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Summary

In a search for a solution of the galaxy rotation problem, a novel view on cosmological gravity is developed. In
this view, the origin of gravity is traced back to the basic nuclear field of energy, spread by quarks as
elementary pointlike sources. This gives a common basis for gravity, electromagnetism, the strong nuclear
force and the weak nuclear force. After a review on gravimagnetism and the causality problem of gravity, a
hypothetical concept for the gravity field is proposed, which solves the rotation problem without the need to
accept dark matter as the deus ex machina.
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Introduction

Dark matter is a hypothetical physical massive substance, the existence of which is proposed
to explain particular phenomena observed in cosmology that cannot be understood from
common physical laws. An intriguing example of such a phenomenon is the experimental
evidence that stars rotating at the edge of a galaxy show an orbital velocity that remains
more or less constant as a function of their spacing from the galaxy center. Although this
phenomenon can be explained for particular mass density distributions, the orbital velocity
appears to be larger than allowed by the Newtonian law of gravity, which limits this velocity
by the amount of enclosed mass. Therefore, “something else” should be responsible for the
phenomenon of excessive orbital velocity.

Several mechanisms have been proposed to explain the unexpected. The hypothetical
existence of mass within the galaxy that escapes from visible observation, is one of these.
Such dark matter would explain an increase of the gravitational force, thereby making the
orbital velocity higher than expected from the amount of visible mass. Another mechanism
is the MOND hypothesis [1]. MOND stands for MOdified Newtonian Dynamics. In this
approach, it is hypothesized that Newton’s gravitational law is incomplete and that it can be
adapted in a way that its influence becomes manifest at a cosmological scale and remains
hidden in our daily world. This adaption, however, is not clearly physically justified, but is
made on the basis of a curve fit to empirical results from observations. A third mechanism is
proposed by Verlinde [2], who regards gravitation as an entropy phenomenon, emergent
from other physical laws, rather than as a fundamental force of nature. He adopts the
holographic principle of the string theory. According to this principle, the physical laws of our
three-dimensional world, allows a (two-dimensional) holographic mapping on a shell around
space. Verlinde hypothesizes fictitious molecules on this shell, which show the entropy as
prescribed by the second law of thermodynamics. Physical mass objects in this fictitious
world appear to show a motion behavior that can be described mathematically in a format
that equals Newton’s law of gravity. He claims that, similarly as with MOND, this mechanism
gives a clue to understand the behavior of mass objects at a cosmological scale without the
need to accept the existence of dark matter.
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In this article, | wish to show that there might be fundamental physical reasons why mass
objects in deep space behave differently from the behavior of mass objects in non-
cosmological space. These reasons have to do with the relationship between mass, gravity,
electromagnetism and the two basic nuclear forces. It all starts with the concept of quarks as
described in previous work [3,4]. In this concept, a quark is a mass less pointlike source of an
energetic flux. This flux produces two energetic fields, namely a vector type repelling “far
field” and a scalar type attracting “near field”. This enables the origin of stable bonds
between two quarks, known as mesons, and between three quarks, known as baryons.
These configurations behave as quantum mechanical oscillators. The energetic state of
these oscillators becomes manifest as mass. A quark on its own, has no relevant mass
attribute. Mass is the consequence of the quantum mechanical junction of quarks. Electric
charge is a consequence of this junction as well. It is the manifestation of the (iso)spin
condition of the quark junction. As a result, electric charge is quantized in integer units. Mass
is quantized as well, albeit as a quantization level of the quantum mechanical oscillator
state. This shows an irregular energy spacing. It is due to the characteristics of this oscillator,
which is not purely harmonic as it would be in a quadratic field of energy. Instead, it is
slightly anharmonic as a consequence of the Proca type of the quark’s nuclear far field and
the Yukawa type of the nuclear near field. There is, however, a clear parallel.
Electromagnetism, which originates from the phenomenon of electric charge, and gravity,
which originates from the phenomenon of mass, are indirect forces that follow from the
existence of the energetic field of the two basic nuclear forces.

We know that the electromagnetic force has a vector potential next to a scalar potential.
Taking into account the parallel between electromagnetism and gravity as just described, it
would be reasonable to suppose that such would hold for gravity as well. So, where is the
vector potential of gravity? It might well be that this potential escapes from our observation
because of its weakness. Would it be possible that this vector potential may show its
existence at the cosmological scale? It is the aim of this article, to explore if such could be
true. If gravity would be incomplete, in the sense that next to its scalar field a hidden
vectorial field would exist, it could well be possible that currents of mass particles would
show similar properties as currents of electrically charged particles. In that case, mass
currents would create the equivalent of a magnetic field and so could execute the equivalent
of the Lorentz force on other mass currents. Such an effect may manifest itself at a
cosmological scale as the force that enhances the Newtonian force, thereby suggesting that
some dark matter increases the strength of the scalar gravity force.

The idea of gravimagnetism is not new. In fact, it traces back to Heaviside [5]. The present
approach to it is based upon a relativistic formalism, derived from Einstein’s Field Equation.
The suggestion that the (equivalent) Lorentz force might be related with dark matter is not
new either. Attempts to explain the dark matter phenomenon in terms of a gravimagnetic
Lorentz force have remained unsuccessfully, because its strength is considered as being too
weak. In this article, | wish to review the dark matter problem once more as well as the
shortcoming of gravimagnetism to explain outstanding cosmological problems. After that, I'll
propose a novel concept of Cosmological Gravity in an attempt to find a way out.
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The galaxy rotation curve problem: dark matter or dark force?
Newtonian laws prescribe that the transverse velocity v, (r) of a cosmic object revolving in a

circular orbit with radius 7 in a gravity field is determined by

_ MG

v; (r) (1)

where M (r) is the amount of enclosed mass and where G is the gravitational constant. This

relationship is often denoted as Kepler’s third law. As illustrated in figure 1, the velocity curve of
cosmic objects in a galaxy, such as, for instance, the Milky Way, appears to be almost flat. It is
tempting to believe that this can be due to a particular spectral distribution of the spectral density to
compose M (r). This, however, cannot be true, because M (r) builds up to a constant value of the

overall mass. And Kepler’s law states in fact that a flat mass curve M () is not compatible with a flat

velocity curve.
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Figure 1: Rotation curves of solar objects in the Milky Way (From ircamera.as.arizona.edu)

