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Abstract 

Caveolin-1 (Cav-1) is 22 kDa caveolae protein, acts as a scaffold within caveolar membranes. 

It interacts with alpha subunits of G-protein and thereby regulates their activity. Earlier studies 

reported elevated or up-regulated levels of caveolin-1 in the serum of prostate cancer patients. 

Secreted Cav-1 promotes angiogenesis, cell proliferation and anti-apoptotic activities in 

prostate cancer patients. Cav-1 upregulation is mainly related to prostate cancer metastasis. 

Keeping above facts in view, the present study was designed to explore Cav-1 as a target for 

prostate cancer therapy using computational approach. Molecular docking, structural base 

molecular modelling and molecular dynamics simulations were performed to investigate Cav-

1 inhibitors. A predictive model was generated and validated to establish a stable structure. 

ZINC database of biogenic compounds was used for induced fit docking (IFD) and high 

throughput virtual screening. The H-bond interactions of the compounds with active site 

residues of Cav-1 were estimated by IFD and 100 ns long molecular dynamic simulations. The 

reported compounds showed significant binding and thus can be considered as potent 

therapeutic inhibitors of Cav-1. This study provides a valuable insight into biochemical 

interactions of Cav-1 for therapeutic applications and warrants for experimental validation of 

the predicted ‘active(s)’.  
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Abbreviations 

Cav-1  Caveolin-1 

IFD  Induced fit docking  

MD  Molecular dynamics  

VSW  Virtual screening workflow  

STRING Search Tool for the Retrieval of Interacting Genes 

SP  Standard precision 

XP  Extra precision  
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HTVS  High throughput virtual screening  

RMSD  Root mean-square deviation  

RMSF  Root mean-square fluctuation 

PPI  Protein-protein interaction 

TGFBR1 Transforming growth factor beta receptor 1  

PTPN1  Protein tyrosine phosphatase, non-receptor type 1  

TRPC1 Transient receptor potential cation channel 1 

LRP6  Low density lipoprotein receptor-related protein 6  

SRC  v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog  

EGF  Epidermal growth factor  

NOS3  Nitric oxide synthase 3  

 

 

 

 

 

 

Introduction 

Prostate cancer is the third most common cancer and the second leading cause of death in males 

in the western countries1, and surgery or radiotherapy is generally used to treat prostate 

adenocarcinoma. This non-localized disease generally erupts during the course of androgen 

suppression at the start of the primary therapy2. Till now, not a single effective therapeutic 

strategy is available after the failure of the primary treatment. Earlier studies have identified a 

large number of candidate genes involved in prostate cancer metastasis3. Caveolin-1 (Cav-1) 

has been found upregulated in mouse cell lines with metastatic prostate cancer4. Cav-1 is a 21-
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24 kDa multi-functional signalling protein and lipid transporter5. Caveolae, which are 

specialized plasma membrane invaginations, found in smooth muscle cells, adipocytes and 

endothelium, comprises Cav-1 as its major structural component6. Cav-1 mediated oncogenic 

mechanisms in prostate cancer involves two pathways, first, interaction of enhanced Cav-1 

expression with cellular signalling factors to stimulate the proliferation and activation of anti-

apoptotic mechanisms7. Also, PI3K/Akt pathway remains constantly active in cultured prostate 

cancer cells because of the binding of upregulated Cav-1 to protein phosphatases PP1 and 

PP2A8. The progression and development of prostate tumors is significantly reduced in Cav-1 

negative mice, and prostatic hyperplasia is caused in prostatic epithelial cells due to 

overexpression of Cav-19. Second, Cav-1 secreted by the prostate cancer cells into the tumor 

micro-environment promotes the cell growth and angiogenesis10,11. Elevated Cav-1 in the 

metastasis-derived cells suggests that Cav-1 is correlated with prostate cancer metastasis8,9.  

Cav-1 has been found as a potential therapeutic target for the prostate cancer metastasis12. 

Unfortunately, almost all the therapies of prostate cancer are associated with various side 

effects. Natural compounds have been found very effective from ancient time to treat various 

types of cancers and warrants for the identification of therapeutic natural compounds against 

prostate cancer.  

As the drug discovery process is exhaustive, labour intensive, expensive and time consuming, 

in silico studies offer a cost effective platform for the discovery of ‘active’ molecules. In- silico 

analysis was performed earlier using different therapeutic targets13. 

