeutic target for the prostate cancer metastasis!?.
Unfortunately, almost all the therapies of prostate cancer are associated with various side
effects. Natural compounds have been found very effective from ancient time to treat various
types of cancers and warrants for the identification of therapeutic natural compounds against
prostate cancer.

As the drug discovery process is exhaustive, labour intensive, expensive and time consuming,
in silico studies offer a cost effective platform for the discovery of ‘active’ molecules. In-silico
analysis was performed earlier using different therapeutic targets'*.

In the present study, in silico analyses were performed to discover natural compounds as Cav-
1 inhibitor. Although, the crystal structure of Cav-1 has not been yet resolved. However,
protein structure predictions were done to perform the current study. Virtual screening and
induced fit docking (IFD) were performed for the identification of Cav-1 inhibitors. Molecular

dynamics (MD) simulation was carried out to decipher the interaction pattern and stability of
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ligand-Cav-1 complex. Protein-protein interaction (PPI) network of Cav-1 was generated for
the elucidation of the interacting proteins. Overall, the present study offers a sturdy platform
for the prospective experimental validations of Cav-1 inhibitor(s) for therapeutic applications
against prostate cancer based on the predictive findings obtained from this potential in silico

study.

Results and Discussion

Protein Structure Prediction and Validation

BLAST search was performed for human Cav-1 (178 amino acid) in order to search the suitable
template for the structure prediction as done in other similar studies executed in bacterial
disease'. Based on the results of BLAST analysis, sequence similarity was observed too low
for the homology modelling, so structure prediction was done using I-Tasser server. Structure
validation of the generated model showed a good quality of the predicted model (Table 1). 3D-
structure of the predicted model is shown in Figure 1. Ramachandran plot analysis suggested
that the predicted model has 93.1% residues in the most favoured regions indicating the good
quality of the model, as a good quality model is supposed to have more than 90% of its residues
in the most favoured regions. The generated model passed through PROVE program with 1.631
Z-score RMS. Overall ERRAT (protein structure verification algorithm well suited for
evaluation of crystallographic model building and refinement) quality factor value was 72.95%.
All validation results strongly favoured the acceptance reliability of the predicted 3D model.
Active Site Prediction

Active site(s) were predicted using Sitemap. Two drug able sites were generated with good site
scores (0.912 and 0.898). Actives site having site score 0.912 were selected for further docking
studies.

Molecular Docking and Virtual Screening
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A recent study demonstrated that virtual screening is more significant than high-throughput
screening because of less time consumption and cost effectiveness'>'®. Receptor-based virtual
screening for various targets including proteases has demonstrated the success rate of in silico
studies!’. The structure-based virtual screening methodology remains highly desirable for the
identification of novel compounds with structural diversity, as the active site of the protein
serves as a target!S. In the present study, ZINC compounds optimized with the OPLS-2005
force field were subjected to ADME filters to reduce the false-positives and to avoid poor
pharmacokinetic profiles. In addition, Lipinski rule of five was calculated applying cut-off
range of the removal of the outliers'’. By strictly following the above mentioned criteria and
filters, the Zbc library was compressed to 164530 compounds, which were then subjected to a
stepwise high throughput virtual screening (HTVS) protocol®’. Initially, the standard precision
(SP) and extra-precision (XP) docking were performed to calculate the Glide score and Glide
energy. Figure 2 illustrates the 2D conformation of the ligands with the top-five highest scores
obtained after XP docking. The top-five compounds were used for IFD in order to calculate the
best pose. Hydrogen-bond interactions were noted between the top-five hit compounds and the
active site residues (Figure 3). Out of all the hit compounds, ZINC13410492 showed the
highest Glide score (—8.032 kcal/mol), Glide energy (—40.244 kcal/mol) and IFD score (-
339.94 kcal/mol) (Table 2), with two hydrogen bonds and one salt bridge formed with the
binding pocket residues of Cav-1. The nitrogen atom of the ligand attached to form a hydrogen
bond with the oxygen atom of Asp 169 (Lig: NH2---Asn, 169, 2.38 A) and another hydrogen
bond was formed between the nitrogen atom of ligand and oxygen atom of Glu 69
(Lig:NH2---Glu 69, 3.30 A). Docking studies demonstrated that ZINC08298670 exhibited the
second highest Glide score (—7.62 kcal/mol), Glide energy (—42.47 kcal/mol), and IFD score
(-337.91 kcal/mol) (Table 2), with the formation of a single hydrogen bond between the

nitrogen atom of the ligand and the oxygen atom of Glu 69 present in the binding cavity of


http://dx.doi.org/10.20944/preprints201610.0016.v1
http://www.preprints.org

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2016 doi:10.20944/preprints201610.0016.v1