Figure 2 illustrates the problem. It is one of the two: either some additional force on top of the
Newtonian law is responsible for the phenomenon, or dark matter, affecting the mass distribution is
responsible. Apart from this, it can be readily concluded from Table | that the mass data of the Milky

Way are inadequate to explain the high value of v, (r) at the edge of the galaxy.
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Figure 2. Incompatibility of a flat enclosed mass curve with a flat rotation curve.
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Figure 1 shows that the revolution speed of the sun (at R =8 kpc) in the Milky Way has
about the same value of some 220 km/s as the one of a stellar at the edge of the Milky Way (
R =20kpc). For a stellar object at the edge, all Milky Way mass can be considered as if it
were centric. Using the values shown in Table |, it would result into a revolution speed of 132
km/s. The amount of missing mass can thus be estimated from

Mg+ My __1 :(220)2—>a:0.64. (2)
M, l-a 132

It means that some 64% of the Milky Way would consist of dark matter.

Table I. Characteristics of the Milky Way

distance unit 1kpc | 3.0610% [m]

grav. constant G 6.67 x 10! [m3kg1s?]
solar mass M, 1.99 10% [kg]

mass of the bulge | A1, .. | 2x10"° M,

mass of thedisc | M, =~ | 6x10"° M,

Mass Milky Way | M, 8x 10" M,

Radius Milky Way | R 20 kpc

Gravimagnetism as dark force?

As already stated, another possibility for explaining the anomalous rotation curve is the
hypothetical existence of some dark force. Let us consider if the concept of gravimagnetism
may reveal such. Many galaxies, such as, for instance, the Milky Way show a typical
topological structure of the type as shown in figure 3.

100001y
—

Figure 3: Milky Way (from http://www.atlasoftheuniverse.com/milkyway?2.ipg)
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This structure is a collection of spiral arms in which solar objects show an orbital motion
around the center of the galaxy. It will be clear that neighboring arms can be conceived as
parallel currents of massive particles. In terms of the analogy between electromagnetism
and gravity, such as summarized in Table Il, one might hypothesize that these currents
execute an attracting Lorentz force on each other of the type as shown in the last row of
Table I. This would mean that, apart from the Newtonian gravity force that attract massive
objects to the center of the galaxy, an additional centric force influences the equation of
motion of such masses. This effect is formally expressed in the energy relationship

%mv2+%Ja)2+VG(r)+VL(r)=E, (3)

where m is the mass of the particle, vits radial velocity, J its moment of inertia with respect
to the galaxy center, @ (= d¢/dt) its angular frequency, Vits potential energy due to

gravity, V, its potential energy due to the Lorentz force and E the total particle’s energy.

Next to conservation of energy as expressed by (3), the angular momentum is a conserved
quantity, so

299 _p (4)
dt

where b is a constant. It is well known that, by evaluating of this expression for the case that
V. is the potential energy associated with Newton’s gravity law and that no Lorentz force is
involved, under consideration of these conservation laws, elliptic orbits appear for the
motion of the mass particle m . Among the variety of elliptic orbits possible, the circular
motion, where the radial velocity v = 0, is a valid special case. As shown in figure 3, orbits in
the Milky Way are more or less circular.

Table II: Analogy of gravimagnetism with electromagnetism.

electric gravitational (gravi)dimension
current I=Aq/At I =Am/At kg s
Coulomb/Newton F=q,q,/4ne;r’ | F=mm,G/r* |lkgms?]
Lorentz force qvXB mvx B kg m s?]
(gravi) magn. field B=u,l/2r B=u,1/2r [s1]
constant of nature £, e; =1/G [(m* kg™ s)7]
propagation speed c=(g, )" c [m s
gravimagnetic constant U =(cle,)” kgt m]
force between two F=u,l 1l 2m F=u,1,1,1/2m | [kgms?]
[ long current wires

This picture shows a core (the bulge) and a number of spiral arms. Both the bulge and the
massive objects (stellar) in the spiral arms rotate around the center. Experimental evidence
shows that the tangential velocity of the stellars is different from the Keplian law as
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expressed by (1). As discussed before and shown in figure 1, this value appears to approach
a value independent of r, at remote distances from the center. A few number of spiral arms
can be distinguished. These spiral arms have a certain width and a certain spacing between
them. To keep the model simple, it will be supposed that the width A of the spiral arms is
about the same as the spacing between them. The particle streams in the arms will be
considered as gravitational currents /, in parallel wires. In accordance with the hypothetical
equivalence of electromagnetism and gravity, the currents in the arms execute a
gravitational Lorentz force that can be calculated according to the formula as shown in the
last row of Table I. This builds a certain potential energy U, (r) of the outer spiral arm with

respect to the galaxy center, such that

r A 2A r
U, ) =—J.F(r)dr.:—{J‘F(r)dr+ IF(r)dr+ ...... IF(r)dr} , Where (5)
0 0 A r—=A
i+ A (i+)A
11
F(r)ydr = ) medr, 6
;[('”)Fﬂcizm dr (6)

with 7, =v,p,A [kgs™],

where V, is the tangential velocity of the massive objects and where p(r) is the mass density (in
kg/m?) in the spiral arms. The observer’s position here and elsewhere in this analysis, is assumed
being in the center of the galaxy. In the case that the orbit of the massive object under consideration
is circular, the tangential velocity v, is the same as the transverse velocity v as defined in (1). In
non-circular orbits, the value of the latter one decreases with r as a consequence of the conserved

angular momentum as defined by (4). It has to be noted, though, that this conservation law only
holds within an orbit under consideration. It does not apply when comparing massive objects in

different orbits. Experimental observation reveals that v, is more or less independent of r . So, let

us continue under this assumption and let us investigate if a consistent theory can be built that is
not in conflict with it.

Further analysis reveals

(i+1)A (i+1)A (i+1)A )
- 11, _ (v,p;A) _ 2, 1242
I{F(V)dl" =Ug J. mbﬂgdr =Ug i Tndl" =UsV, TP, A (7)

iA
Under use of the definitions £, =1/G and ¢, = (y/€,4, )", it follows from (5) and (7),

VIGA* &
A (®)
i=1

N
U,(r)= _lquzzAzzripiz ==

2
i=1 CG

as the total potential energy of the N spiral arm due to the gravitational Lorentz force.