In the present study, in silico analyses were performed to discover natural compounds as Cav-

1 inhibitor. Although, the crystal structure of Cav-1 has not been yet resolved. However, 

protein structure predictions were done to perform the current study. Virtual screening and 

induced fit docking (IFD) were performed for the identification of Cav-1 inhibitors. Molecular 

dynamics (MD) simulation was carried out to decipher the interaction pattern and stability of 
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ligand-Cav-1 complex. Protein-protein interaction (PPI) network of Cav-1 was generated for 

the elucidation of the interacting proteins. Overall, the present study offers a sturdy platform 

for the prospective experimental validations of Cav-1 inhibitor(s) for therapeutic applications 

against prostate cancer based on the predictive findings obtained from this potential in silico 

study. 

 

Results and Discussion 

Protein Structure Prediction and Validation 

BLAST search was performed for human Cav-1 (178 amino acid) in order to search the suitable 

template for the structure prediction as done in other similar studies executed in bacterial 

disease14. Based on the results of BLAST analysis, sequence similarity was observed too low 

for the homology modelling, so structure prediction was done using I-Tasser server. Structure 

validation of the generated model showed a good quality of the predicted model (Table 1). 3D-

structure of the predicted model is shown in Figure 1. Ramachandran plot analysis suggested 

that the predicted model has 93.1% residues in the most favoured regions indicating the good 

quality of the model, as a good quality model is supposed to have more than 90% of its residues 

in the most favoured regions. The generated model passed through PROVE program with 1.631 

Z-score RMS. Overall ERRAT (protein structure verification algorithm well suited for 

evaluation of crystallographic model building and refinement) quality factor value was 72.95%. 

All validation results strongly favoured the acceptance reliability of the predicted 3D model. 

Active Site Prediction 

Active site(s) were predicted using Sitemap. Two drug able sites were generated with good site 

scores (0.912 and 0.898). Actives site having site score 0.912 were selected for further docking 

studies. 

Molecular Docking and Virtual Screening 
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A recent study demonstrated that virtual screening is more significant than high-throughput 

screening because of less time consumption and cost effectiveness15,16. Receptor-based virtual 

screening for various targets including proteases has demonstrated the success rate of in silico 

studies17. The structure-based virtual screening methodology remains highly desirable for the 

identification of novel compounds with structural diversity, as the active site of the protein 

serves as a target18. In the present study, ZINC compounds optimized with the OPLS-2005 

force field were subjected to ADME filters to reduce the false-positives and to avoid poor 

pharmacokinetic profiles. In addition, Lipinski rule of five was calculated applying cut-off 

range of the removal of the outliers19. By strictly following the above mentioned criteria and 

filters, the Zbc library was compressed to 164530 compounds, which were then subjected to a 

stepwise high throughput virtual screening (HTVS) protocol20. Initially, the standard precision 

(SP) and extra-precision (XP) docking were performed to calculate the Glide score and Glide 

energy. Figure 2 illustrates the 2D conformation of the ligands with the top-five highest scores 

obtained after XP docking. The top-five compounds were used for IFD in order to calculate the 

best pose. Hydrogen-bond interactions were noted between the top-five hit compounds and the 

active site residues (Figure 3). Out of all the hit compounds, ZINC13410492 showed the 

highest Glide score (−8.032 kcal/mol), Glide energy (−40.244 kcal/mol) and IFD score (-

339.94 kcal/mol) (Table 2), with two hydrogen bonds and one salt bridge formed with the 

binding pocket residues of Cav-1. The nitrogen atom of the ligand attached to form a hydrogen 

bond with the oxygen atom of Asp 169 (Lig: NH2···Asn, 169, 2.38 Å) and another hydrogen 

bond was formed between the nitrogen atom of ligand and oxygen atom of Glu 69 

(Lig:NH2···Glu 69, 3.30 Å). Docking studies demonstrated that ZINC08298670 exhibited the 

second highest Glide score (−7.62 kcal/mol), Glide energy (−42.47 kcal/mol), and IFD score 

(-337.91 kcal/mol) (Table 2), with the formation of a single hydrogen bond between the 

nitrogen atom of the ligand and the oxygen atom of Glu 69 present in the binding cavity of 
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Cav-1. It also showed single pi-pi stacking between the ligand and Phe 99, and a salt bridge 

with Glu 69. Compound ZINC13550046 demonstrated the formation of four hydrogen bonds 

and a single pi-cation interaction between the ligand and Cav-1, and exhibited the third highest 