Cav-1. It also showed single pi-pi stacking between the ligand and Phe 99, and a salt bridge
with Glu 69. Compound ZINC13550046 demonstrated the formation of four hydrogen bonds
and a single pi-cation interaction between the ligand and Cav-1, and exhibited the third highest
Glide score (—=7.152 kcal/mol), Glide energy (—36.098 kcal/mol), and IFD score (-333.94
kcal/mol). Compound ZINCO01535903 demonstrated the formation of three hydrogen bonds
and a single pi-cation interaction between ligand and Cav-1, and exhibited the fourth highest
Glide score (—7.052 kcal/mol), Glide energy (—45.35 kcal/mol) and IFD score (-342.45
kcal/mol). Compound ZINC13431926 demonstrated the formation of two hydrogen bonds
between the ligand and Cav-1, and exhibited the fifth highest Glide score (—6.978 kcal/mol),
Glide energy (—35.302 kcal/mol), and IFD score (-331.89 kcal/mol). Glide score has been
proved as a reliable scoring function for the screening of databases, with steady performance
against pharmaceutically relevant protein—ligand complexes, like HIV-1 protease and p38
MAP kinase (16). Hence, in the present study, we have ranked the inhibitors based on their
glide score.

Binding Energy Calculation

In MM/GBSA score analysis was performed to determine the binding efficiency using the pose
viewer file of the protein-ligand complex generated from XP docking. The estimated
efficiencies of the hit compounds ZINC13410492, ZINC08298670, ZINC13550046,
ZINCO01535903 and ZINC13431926 were found to be -63.345, -58.716, -46.152, -55.253 and-
59.28 kcal/mol, respectively (Table 2).

Protein—Ligand Complex Simulation

During the flexible docking, protein receptor was considered rigid in nature. To investigate the
dynamic stability and interaction pattern of the ligand-protein complex, molecular dynamics
simulation was performed for 100 ns. ZINC13410492-Cav-1 complex having highest Glide

score was considered for this simulation study. Conformational links of the system were
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monitored using the root mean-square deviation (RMSD) values of C-alpha atoms. Figure 4
shows the RMSD values of ZINC13410492 system for 100 ns MD simulation. Trajectories
analysis revealed that ZINC13410492 system was stable and well within the binding pocket of
Cav-1. Lower root mean-square fluctuation (RMSF) values were depicted by the residues of
the active site and alpha helix regions, suggested the stability of the regions (Figure 5). Analysis
of the post-processing interaction was done to examine the ligand-protein binding interactions
by implementing the trajectory frames generated from the MD simulation. The system stability
was maintained mainly due to the hydrogen bond interaction with the active site residue Glu
69 in the 67% of the simulation time, for rest of the time Glu 69 was engaged in the formation
of salt and water bridges (Figure 6). The constructed hydrogen bond with Asn 169 from the
docking studies was not stable during the MD simulation. Other residues demonstrated
hydrophobic contacts with Cav-1 viz. Phe 68, Leu 102, Ala 105, Leu 138, Ilu 139, Cys 135,
Arg 146, Val 147, Val 170, and Ilu 172.

ADMET (absorption, distribution, metabolism and excretion-toxicology) analysis

ADMET analysis of the selected compounds was done by QikProp module of the Schrodinger
package (Table 3). Out of the top-five selected compounds, ADMET parameters of
ZINC13410492 (highest score) has been illustrated here. #star represents the properties lying
outside the similarity criteria of 95% of the known drugs with reference range between 0 to 5.
The star value 1 for ZINC13410492 suggested that only 1% molecular properties of the
compound drops out of the reference range. CNS property between —2 to 2 (activity of central
nervous system) was found to be 0 for this compound. QPlogBB value for predicted blood
brain partition coefficient was found to be —0.404, which falls under the reference range of -
3.0 to 1.2. The reference range of SASA (solvent accessible surface area), FISA (hydrophilic
component of SASA) and (hydrophobic component of SASA) were 300 to 1000, 7 to 330, and