Per unit of mass, the contribution is

d0i:10.20944/preprints201610.0033.v2


http://dx.doi.org/10.20944/preprints201610.0033.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 October 2016

7 of 26
, 1 v G N 42
Ul (1) = ——U, (1) = — A 7P (9)
2mrp A ce 2m I Py

It will be clear that the value of the sum will increase with the number N of the spiral arms within
the radius r under consideration. In fact, it is reasonable to suppose that

A Snpl M, M,
Z = =

) (10)

2T Py r r
where M  the total amount of mass in the spiral arms up to 7.
From (1) and (8), we have, without Lorentz force
1, mGM,
—my, = , (11)
2 r
and with Lorentz Force,
1 mGM
—m(l-a) = =, where (12)
2 r

1 GM,,
o= — —. (23)

cg T

It will be clear that if @ would have a substantial value, it would have a substantial influence
on the tangential velocity v, of the stellar in the spiral arms rotating around the center of

the galaxy. Note that GM , / r has the dimension of a squared velocity. As long as & <1,
equation (12) is consistent with a circular orbit equation. The circular motion would change
into a spiral one if & exceeds 1. If & is about 0.9, it would seem as if the centric mass M is
raised to a tenfold. It would seem as if 90% of its mass is “dark”. Depending on the radial
dependency of M, and on the value (1-«), it might well be that v, will not only show a flat

behavior as a function of », but that it will be substantial larger than expected from the
amount of visible mass as well.

So, the crucial question is whether & may have a substantial value. It will be clear that if ¢,

would equate the light velocity in empty space, gravimagnetism cannot be the substitute for
dark matter. So, the crucial question is if there is a reason to suppose that ¢ can be

different from the light velocity. This issue will be further addressed in the next paragraph. Before
doing so, | wish to point to a seeming anomaly. In this analysis it has been taken for granted that the
velocity curve of moving objects in the galaxy is flat, implying that the tangential velocity of orbiting
objects is independent of the distance to the center. This corresponds with experimental evidence. It
means, though, that the objects are revolving in a circle. The structure of the galaxy, however, shows
spirals. The implication is that stellars cannot maintain their position in the spiral arms. If they
did, their velocity should increase with the radius, because it would seem as if they were
part of a rigid body. This seems being a paradox. In fact, it is not, because the spirals have to
be considered as a pattern of mass density, which for some reason, is created in the dark

d0i:10.20944/preprints201610.0033.v2
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initial phase of the galaxy. So, where the spiral arms with their high mass density preserve
their position in the galaxy, individual stellars don’t. The spiral arms have to be considered as
traffic jams, where stellars move in and move out. If this were not the case, the flatness of
the velocity curve would demolish the spiral characteristic.

General Relativity and gravimagnetism

The resemblance between the electromagnetic field and the gravitational field does not
necessarily mean that the one is a Chinese copy of the other. One thing is, for instance, the
fact that where in electromagnetism charges are bipolar, charges in gravity are unipolar.
Where the vectorial character of the electromagnetic field’s potential function is without any
doubt, it might still be that the potential function of the gravitational field is scalar. The
observation that the weak field limit of the gravitational field, as expressed by Einstein’s field
equation, gives rise to a wave equation, does not necessarily imply that the gravity field’s
potential function is vectorial. To provide more insight in this, it might be useful to compare
the origin of Maxwell’s wave equation with the gravity wave equation that results from
Einstein’s Field Equation. Maxwell’s wave equation is straightforwardly derived from the
four well known Maxwell equations, written in Sl notation as,

V-E=p/e,;; V-B=0; VXE=-0B/dt and VXB = y,(J + £,0E/ dr) (14)

Combining the time derivatives of these equations followed by elementary algebraic
manipulation, results in the well known Maxwellian wave equations for the electric field
strength E and the magnetic field strength B, which are spatially and temporally of second
order. These fields are created as a consequence of a spatial charge p (which may reduce to
a Dirac type distribution) and a current density J. The Maxwell equations as such are not
sufficient for describing mechanical forces on charged particles. As soon as a force F'is
assigned on a particle with electrical charge gas F = gE , Einstein’s description of Maxwell’s
laws in terms of special relativity prescribes the generalization of the force by including the
Lorentz as a consequence of a moving charge ¢ with velocity v as

F=gE+qgvxB. (15)

The Faraday induction dB/d¢ and the displacement current £,0E/d¢, which mutually

couple a magnetic field with an electric field, are the essential ingredients to generate the
wave equation. This evokes the question in how far the bipolarity of electric charges in
source terms p/g,and Jis responsible for these essential ingredients. Anyhow, where the

displacement current in electromagnetism can be readily understood from the interaction
between positive and negative charges in the interrupt of a charge conductor by a
condenser, there is not such equivalence available with unipolar charges in gravity. Whether
a one-to-one mapping of the electromagnetic Maxwellian equations to gravity is allowed is
an open question still. This holds in particular for the dynamic terms &,0E /ot (displacement

current) and dB /0t (Faraday induction). It might well be that these ingredients are absent in
gravimagnetism.
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Let us now consider the gravitational wave equation as a consequence of the weak field limit
of the Einsteinean Field Equation. The equation reads as,

3G _ 1
= T with G, =R, —ERgW. (16)

G
v 4 v
u c u

where TW is the stress-energy tensor, which describes the energy and the momenta of the source(s)
and where Rﬂv and R are respectively the so-called Ricci tensor and the Ricci scalar, which can be
calculated if the metric tensor components g, are known [6,7]. In the case that a particle under

consideration is subject to a centric force only, the time-space condition shows a rotational
symmetric isotropy. This allows to read the metric elements g, from a simple line element

that can be written as

ds? = goo(r,t)dqg +g,r(r,t)dr2 +rzsinzz9d(/)2 +r2d?, (27)
where g, =ict and i=+/-1.