Glide score (−7.152 kcal/mol), Glide energy (−36.098 kcal/mol), and IFD score (-333.94 

kcal/mol). Compound ZINC01535903 demonstrated the formation of three hydrogen bonds 

and a single pi-cation interaction between ligand and Cav-1, and exhibited the fourth highest 

Glide score (−7.052 kcal/mol), Glide energy (−45.35 kcal/mol) and IFD score (-342.45 

kcal/mol). Compound ZINC13431926 demonstrated the formation of two hydrogen bonds 

between the ligand and Cav-1, and exhibited the fifth highest Glide score (−6.978 kcal/mol), 

Glide energy (−35.302 kcal/mol), and IFD score (-331.89 kcal/mol). Glide score has been 

proved as a reliable scoring function for the screening of databases, with steady performance 

against pharmaceutically relevant protein−ligand complexes, like HIV-1 protease and p38 

MAP kinase (16). Hence, in the present study, we have ranked the inhibitors based on their 

glide score. 

Binding Energy Calculation 

In MM/GBSA score analysis was performed to determine the binding efficiency using the pose 

viewer file of the protein-ligand complex generated from XP docking. The estimated 

efficiencies of the hit compounds ZINC13410492, ZINC08298670, ZINC13550046, 

ZINC01535903 and ZINC13431926 were found to be -63.345, -58.716, -46.152, -55.253 and-

59.28 kcal/mol, respectively (Table 2).  

Protein−Ligand Complex Simulation 

During the flexible docking, protein receptor was considered rigid in nature. To investigate the 

dynamic stability and interaction pattern of the ligand-protein complex, molecular dynamics 

simulation was performed for 100 ns. ZINC13410492-Cav-1 complex having highest Glide 

score was considered for this simulation study. Conformational links of the system were 
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monitored using the root mean-square deviation (RMSD) values of C-alpha atoms. Figure 4 

shows the RMSD values of ZINC13410492 system for 100 ns MD simulation. Trajectories 

analysis revealed that ZINC13410492 system was stable and well within the binding pocket of 

Cav-1. Lower root mean-square fluctuation (RMSF) values were depicted by the residues of 

the active site and alpha helix regions, suggested the stability of the regions (Figure 5). Analysis 

of the post-processing interaction was done to examine the ligand-protein binding interactions 

by implementing the trajectory frames generated from the MD simulation. The system stability 

was maintained mainly due to the hydrogen bond interaction with the active site residue Glu 

69 in the 67% of the simulation time, for rest of the time Glu 69 was engaged in the formation 

of salt and water bridges (Figure 6). The constructed hydrogen bond with Asn 169 from the 

docking studies was not stable during the MD simulation.  Other residues demonstrated 

hydrophobic contacts with Cav-1 viz. Phe 68, Leu 102, Ala 105, Leu 138, Ilu 139, Cys 135, 

Arg 146, Val 147, Val 170, and Ilu 172. 

ADMET (absorption, distribution, metabolism and excretion-toxicology) analysis 

ADMET analysis of the selected compounds was done by QikProp module of the Schrodinger 

package (Table 3). Out of the top-five selected compounds, ADMET parameters of 

ZINC13410492 (highest score) has been illustrated here. #star represents the properties lying 

outside the similarity criteria of 95% of the known drugs with reference range between 0 to 521. 

The star value 1 for ZINC13410492 suggested that only 1% molecular properties of the 

compound drops out of the reference range. CNS property between −2 to 2 (activity of central 

nervous system) was found to be 0 for this compound. QPlogBB value for predicted blood 

brain partition coefficient was found to be −0.404, which falls under the reference range of -

3.0 to 1.2. The reference range of SASA (solvent accessible surface area), FISA (hydrophilic 

component of SASA) and (hydrophobic component of SASA) were 300 to 1000, 7 to 330, and 

0 to 750, respectively, and predicted that the values of the given parameters falls between the 
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standard reference range. The predicted value of percent human oral absorption was 89.386%. 