0 to 750, respectively, and predicted that the values of the given parameters falls between the
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standard reference range. The predicted value of percent human oral absorption was 89.386%.
The predicted value of skin permeability factor (QPlogkp) was found to be —4.733, which was
also within the given reference range —8 to 1.0. The compound (ZINC13410492) showed high
value of the coefficient for the parameters, QPlogPC16 (solvation free energy in hexadecane)
having value 14.91 (reference range 4 to 18), QPlogPw (solvation free energy in water) with
the value of 9.698 (reference range 4 to 45), and QPlogPoct (solvation free energy in octanol)
having value 20.598 (reference range 8 to 35). Easy absorption of the compound by the lipid
bilayer was predicted by QPlogPo/w (octanol/water partition coefficient) value of —4.793
(reference range —2 to 6.5). The values for ionization potential and electron linkage (eV) were
found to be 9.283 (reference range 7.9 to 10.5) and -0.217 (reference range -0.9 to 1.7),
respectively. Also, the compound (ZINC13410492) was found to be satisfactory according to
Jorgensen rule of three infringement and Lipinski rule of five.

Protein-Protein Interaction Network

The PPI network was constructed with 11 nodes and 32 edges based on the information
available in the STRING database, where the nodes represents the proteins and the connection
between the nodes reflects the number of possible interactions between the proteins?2. Hub
nodes were considered as high degree nodes due to their high connectivity. Interacting proteins
in the PPI network were, viz. transforming growth factor beta receptor 1 (TGFBRI1), protein
tyrosine phosphatase non-receptor type 1 (PTPN1), Transient receptor potential cation channel
1 (TRPC1), Low density lipoprotein receptor-related protein 6 (LRP6), FYN oncogene, v-src
sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (SRC), Epidermal Growth Factor
(EGFR), nitric oxide synthase 3 (NOS3), and tumor protein p53. Figure 7 showed that the hub
nodes in the PPI network were EGFR (degree = 8), FYN (degree = 8), SRC (degree = 7), FRY
(degree = 8) and NOS3 (degree = 6). All the above mentioned proteins directly interact with

Cav-1 and control the different signalling pathways. TGFBR1 plays a significant role in the
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cellular differentiation and the attenuation of TGFBR1 by Cav-1 is an important mechanism to
control the progression of the developmental events. PTPNI1 is localized in caveolae membrane
and directly interacts with Cav-1, and controls the EGF and SRC family. Cav-1 interacts with
the wild type SRC family kinases and suppresses the auto-activation of FYN. Cav-1 acts as a
membrane adaptor to link the ERK* and the tyrosine kinase FYN, and interferes with the cell
growth. Cav-1 and NOS3 interaction plays a major role in normal endothelial NOS3 activity
and vascular bioavailability of nitric oxide.

In conclusion, Cav-1 is a potential target for anti-cancer drug designing and virtual screening
can act as a potential step towards the development of new therapy against prostate cancer.
Novel inhibitors were identified by in silico screening of biogenic compounds from the ZINC
database using induced fit docking programs. Strong binding affinity of the selected
compounds was predicted for Cav-1 by docking studies. The selected compound
(ZINC13410492) was further validated by MD simulations. Cav-1 has been found an important
protein which involve in a number of signalling pathways to control the cell progression.
Overall, our current in silico findings offers a solid background for the future experimental

validations of Cav-1 inhibitor(s) for prostate cancer therapy.

Material and Methods

Protein Structure Prediction and Validation

Due to non-availability of the three dimensional (3D) structure of Cav-1 in the protein data
bank (PDB)?*, the 3D-structure of Cav-1 was generated from the primary sequence retrieved
from UniProt knowledge database. The primary sequence of human Cav-1 was extracted
(UniProt Id: Q03135) and the sequence was searched against PDB entries using protein-protein
BLAST to identify the template crystal structure. The 3D-structure of Cav-1 was predicted by

[-Tasser server (Iterative Threading Assembly Refinement), based on multiple threading
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approach followed by full-length atomic model construction employing iterative template
fragment assembly simulations?>¥. The quality of the generated model was evaluated by using
PROCHECK?, PROVE®? and ERRAT?! programs.