It means that the number of metric elements g, reduce to a few, and only two of them are

time and radial dependent. In the weak field limit, we have

Qoo (7,) =1+ hyy (r,1), where |l (r, 1) <<1, and

g, (r,0)=1+h, (r,1), where |h, (r,0) <<1. (18)

Under this condition, Einstein’s Field Equation can be evaluated into a wave equation (see

Appendix A),
2 2 2 2

’ hfo —Lza h2°° ~0 and 2 h;’ —Lza hz —0, with Yo 9 (19)
or ¢’ ot or c” ot or or

Obviously, a centric force from the center of empty space is enough to create a gravitational
wave function. This wave function propagates with the vacuum light velocity, thereby
proving the causality of the gravitational force. It was Karl Schwarzchild, who calculated the
numerical value for the metric elements for the case that the centric force is Newton’s
gravity force from a centric mass M . In that case

. ZZ(GLZ/F) and hOO =
C C

_2(GM /1)

2

h (20)

So far in these considerations, possible rotation energy of the source in the center, has not
been considered. Inclusion of it will, of course, affect the metric tensor. It makes it more
complex, because one might expect that the nice symmetric isotropy will be lost.
Generically, the line element has to be expressed in terms of the Kerr metric [8], which in
Mashhoon’s gravimagnetic formalism is simplified to [9]
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ds® =—c*(1- 2%)&2 —4(A - dx)dr + (1+ 2%)§i,dx"dxj, (21)

where 517 is the Kronecker delta and where

o= O Ay A%
r r
Note that the angular momentum is expressed by the same symbol as the current source in
Maxwell’s equations (14). Although the semantics are different, the role is the same.
Because we shall not make further use of Maxwell’s equations, from now on J will be used

as the symbol for angular momentum.

, = |x| and where J is the angular momentum of the source.

In the special case that a particle subject to this metric is revolving in the rotation plane of
the source, the influence of the source’s angular momentum becomes manifest as a quasi
Lorentz force, which can be modeled as an add-on to the centric force. Under this condition
the nice symmetric isotropy is restored. It will be clear that the value of the proportionality
constant g has a large impact on the strength of the quasi Lorentz force. It is quite common

to establish this value from the following observation. First of all, Poisson’s law for gravity is
invoked, which states

V® =47Gp . (22)

In analogy with Poisson’s law for electromagnetism a gravity equivalent & for electric
permeability is defined, such that

g5 =1/47G . (23)

The next step is relating

1
c}cé: 9

EcHg

¢’ =
80#0

The justification for equating ¢* with cé , as is common practice, is the statement that the

presence of a vector potential associated with the angular momentum brings the causality of
the gravity field such that it propagates with the vacuum light velocity. Let me emphasize
here that the presence of the angular momentum is not required for bringing the causality.
As shown in Appendix A, the causality is implicitly provided by Einstein’s Field equation even
in the absence of an angular momentum of the source. Therefore, causality of the gravity
field is no reason to equate ¢’ with ¢ .

Gravimagnetism might be essentially different from electromagnetism in the sense that the
mutual coupling between a gravitational equivalent of an electric field generated by a scalar
potential and a gravitational equivalent of a magnetic field generated by a vector potential
might be absent. The two type of fields might exist, however, maybe without mutual
coupling. Without the coupling, the quantity c is just a constant that has nothing to do with
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radiation or propagation of gravitational energy by a Poynting vector. Argumentation why
there is reason to believe the absence of this coupling is given above, where the role of the
difference in polarity of charges has been discussed. Let us continue by estimating the value
of u. from known experiments. This will be done in the next paragraph.

Implications from the Gravity B Probe experiment
Probably the most relevant experiment for establishing the value of the gravimagnetic
constant . has been offered by the Gravity B Probe project [10,11]. This project has been

set up to compare theoretical values of two gravitational effects with experimental
evidence. These effects are, respectively, the geodetic effect and frame dragging (also
known as the Lense-Thirring effect [12,13]). The geodetic effect is related with the
phenomenon of the perihelium shift of planets in the solar system. This shift is predicted by
Einstein’s General Relativity. The perihelium of a planet in an almost circular loop with radius
r, shifts each revolution by an amount of [7,14]

, 37R 2M G
=—>, where Ry = ——, (24)
A c

Ap

The quantity R is known as the Schwartzschild radius. A satellite orbiting around the earth

will show the same effect. It can be measured by a gyroscope on board of a satellite with its
axis pointing to a cosmological object in deep space. As a consequence of the curving of
space-time due to the energetic gravitational field of the earth, the gyroscope on board of
the satellite will show a precession motion. One might think that, per revolution of the

satellite at a radius r)'around the earth enter, the angle of the gyroscope axis will shift by an

amount that equals the value of the perihelium shift. Actually, it is more complicated than
that. The theoretical value of the perihelium shift is calculated from the line element of an
isotropic non-rotating metric of the type as given by (17). More particularly,

ds* =—(1- R, yde? +(l—%)'1 dr’ +r’sin*dde’ +r*de¥ . (25)

r

The calculated value of the perihelium shift nicely fits with experimental evidence from
orbiting planets indeed. However, as noted before, this line element is incomplete, because
the influence of the rotation energy of the centric mass (of the sun for planets or the earth
for orbiting satellites) is not included. Nevertheless, the perihelium shift behaves as
predicted by (24). This can be understood as follows. The influence of the rotation energy
can be accounted for by two different mechanisms. These mechanisms are physically
equivalent, but are different in modeling. The first one is changing the line element of field
metric followed by an analysis of the angular momentum of a mass object moving in this
field. The second one is leaving the field metric unchanged and modeling the influence of the
rotation energy as the add-on of a gravimagnetic field. In the latter model, a gravitational
Lorentz force is associated with this field and as long as the revolving of a massive object
takes place in the equatorial plane of a rotating centric mass, the gravitational Lorentz force
is centric. This force is just a slight add-on on the Newtonian force, thereby hardly affecting
the amount of perihelium shift of a revolving massive object in the equatorial plane. The
angle of the axis of a gyroscope placed in a satellite orbiting in the equatorial plane of the
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earth will show per orbit a slight additional amount of phase shift in the equatorial plane.
Later in this article, I'll show that this additional amount is virtually indistinguishable from
the amount as predicted by the perihelium shift of a non-rotating metric. For that reason the
perihelium shift of planets is not different from the one as calculated from the Schwarzschild
metric (25).