The predicted value of skin permeability factor (QPlogkp) was found to be −4.733, which was 

also within the given reference range –8 to 1.0. The compound (ZINC13410492) showed high 

value of the coefficient for the parameters, QPlogPC16 (solvation free energy in hexadecane) 

having value 14.91 (reference range 4 to 18), QPlogPw (solvation free energy in water) with 

the value of 9.698 (reference range 4 to 45), and QPlogPoct (solvation free energy in octanol) 

having value 20.598 (reference range 8 to 35). Easy absorption of the compound by the lipid 

bilayer was predicted by QPlogPo/w (octanol/water partition coefficient) value of −4.793 

(reference range −2 to 6.5). The values for ionization potential and electron linkage (eV) were 

found to be 9.283 (reference range 7.9 to 10.5) and -0.217 (reference range -0.9 to 1.7), 

respectively. Also, the compound (ZINC13410492) was found to be satisfactory according to 

Jorgensen rule of three infringement and Lipinski rule of five. 

Protein-Protein Interaction Network 

The PPI network was constructed with 11 nodes and 32 edges based on the information 

available in the STRING database, where the nodes represents the proteins and the connection 

between the nodes reflects the number of possible interactions between the proteins22.  Hub 

nodes were considered as high degree nodes due to their high connectivity. Interacting proteins 

in the PPI network were, viz. transforming growth factor beta receptor 1 (TGFBR1), protein 

tyrosine phosphatase non-receptor type 1 (PTPN1), Transient receptor potential cation channel 

1 (TRPC1), Low density lipoprotein receptor-related protein 6 (LRP6), FYN oncogene, v-src 

sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (SRC), Epidermal Growth Factor 

(EGFR), nitric oxide synthase 3 (NOS3), and tumor protein p53. Figure 7 showed that the hub 

nodes in the PPI network were EGFR (degree = 8), FYN (degree = 8), SRC (degree = 7), FRY 

(degree = 8) and NOS3 (degree = 6). All the above mentioned proteins directly interact with 

Cav-1 and control the different signalling pathways. TGFBR1 plays a significant role in the 
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cellular differentiation and the attenuation of TGFBR1 by Cav-1 is an important mechanism to 

control the progression of the developmental events. PTPN1 is localized in caveolae membrane 

and directly interacts with Cav-1, and controls the EGF and SRC family. Cav-1 interacts with 

the wild type SRC family kinases and suppresses the auto-activation of FYN. Cav-1 acts as a 

membrane adaptor to link the ERK23 and the tyrosine kinase FYN, and interferes with the cell 

growth. Cav-1 and NOS3 interaction plays a major role in normal endothelial NOS3 activity 

and vascular bioavailability of nitric oxide.  

In conclusion, Cav-1 is a potential target for anti-cancer drug designing and virtual screening 

can act as a potential step towards the development of new therapy against prostate cancer. 

Novel inhibitors were identified by in silico screening of biogenic compounds from the ZINC 

database using induced fit docking programs. Strong binding affinity of the selected 

compounds was predicted for Cav-1 by docking studies. The selected compound 

(ZINC13410492) was further validated by MD simulations. Cav-1 has been found an important 

protein which involve in a number of signalling pathways to control the cell progression. 

Overall, our current in silico findings offers a solid background for the future experimental 

validations of Cav-1 inhibitor(s) for prostate cancer therapy.  

 

Material and Methods 

Protein Structure Prediction and Validation 

Due to non-availability of the three dimensional (3D) structure of Cav-1 in the protein data 

bank (PDB)24, the 3D-structure of Cav-1 was generated from the primary sequence retrieved 

from UniProt knowledge database. The primary sequence of human Cav-1 was extracted 

(UniProt Id: Q03135) and the sequence was searched against PDB entries using protein-protein 

BLAST to identify the template crystal structure. The 3D-structure of Cav-1 was predicted by 

I-Tasser server (Iterative Threading Assembly Refinement), based on multiple threading 
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approach followed by full-length atomic model construction employing iterative template 

fragment assembly simulations25-28. The quality of the generated model was evaluated by using 

PROCHECK29, PROVE30 and ERRAT31 programs. 

Protein Preparation and Structure Refinement 

The modelled 3D structure of Cav-1 was prepared by using protein preparation wizard of the 

Schrodinger Suite32 to ensure the quality and reliability of the structure. Protein optimization 

and minimization was done by employing OPLS (Optimized Potentials for Liquid Simulations) 

2005 force field. 