Protein Preparation and Structure Refinement

The modelled 3D structure of Cav-1 was prepared by using protein preparation wizard of the
Schrodinger Suite*? to ensure the quality and reliability of the structure. Protein optimization
and minimization was done by employing OPLS (Optimized Potentials for Liquid Simulations)
2005 force field.

Active-Site Prediction

Sitemap was employed to predict the interacting residues as it provides indications and
pertinent information about the suitable position for the donor or the acceptor or the
hydrophobic group in the receptor. The physical parameters selected for describing the drug
ability included hydrophilicity, degree of exposure, hydrophobicity, hydrogen bonding and
binding site points.

High Throughput Virtual Screening

ZINC biogenic compounds (Zbc), a commercially available primary and secondary metabolite
database, originally includes 189466 compounds was prepared by using OPLS 2005 force
field*>. Zbc compounds have been used to identify the mitogen activated protein kinase
inhibitors**. The 3D-structures of the small molecules were prepared by using LigPrep 3.5
module before the docking to obtain different stereochemical, tautomeric, and ionization
conformer with minimum energy state of the ligands*>-®. The prepared database was subjected
for the virtual screening workflow (VSW). Prior to the VSW, receptor grid was generated using
Glide 6.8 module®’. The prepared 3D structure of the target protein was used to generate the
glide scoring grid for the successive docking calculations. In the VSW, ADME (absorption,

distribution, metabolism and excretion) properties were calculated using Qikprop 4.5 module.

12
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In general, the ADME descriptors®® are calculated at the last stage of the drug discovery
process, but in the present study, the ADME properties calculations were performed in the
preliminary stage to save the time as well as to curtail the cost involved in the process.
Binding Free Energy Calculation
Generally, the calculations of binding energy are termed to be accurate when compared to the
docking energy calculations®”. Therefore, in the present study, the MMGBSA algorithm in the
Prime 4.1 module was employed to determine the binding energy*®®. The equation for the
binding energy calculation is:

Guind = AE + AGsolv + A Gsa
where, AE = Ecomplex — Eprotein — Eligand
Above, Ecomplex, Eprotein and Eligand and shows the minimized energy values of the protein—ligand
complex, protein only, and ligand only, respectively. The electrostatic solvation energy of the
complex is represented as AGsolv. Similarly, the nonpolar contribution by the surface area to
the solvation energy is represented as AGSA.
Induced-Fit Docking
In order to avoid the misleading results that might be obtained from the standard docking
protocol, IFD was performed by using Glide and Prime modules of Schrodinger Suite for the
top five hit compounds obtained from XP docking. The vdW radii having value of 0.5 was used
for non-polar atoms of the ligand and receptor, having partial atomic charge less than 0.15 and
0.25 for the ligand and receptor, respectively. Prime refinement was done for the residues
present within 5A range from the ligand. The best complex was re-docked with Glide XP.
Molecular Dynamics Simulation
Prior to MD simulation, XP docked complexes were prepared in the same manner as prepared
earlier for the virtual screening. MD simulations were performed to obtain the most stable

conformation of Cav-1 and ligand complex. Desmond 3.1 MD package*' was employed for
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MD simulations using OPLS-AA (All-Atom) force field parameters. An orthorhombic box
with periodic boundary conditions was used to solvate the protein by adding SPC (simple point
charge model) water molecules. DPPC (dipalmitoyl phosphatidylcholine) lipid bilayer was
added and the protein—ligand complex was energy minimized with OPLS-AA force field
parameters. The energy minimized complex was subjected to steepest descent method for
obtaining maximum force smaller than 1000 kJ/mol-nm. Prior to thermalization, the entire
system directed for energy minimization upto 1000 steps. Isothermal isobaric (NPT) ensemble

was run after the thermalization at a constant temperature of 300 K and pressure of 1.01325

t42 t43

bar. Nose-Hover chain thermostat™ and Martyna-Tobias-Klein barostat™ were used to
maintain the system. SHAKE* algorithm was applied for 2-fs time step. Long-range
electrostatics interactions were treated by Particle mesh ewald method. Energies and their
coordinates for the OPLS-2005 force field simulations were recorded for 2.4 ps for the total
100 ns for the systems.

Protein—Protein Interaction Analysis

STRING (Search Tool for the Retrieval of Interacting Genes) was used to create the PPI

network of Cav-1.
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Figure Legends

Figure 1. Protein 3D-structure model and validation results: (a) 3-D model rendered by I-
Tasser server. (b) Ramachandran plot analysis. (c) Overall quality of the model evaluated by
the ERRAT program. (d) Average Z-score is displayed in the plot.