This picture will change in the case that the satellite with gyroscope(s) orbits in the polar
plane. A gyroscope is a device that always keeps its orientation, irrespective of the bottom
on which it is placed. If, for some reason whatever, the bottom tilts or turns, the orientation
the gyroscope’s axis is preserved. For an observer fixed to the bottom, however, it seems as
if the gyroscope’s axis shifts (precession). A particular example is Foucault’s pendulum. The
earth rotates under the plane of swinging. For the observer on earth it seems as if the
pendulum plane rotates. The Lorentz force on a massive object orbiting in a polar plane is no
longer oriented in the same direction as the gravitational force. The force is maximum and
orthogonal to the gravitational force when the satellite passes the poles and the force is zero
when the satellite passes the equator. As a consequence the orientation of the plane of orbit
will be subject to a spatial phase shift orthogonal to the polar plane. This will be experienced
by an observer in the satellite as a precession of the gyroscope next to the orbital perihelium
phase shift. Figure 4 illustrates the process. Let us first consider the gravimagnetic view.

=

geodetic
effect
gyroscope

IM Pegasi

Lense-Thirring
effect

Figure 4. The two orbital precession influences (perihelium shift/geodetic effect and Lorentz force/Lense-
Thirring effect) are coherent (i.e. in the same direction) for massive objects in an equatorial plane and non-
coherent for massive objects in a polar plane. IM Pegasi is the guide star for the gyroscope. From:
large.stanford.edu/courses/2007/ph210

The gravimagnetic view

In line with the reflections on gravimagnetism earlier in this article, | wish to develop the
gravimagnetic view by conceiving mass particles as charged particles with charge m . A large
massive volume will be modeled as a massive body with some internal mass density p . As a
consequence of this mass density, a gravimagnetic field is generated, similar to the magnetic
field of a volume with some electrical space charge. According to this picture, the earth will
be modeled as a sphere with a uniform mass density p . The calculation of the generated
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(gravi)magnetic field B is not trivial. The field for a sphere with uniform surface charge
density o can be found in textbooks [15]. It appears that,

4
B, :g%{2005&+sin00},forr2R, (26)
r

(cos ¢k = costsinx + cosJcos z ; sin 99 = —sin 1¥cos % — sin ¥sin %z )

where @ is the angular velocity of the earth rotation and where r and 19, respectively, are
unit vectors in » —direction and in ¢ —direction. This can be converted into the field of a
sphere with uniform volume charge density p by integrating over shells pdr = o, so that

5
B, = ”Gwp%{zcoszmsin 9B}, for r>R. (27)

37

Figure 5. The rotational symmetry of the gravimagnetic field strength B.

In terms of the peripheral equatorial speed v, = wR,and the mass M, = 47z,0Re3 /3, the
magnitude of the equatorial magnetic field (7 = 7 /2) can be expressed as
B _ ll'lG R_3M

= —y . 28
¢ 20 R C (28)

As a consequence of this gravimagnetic field, a massive object with mass m , orbiting in the
equatorial plane with tangential velocity v, is subject to a Lorentz force, the magnitude F;

of which is determined from mvxB as

Us R2M,  M,GR) vy (29)
2071'1’_3?‘}‘}8 - SR} r’ ¢}

e

F, =

In the equatorial plane, this force is balanced by a centripetal force, so that
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my’ M,G R v,y N M, GR. v,
= v=r
r 5R} 1’ ¢} SR ¥’ ¢}
(30)
dp MG R v,
dt SR} ¥’ ¢l
This gives per orbit an additional shift on top of the perihelium shift to the amount of
2r M,GRv, 2t M,GR,v, mRy R v,
== e =27 £ =S (=), (31)

2 2 2 2
ScR,r"v 5 ¢c; rv S r rwv

2M ,G

with Ry, = =&

Ce
If ¢ is equated with the vacuum light velocity ¢, Ry is the same as the Schwarzschild
radius.

It will be clear that if this is the case, this additional shift as a consequence of the rotation of
the centric mass is negligible for planets in orbits around the sun, because of the large
mismatch between the radius of the sun and the average radius of the orbit. This is different
for a satellite orbiting in the periphery of the earth.

In the Gravity Probe B project the distance of the satellite to the earth center amounts to
r =7000 km. The peripheral speed of the earth is v, =21 x 6400/(24 x 60 x 60) km/s. From

these expressions is straightforwardly calculated that, under assumption of ¢, = ¢, this

additional precession over a year amounts to 50 macs, while the perihelium shift amounts to
13188 macs/yr (milliarcsec per year). Note that the perihelium shift is not dependent on ¢,

but on cinstead.

Let us now suppose that the satellite orbits in the polar plane. Now the satellite experiences
a Lorentz force orthogonal to the orbit plane. From (27) it is obvious that the Lorentz force
while passing the poles is twice as large as in the equatorial case. It is zero while passing the
equator. In other positions, the strength of the Lorentz force is composed as

F, =B_v_+B_v_, where (32)

the two components of the gravimagnetic field strength are given by,

B, =B;(2cos¥cosv—sin¥sin?d) and B = B;(2cossind—sinIcos?d),

and where the tangential velocity v is decomposed as

v, ==vsind and v_=vcosd.

Figure 6 shows these quantities as a function of 2.
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The Lorentz force is orthogonal to the plane of motion. Averaged over the orbit, the
effective Lorentz force is 0.42 x in magnitude as in the equatorial case (thereby resulting in a
frame dragging effect of 21 macs/yr). Now, however, the phase shift is orthogonal to the
perihelium phase shift. The labor executed by the Lorentz force is converted into the energy
of a precession motion orthogonal on the plane of motion. In the equatorial case the two
precessions are coherent, i.e. pointing in the same direction, while they are incoherent in
the polar case. In the latter case observation of the gyroscope allows to measure the two
effects independently.

1r Bz

theta

0.5 1.5 2 2.5

theta

0.25 0.5 0.75 1 1.25

-0.5 ¢

Figure 6. Upper part: The z and x component of the gravimagnetic fieldstrength B as a function of ¥ (the y
component is zero). Lower part: The Lorentz force as a function of 9 and its average value (0.42).

The reported measurement data from the Gravity B probe project are, respectively, for the
geodetic effect, 6606.1 macs/yr (milliarcsec per year), and for the frame dragging effect 37.2
macs/yr. Curiously, the figure for the geodetic effect is almost exactly a factor 2 smaller than
results from the analysis above for the perihelium shift, while it is about a factor 2 larger for
the gravimagnetic effect.