Active-Site Prediction 

Sitemap was employed to predict the interacting residues as it provides indications and 

pertinent information about the suitable position for the donor or the acceptor or the 

hydrophobic group in the receptor.  The physical parameters selected for describing the drug 

ability included hydrophilicity, degree of exposure, hydrophobicity, hydrogen bonding and 

binding site points. 

High Throughput Virtual Screening 

ZINC biogenic compounds (Zbc), a commercially available primary and secondary metabolite 

database, originally includes 189466 compounds was prepared by using OPLS 2005 force 

field33. Zbc compounds have been used to identify the mitogen activated protein kinase 

inhibitors34. The 3D-structures of the small molecules were prepared by using LigPrep 3.5 

module before the docking to obtain different stereochemical, tautomeric, and ionization 

conformer with minimum energy state of the ligands35,36. The prepared database was subjected 

for the virtual screening workflow (VSW). Prior to the VSW, receptor grid was generated using 

Glide 6.8 module37. The prepared 3D structure of the target protein was used to generate the 

glide scoring grid for the successive docking calculations. In the VSW, ADME (absorption, 

distribution, metabolism and excretion) properties were calculated using Qikprop 4.5 module. 
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In general, the ADME descriptors38 are calculated at the last stage of the drug discovery 

process, but in the present study, the ADME properties calculations were performed in the 

preliminary stage to save the time as well as to curtail the cost involved in the process.  

Binding Free Energy Calculation 

Generally, the calculations of binding energy are termed to be accurate when compared to the 

docking energy calculations39. Therefore, in the present study, the MMGBSA algorithm in the 

Prime 4.1 module was employed to determine the binding energy40.  The equation for the 

binding energy calculation is: 

Gbind = ΔE + ΔGsolv + Δ GSA 

where, ΔE = Ecomplex – Eprotein – Eligand 

Above, Ecomplex, Eprotein and Eligand and shows the minimized energy values of the protein−ligand 

complex, protein only, and ligand only, respectively. The electrostatic solvation energy of the 

complex is represented as ΔGsolv. Similarly, the nonpolar contribution by the surface area to 

the solvation energy is represented as ΔGSA.  

Induced-Fit Docking 

In order to avoid the misleading results that might be obtained from the standard docking 

protocol, IFD was performed by using Glide and Prime modules of Schrodinger Suite for the 

top five hit compounds obtained from XP docking. The vdW radii having value of 0.5 was used 

for non-polar atoms of the ligand and receptor, having partial atomic charge less than 0.15 and 

0.25 for the ligand and receptor, respectively. Prime refinement was done for the residues 

present within 5Å range from the ligand. The best complex was re-docked with Glide XP. 

Molecular Dynamics Simulation 

Prior to MD simulation, XP docked complexes were prepared in the same manner as prepared 

earlier for the virtual screening. MD simulations were performed to obtain the most stable 

conformation of Cav-1 and ligand complex. Desmond 3.1 MD package41 was employed for 
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MD simulations using OPLS-AA (All-Atom) force field parameters. An orthorhombic box 

with periodic boundary conditions was used to solvate the protein by adding SPC (simple point 

charge model) water molecules. DPPC (dipalmitoyl phosphatidylcholine) lipid bilayer was 

added and the protein−ligand complex was energy minimized with OPLS-AA force field 

parameters. The energy minimized complex was subjected to steepest descent method for 

obtaining maximum force smaller than 1000 kJ/mol·nm. Prior to thermalization, the entire 

system directed for energy minimization upto 1000 steps. Isothermal isobaric (NPT) ensemble 

was run after the thermalization at a constant temperature of 300 K and pressure of 1.01325 

bar. Nose-Hover chain thermostat42 and Martyna-Tobias-Klein barostat43 were used to 

maintain the system. SHAKE44 algorithm was applied for 2-fs time step. Long-range 

electrostatics interactions were treated by Particle mesh ewald method. Energies and their 

coordinates for the OPLS-2005 force field simulations were recorded for 2.4 ps for the total 

100 ns for the systems. 

Protein–Protein Interaction Analysis 

STRING (Search Tool for the Retrieval of Interacting Genes) was used to create the PPI 

network of Cav-1.  
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Figure Legends 

Figure 1.  Protein 3D-structure model and validation results: (a) 3-D model rendered by I-
Tasser server. (b) Ramachandran plot analysis. (c) Overall quality of the model evaluated by 
the ERRAT program. (d) Average Z-score is displayed in the plot. 