Figure 2. Top-five hit compounds obtained from virtual screening, 2D structures and their
corresponding ZINC IDs.

Figure 3. 2D-interaction map of top-five hit compounds obtained by induced fit docking (a)
ZINC13410492, (b) ZINCO08298670, (c) ZINC13550046, (d) ZINCO01535903, and (e)
ZINC13431926.

Figure 4. Illustrating RMSD plot obtained from 100 ns MD simulation run of ZINC13410492
system (magenta), and Cav-1 without ligand (blue); X and Y axes represent time (ns), and
RMSD, respectively.
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Figure S. Illustrating RMSF plot obtained from 100 ns MD simulation run of ZINC13410492
system RMSF plots for the MD simulations, showing the deviations by residue, of Cav-1. Blue
line: atoms of the C-alpha; Green line: backbone; Standing line: ligand-residue contact,
respectively.

Figure 6. Protein-ligand contact plot for 100 ns MD simulation of ZINC13410492 system
shows binding interactions, hydrogen bond (green), ionic interaction (pink), water bridge (blue)
and hydrophobic interaction (purple).

Figure 7. Protein-protein interaction network of Cav-1.

Table 1. Structure validation of the predicted model by PROCHECK, ERRAT and PROVE.

Validation Index Cav-1
Residues in most favoured regions 93.1%
Residues in additional allowed regions | 3.8%
Ramachandran plot | Residues in generously allowed regions | 1.2%
Residues in disallowed regions 1.9%
ERRAT 72.941
Prove Z-Score RMS 1.631

Table 2. Top-five hit compounds obtained from high throughput virtual screening protocol and
induced fit docking against Cav-1 along with Glide score, Glide energy, IFD score and

MM/GBSA.
Title Glide energy | Glide score MM/.G B.SA Dg IFD score
binding
ZINC13410492 -40.244 -8.032 -63.345 -339.945
ZINC08298670 -42.47 -7.62 -58.716 -337.915
ZINC13550046 -36.098 -7.152 -46.152 -333.947
ZINC01535903 -45.35 -7.052 -55.253 -342.451
ZINC13431926 -35.302 -6.978 -59.28 -331.895
Table 3. ADMET descriptors of IFD compounds
Title ZINC13410492 ZINC08298670 ZINC13550046 ZINC01535903 ZINC13431926
QPlogS -3.589 -1.74 2 -0.562 -1.482
QPlogPw 9.698 15.444 11.068 15.599 9.102
QPlogPoct 20.598 22.978 14.507 20.68 17.125
QPlogPo/w 4.793 0.997 -0.92 -0.249 2.157
QPlogPC16 14.91 11.994 6.746 11.691 8.898
QPlogBB -0.404 -0.321 -0.08 -1.397 1.213
QPlogKp -4.733 -6.8 -7.351 -8.624 -5.951
QPlogHERG -8.23 -5.589 -5.735 -6.508 -5.864
QPpolrz 42.35 38.996 18.448 31.455 37.149
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QPPMDCK 41.275 26.677 4.756 1.204 59.767
QPPCaco 83.341 24.15 10.281 3.168 106.907
QPlogKhsa 0.884 -0.332 -0.662 -0.388 0.574
Percent Human

Oral 89.386 57.534 39.671 21.494 75.89
Absorption

SASA 740.934 672.718 440.355 582.99 587.978
FOSA 265.338 301.617 316.495 142.623 571.359
FISA 91.621 135.243 123.86 241.372 16.619
EA(eV) -0.217 0.227 -2.52 1.643 -2.421
IP(eV) 9.283 9.316 9.189 8.728 8.748
CNS 0 0 0 -2 2
SAfluorine 0 47.02 0 0 0
SAamideO 0 15.612 0 0 0
Rule of Five 0 0 0 1 0
PSA 49.272 97.487 66.017 138.512 25.499
PISA 383.976 188.837 0 198.995 0
Human Oral

Absorption ! 2 2 ! 3
glob 0.7889629 0.8097446 0.8748836 0.8409039 0.8668947
CIQPlogS -3.627 -1.515 1.996 -1.554 -0.57
f#stars 1 0 2 1 3

e
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