Schiff’s view

The gravity B probe project has been set-up for testing the gravity theory as documented by
L.I. Schiff in his classic article [16] . This theory describes the influence of a rotatic metric,
such as produced by the earth, on the spin vector (= angular momentum vector) S of a
gyroscope placed in an orbiting satellite. The conclusion of the theory is that the time
behavior of the spin vector from the perspective of an observer in the satellite and corrected
for the earth time ¢, can be expressed as


http://dx.doi.org/10.20944/preprints201610.0033.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 October 2016 d0i:10.20944/preprints201610.0033.v2

16 of 26
@ =QxS, (33)
dt
where

3GM Gl 3
Q=Q;+Q, =——OXV)+ {5 (0 rr-o}.
2cr cr’or

where [ is the earth’s moment of inertia moment. The first term is independent of the
earth’s rotation, while the second term determines its impact. In terms of the earth’s
angular momentum J = lm, this can be rewritten as,

3GM G 3
Q=QG +QFD :W(FXV)+C,2F3 {r—z(Jr)r—J} (34)

The energy E; associated with the first term amounts to

do 3GM
g V. 35
dr 2¢%7 (33)

E;=S-Q; =mr

This energy is converted into a rotational precession energy £, , so that

E =E,. —>le2 =lr2m(d—¢))2 :mrzd—(p 3G;Mz v=mr %ERS%V, (36)
r 2 2 dr dt 2c¢°r de 4 " r

and so

d 3R, 3R, 2mr

L=y =22 (0, (37)

Vv
dr 2r° 2rt AT

Per orbit of the satellite, it results in a phase shift Ag, to the amount of

= SR, . (38)

r

Ag,

This is the same as the value of the perihelium shift defined in the previous paragraph. For
the second term precession energy of a gyroscope in the equatorial plane, we have from

(34)

dp G
EG:S'QFD:mI"Eczrng. (39)

For the angular momentum of the earth, interpreted as a spherical object, we have

2 2
. 47ﬂe — Me 47ZR3 — gMeRevel (40)
5T ST, 5

e

J=M
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where T, is the rotation period of the earth.

With these expressions the second term of the gyroscope precession in the equatorial plane
results from

1 , de., ,do G 2 1 ,dp Ry
E =FE. > —r'm(—/) =mr-— — v =—mr-—R —2%, 41
) (dt) dr 235 ¢ 5 e * 7 (1)
so that
4 2p A, (42)
d 5 " r
and therefore
R 47R R
A(pG:gRs e;}e(zm): s Ve per orbit of the satellite. (43)
5 r % 5r  rv

This gives 200 macs/yr. It is 4x larger than in the gravimagnetic view for ¢, = c. A gyroscope

in a polar plane shifts (200 x 0.42 =) 84 macs/yr. Similar as the perihelium shift, it is 2x larger
than quoted from the Gravity B probe project. Most probably, this is factor is due to tracing
back the measurement data to  or, instead, to shifts of the gyroscope axis per orbit.

Comparing Schiff’s theory with gravimagnetism

The result of the Gravity B probe experiment confirms Schiff’s conclusion about the weak
limit of Einstein’s Field Equation. Compared with the gravimagnetic view, there is no
difference in the geodetic part, which, in a proper interpretation of the reported data, is the
same as the well known perihelium shift of planetary objects in the solar system. The frame
dragging result in the weak limit is exactly 4x larger than follows from a one-to-one
transposition of Maxwellian laws to gravity. Repairing this discrepancy requires a
modification of the Lorentz force by a factor 4 by adapting the Maxwellian set accordingly.
This may be done, either by accepting u, = 167G / ¢*, or by introducing a gyromagnetic

ratio as a fudge [17].

Cosmological Gravity

The experimental results of the Gravity B project have shown that gravimagnetism exists,
but that it is inadequate to explain the origin of black matter, because of the weakness of
the frame dragging effect. So, something else is required to explain the phenomenon of flat
rotation curves in a galaxy. Unusual problems ask for unusual explanations. In this
paragraph, | wish to propose an unusual explanation, albeit that use will be made of
common concepts in field theory. To this end, the Lagrangian density of the cosmological
gravity field will be derived from the generic expression,

1
®=—§aﬂd>8"<1>+U(d))+p<b, (44)
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where U(®) is the potential energy of the field and where p® is the source term. Let us
compare three different options for U(®), respectively U(®) = 0,U(®) = A’® /2 and

U(®)=-A"®/2,where A >0 and real. Application of the Principle of Action as embodied in the

Lagrange-Euler equation yields a differential equation for the spatial behavior of the field’s potential
energy. The homogenous equations are respectively

2

2 2
Ld L4 )+ 20 =0 and (c) 1:—2(@)—/12@:0. (45)
r ar

a) —(d)=0; (b) —
()rdrz() ()rdr2
The non-trivial solutions for the first and second case are

0=20 ang @ =, S (46)

Ar Ar

The first case applies to electromagnetism (for ®, = QA4/4zn¢,) and Newtonian gravity (for
@, = MGA). The second case applies to Proca’s generalization of the Maxwellian field. It
reduces to the first case if A — 0, while keeping @,/ A constant. Generically, it represents a

field with a format that corresponds with the potential as proposed by Yukawa to explain
the short range of the nuclear force. It has been used by the author of this article for the
purpose to express the Gravitational Constant in quantum mechanical quantities[3].

Let us now consider the third case. It can be readily verified from (45c) that a non-trivial
solution for this case is,

cos Ar +sin Ar

*=% Ar

(47)

In accordance with the concepts of classical field theory, the field strength can be
established as the spatial derivative of the potential @ . Identifying ®,/Aas MG and A as

a range parameter, we may identify this field strength as a cosmological gravity force F.
Let us compare this force with the Newtonian force F, . To do so more explicitly, we

compare F,r’with F..r*. The comparison is shown in figure 7.

2 CosmoGrav
Newton

1r

Figure 7: The cosmological gravity force compared with the Newtionian force
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This figure shows that, for relative small values of r, the cosmological gravity force behaves
similarly as the Newtonian force, but that its relative strength over the Newtonian force
increases significantly for large values of r . This is a similar behavior as heuristically
implemented in MOND. The effective range is determined by the parameter A . It might
therefore well be that the cosmological gravity force manifests itself only at cosmological
scale. Figure 8 shows that under influence of this force, the rotation curves in the galaxy may

assume a flat behavior.