Figure 2. Top-five hit compounds obtained from virtual screening, 2D structures and their 
corresponding ZINC IDs. 

Figure 3.  2D-interaction map of top-five hit compounds obtained by induced fit docking (a) 
ZINC13410492, (b) ZINC08298670, (c) ZINC13550046, (d) ZINC01535903, and (e) 
ZINC13431926. 

Figure 4. Illustrating RMSD plot obtained from 100 ns MD simulation run of ZINC13410492 
system (magenta), and Cav-1 without ligand (blue); X and Y axes represent time (ns), and 
RMSD, respectively. 
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Figure 5. Illustrating RMSF plot obtained from 100 ns MD simulation run of ZINC13410492 
system RMSF plots for the MD simulations, showing the deviations by residue, of Cav-1. Blue 
line: atoms of the C-alpha; Green line: backbone; Standing line: ligand-residue contact, 
respectively. 

Figure 6. Protein-ligand contact plot for 100 ns MD simulation of ZINC13410492 system 
shows binding interactions, hydrogen bond (green), ionic interaction (pink), water bridge (blue) 
and hydrophobic interaction (purple). 

Figure 7. Protein-protein interaction network of Cav-1. 

 

 

Table 1. Structure validation of the predicted model by PROCHECK, ERRAT and PROVE. 
 
 

 

Table 2. Top-five hit compounds obtained from high throughput virtual screening protocol and 
induced fit docking against Cav-1 along with Glide score, Glide energy, IFD score and 
MM/GBSA. 
 

Title Glide energy Glide score 
MM/GBSA Dg 

binding 
IFD score 

ZINC13410492 -40.244 -8.032 -63.345 -339.945 
ZINC08298670 -42.47 -7.62 -58.716 -337.915 
ZINC13550046 -36.098 -7.152 -46.152 -333.947 
ZINC01535903 -45.35 -7.052 -55.253 -342.451 
ZINC13431926 -35.302 -6.978 -59.28 -331.895 

 

Table 3. ADMET descriptors of IFD compounds 

Title ZINC13410492 ZINC08298670 ZINC13550046 ZINC01535903 ZINC13431926 
QPlogS -3.589 -1.74 2 -0.562 -1.482 
QPlogPw 9.698 15.444 11.068 15.599 9.102 
QPlogPoct 20.598 22.978 14.507 20.68 17.125 
QPlogPo/w 4.793 0.997 -0.92 -0.249 2.157 
QPlogPC16 14.91 11.994 6.746 11.691 8.898 
QPlogBB -0.404 -0.321 -0.08 -1.397 1.213 
QPlogKp -4.733 -6.8 -7.351 -8.624 -5.951 
QPlogHERG -8.23 -5.589 -5.735 -6.508 -5.864 
QPpolrz 42.35 38.996 18.448 31.455 37.149 

Validation Index Cav-1 

 
Ramachandran plot 

Residues in most favoured regions 93.1% 
Residues in additional allowed regions 3.8% 
Residues in generously allowed regions 1.2% 
Residues in disallowed regions 1.9% 

ERRAT 72.941 
Prove Z-Score RMS 1.631 
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QPPMDCK 41.275 26.677 4.756 1.204 59.767 
QPPCaco 83.341 24.15 10.281 3.168 106.907 
QPlogKhsa 0.884 -0.332 -0.662 -0.388 0.574 
Percent Human 
Oral 
Absorption 

89.386 57.534 39.671 21.494 75.89 

SASA 740.934 672.718 440.355 582.99 587.978 
FOSA 265.338 301.617 316.495 142.623 571.359 
FISA 91.621 135.243 123.86 241.372 16.619 
EA(eV) -0.217 0.227 -2.52 1.643 -2.421 
IP(eV) 9.283 9.316 9.189 8.728 8.748 
CNS 0 0 0 -2 2 
SAfluorine 0 47.02 0 0 0 
SAamideO 0 15.612 0 0 0 
Rule of Five 0 0 0 1 0 
PSA 49.272 97.487 66.017 138.512 25.499 
PISA 383.976 188.837 0 198.995 0 
Human Oral 
Absorption 

1 2 2 1 3 

glob 0.7889629 0.8097446 0.8748836 0.8409039 0.8668947 
CIQPlogS -3.627 -1.515 1.996 -1.554 -0.57 
#stars 1 0 2 1 3 
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