1r

0.5 1 1.5 2
Figure 8: boost of the rotation curve under influence of cosmological gravity.

This hypothetical cosmological gravity shows an intriguing phenomenon. At very far
cosmological distance, the attraction of gravity is inverted into repulsion. There is some

1
0.8
0.6
0.4

0.2

-0.2

-0.4

Figure 9: Inversion of the gravity force to antigravity at large cosmological distances. Black: Newtonian. Blue:
Cosmological Gravity.

speculation reported in literature that such antigravity is required to explain the
phenomenon of dark energy, responsible for the accelerated expansion of the universe [18].
Exploration of this phenomenon is a subject outside the scope of this article.

This view on gravity has an exciting beauty. It unifies the four forces of nature in a single
expression for the scalar part of their Lagrangian density, because of

A= —%aﬂd)a“cb +U(D)+ p®, where

U(®P)=-AD/2 forgravity,
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U(®)= A*®/2 for the nuclear forces [3,4],
U®)=0 for electromagnetism. (48)

A remaining challenge now is, to harmonize the symmetry that shows up in this classical field
view, with Einstein’s Field Equation, in which the potential function concept is absent. It might
well be that the cosmological parameter A, which | have introduced here, can be related
with the cosmological constant A that has been added as a degree of freedom by Einstein in
his field equation. Let us see if such could be true. Most generically, Einstein’s Field Equation
reads as

G :Sc—ﬂfTﬂv+Agﬂv. (49)

My

Because no experimental evidence could be found that this constant A would be different from zero,
Einstein regretted its introduction by saying “The introduction of the cosmological constant was the
biggest blunder in my life”. But | believe, it wasn’t. As shown in Appendix B, we may relate Einstein’s
cosmological constant A with the cosmological parameter A indeed, as

A=-A. (50)

It is probably fair to say that, apart from the explanation given for dark matter as proposed in this
paragraph, this interpretation of the Einstein’s cosmological constant, gives a firm support for the
cosmological gravity as developed in this article.

Discussion
The search for relationships between the four basic forces of nature is an on-going

challenge. In this respect, the gravitational force is the most problematic one. Even to the
extent that the question if gravity is a basic force indeed, or just emergent from the other
basic forces, is still subject to debate. Where electromagnetism and the two nuclear forces
are unified in the context of quantum physics, gravity is still on its own. This, in spite of the
beauty of Einstein’s General Relativity, which has revealed and explained so many gravity
related cosmological phenomena. In this article, | have described gravity from a point of
view inherited from my earlier work on quantum physics, in which | have positioned quarks
as pointlike sources spreading a composite field of energy, identified by me as the Higgs
field. It gives rise to bonds of two quarks (mesons) and three quarks (baryons), to which
attributes can be assigned that we know as electric charge and mass. In this view, the fields
of the strong nuclear force and the weak nuclear force are basic and the fields of
electromagnetism and gravity are sourced by the attributes of the quark bonds. In earlier
work, this view has enabled me to express the Gravitational Constant in terms of quantum
mechanical quantities [3], probably so far considered as just a curiosity. It appeared being
possible by combining views of General Relativity with the views of classical field theory. One
of the instruments used, was applying Proca’s generalization of Maxwell’s laws to the
nuclear fields of energy. In the context of this article, | have done something similar for
gravity. Just by changing the polarity of the mass term in Proca’s generalization. In this
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article gravity has been modeled as a scalar field, i.e., as a field with a scalar potential.
Whether this field can be generalized to a vectorial one (that therefore radiates) depends on
the question if the gravitational equivalents of the Faraday induction and the displacement
current exist in the gravimagnetic view on gravity. If so, my hypothesis could possibly meet
serious problems with respect to gauging the field under a gauge invariance constraint of the
proposed modified Proca description for the gravity field. It is for that reason why | have
included Appendix A, in which | have shown that the causality of the gravity field does not
need a vectorial bosonic description. This might also be the answer on the factor 4
discrepancy between the weak field limit view of Einstein’s Field Equation for a rotational
metric and the gravimagnetic analogon of full electromagnetism.

According to the hypothesis developed in this article, there is no dark matter. There is no
dark force either. There is just a generalization of gravity laws. This generalization gives an
answer to the anomaly of the rotation curves in galaxies. It also shows how to interpret
Einstein’s cosmological constant. One of the intriguing consequences is the potential
existence of antigravity. This, however, does not mean that there is a domain for it. It is
relative. Those who are living in that domain, do not experience antigravity. They just see us
living in an antigravity domain instead.

Let me conclude by expressing that my hypothesis is still in a state of immaturity. It gives a
challenge, though, for further exploration. The ultimate challenge is proving or disproving it
by experiment.

Appendix A: The causality of gravity

The objective in this appendix is to show how the causality of gravity, such as shown in the wave
equation (19) in the main text, is implicitly contained in Einstein’s wave equation, even in the case
that the source of gravity does not show an amount of rotation energy. This objective implies that we
have to solve the weak limit of Einstein’s Field Equation for a space-time metric that is given by the
line element (17),

ds? = oo (r,t)dqg +g, (r,t)dr2 + rzsin219d¢2 +rid?, (A-1)
where ¢, =ict.

Note: The space-time (ict,r, ¥, ¢ ) is described on the basis of the “Hawking” metric (+,+,+,+).

The weak field limit condition is defined as (18),

oo (r,1) = 1+ Iy, (r,1), where |hy, (r,1)| <<1, and

g, (r,y=1+h, (r,t), where |h, (r,t)<<1. (A-2)

In empty space, the Einstein Field Equation (16) under this symmetric spherical isotropy,
reduces to a simple set of equations for the elements R, of the Ricci tensor,

d0i:10.20944/preprints201610.0033.v2
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(@): Ryy=0;(b): R, =0; (c): R, =0 and (d): R,, =0. (A-3)

The hard task is to calculate these elements. As | wish to show later in Appendix A, the
calculation gives the result as shown in Table Al.
(Note: A" and h” means differentiation, respectively double differentiation of Zinto r;

hiand hmeans differentiation, respectively double differentiation of % into ¢)

Adding (A-3b) to (A-3a) results in

W ,
hy, — h,2, LY (A-4)
C r r

From (A-3c) and (A-3d) it follows that

T (A-S5)

rr

From (A-4) and (A-5) then follows,

I 4 h 4
hgy——3-=0 and A, — h’; =0, (A-6)
¢ ¢

or written differently,

2 2 2 2
h
J hgo —Lza h200 =0 and J hz” —Lza hz” =0, with Oy, =——ah” : (A-7)
or c® ot or c® ot or or
Table Al: metric tensor and Ricci tensor
metric tensor Ricci tensor
oo =1+ My hy }irr hoy s , fl,, : : h;
Ry :_%+C_2+%(h00 _hrr)_T(hOO _hrr)_%
grr = 1 + hrr h, ]:irr h, 4 ’ hrr 2 ’ h,
Rrr :_%"'c_z_%(hoo _hrr)+ 4 (hOO _hrr)+%
= 2 r. ., ’
Eoo =7 Ryy = _E(hoo +h,)
2.2
o =1 SD) | g - —%sinz(ﬂ)(hgo +H)

It will be clear that (A-7) is the equation of a wave that propagates in the direction of » with a
velocity ¢ . This equation is identical in format as Maxwell’s wave equation for electromagnetism. It
proves the causality of gravity without requiring an equivalent of magnetism in the source of the
field.

Calculation of the Ricci tensor
The Ricci tensor is described in expanded form by
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EIN) I ) pU ‘ 4
Z( 7 "f)+ZZ(rr,j;—r,;rj’;). (A-8)
k=0 a j i=0 k=0
The Christoffel symbols 1—‘; represent functions of the metric elements, such that
: a de Og,
Z g]m 8 im + g] } (A-9)

Under symmetric spherical isotropy, only diagonal terms remain, so that the expression reduces to

SIP) . ) D
X6 Ly ey y s -rirh, (A-10)
k

k=0 i i=0 k=0

and the Christoffel symbols reduce to
1 Jg, OJg, 0%
k _ Y ki Jt
b =0 % Tog, T2
8w 99, q; q}

i (A-11)

such that only three different forms remain,

1 9 19 1 9
k= 98k . I = 98 (k#i)and T} = ﬁ (A-12)
2854 an ngk aq, 2gy 9q,
Table A2 shows the Christoffel elements different from zero, where
t I t 1 t t 1 ’
I, = 2_ich00 L, = _2_1ch I, =0, = Ehoo
rt: = _lh(;O F}":‘ = lh:}" rr rr 1 hrr
2 2 2ic
)
- r p rsin” ¢}
rz}z} =T R —
1+h, 1+h,
1 .
8 _ Y _ g _
re,=r;, = " I, =—sindcos?}
1
" =ry=— T} =T), =cotd) (A-13)

r

Application of (A-13) on (A-10) gives the Ricci tensor as listed in Table Al.

Table A2: Christoffel elements and affine connections of the isotropic non-rotating metric


http://dx.doi.org/10.20944/preprints201610.0033.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 October 2016 d0i:10.20944/preprints201610.0033.v2

24 of 26

r, | T, r, | T,
Lo L | T
Fz;ﬂ
r,
5 Lo
r, Ty,
Foo | T

Appendix B: The Cosmological Constant

So far, the view on cosmological gravity in this article, has been based upon the Lagrangian density
concept of a classical field, in which the potential energy U(®)is expressed in terms of a potential
function @, such that, c.f. (48),

U®@)=-1D/2. (B-1)

The potential function concept is absent in General Relativity. Instead, the energetic influence of the
field is comprised in the elements g, of the metric tensor. If we could relate @ with the metric

tensor, we might possibly relate A with A .Because A is a constant, we may restrict ourselves to

G
Gy :c_4T00 +Agy - (B-2)

Three equations will be invoked to relate A with A . These are

2
V& = C_ZV(D'

Gy =V2g00,
2 2 Too
VO + A ®=4nG—. (B-3abc)
C

As | shall show below, the first one is derived from Einstein’s geodesic equation of motion. The
second is straightforwardly derived from the expression of the Einstein tensor Gﬂv. The third one is
derived from the Principle of Action on the Lagrangian density of the field (by applying the Euler-

Lagrange equation). Assuming the three equations hold true, elementary algebraic operations on
these three equations yield,
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&G

Gy :c_4Too _ﬂzgoo- (B-4)

From (B-2) and (B-4) we find,
A=-1.

The remaining task is to justify the three equations (B-3abc). The methodology to do so can be found
in Einstein’s article [6,7]. Let us review it briefly. We shall do so for Cartesian space-times (t',x, V,Z)

and (T', X, ¥,z), where lab time and proper time are, respectively, normalized as t’ =1ict and

7' =ic7,where i =+/—1, in accordance with a “Hawking metric” (+,++,+). The virtue of this metric
is the disappearance of the ugly 77symbols that show up in Minkowski space-time with metric (-

,+,+,+). Furthermore, we shall assume that our space-time is stationary and isotropic.

Equation (B-3a) follows from the 00-component of Einstein’s geodesic equation of motion,

2
d x,

dz’?

dt’
+T (=) =0. (B-5)
dr

In the weak field limit of a stationary isotropic field, this equation of motion reduces to

d’x 1 d’x  ¢* 20

This justifies (B-3a).
Equation (B-3b) follows from the general expression

1
Gy =Ry _ER ’ (B-7)

where R, is the 00-component of the Ricci tensor as shown in (A-10) and where R is the Ricci scalar,

which is defined as,

3 3

R=Y¢"R, . (5-8)

1=0 v=0

In the weak field limit, this reduces in a stationary isotropic field to

3 3
R=>>n"R,, =4Ry, (B-

where R, can be calculated as

Ry, = _Vzgoo- (B-10)
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From (B-7) — (B-10), we conclude
Gy =V2g00 (B-11)
This justifies (B-3b).

To justify (B-3c), we have to invoke the Principle of Action, by applying the Euler-Lagrange equation
to (44). This results into a generalization of Poisson’s equation, which now reads as,

VO + 1 ® =42Gp, (B-12)
where p is the spatial mass distribution, which in the stress-energy tensor is identified as

T
Cc

The justification of (B-3c) follows from (B-12) and (B-13).
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