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Summary 
In a search for a solution of the galaxy rotation problem, a novel view on cosmological gravity is developed. In 
this view, the origin of gravity is traced back to the basic nuclear field of energy, spread by quarks as 
elementary pointlike sources. This gives a common basis for gravity, electromagnetism, the strong nuclear 
force and the weak nuclear force. After a review on gravimagnetism and the causality problem of gravity, a 
hypothetical concept  for the gravity field is proposed, which solves the rotation problem without the need to 
accept dark matter as the deus ex machina.    
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Introduction 
Dark matter is a hypothetical physical massive substance, the existence of which is proposed 
to explain particular phenomena observed in cosmology that cannot be understood from 
common physical laws. An intriguing example of such a phenomenon is the experimental 
evidence that stars rotating at the edge of a galaxy show an orbital velocity that remains 
more or less constant as a function of their spacing from the galaxy center. Although this 
phenomenon can be explained for particular mass density distributions, the orbital velocity 
appears to be larger than allowed by the Newtonian law of gravity, which limits this velocity 
by the amount of enclosed mass. Therefore, “something else” should be responsible for the 
phenomenon of excessive orbital velocity.  
 
Several mechanisms have been proposed to explain the unexpected. The hypothetical 
existence of mass within the galaxy that escapes from visible observation, is one of these. 
Such dark matter would explain an increase of the gravitational force, thereby making the 
orbital velocity higher than expected from the amount of visible mass. Another mechanism 
is the MOND hypothesis [1]. MOND stands for MOdified Newtonian Dynamics. In this 
approach, it is hypothesized that Newton’s gravitational law is incomplete and that it can be 
adapted in a way that its influence becomes manifest at a cosmological scale and remains 
hidden in our daily world. This adaption, however, is not clearly physically justified, but is 
made on the basis of a curve fit to empirical results from observations. A third mechanism is 
proposed by Verlinde [2], who regards gravitation as an entropy phenomenon, emergent 
from other physical laws, rather than as a fundamental force of nature. He adopts the 
holographic principle of the string theory. According to this principle, the physical laws of our 
three-dimensional world, allows a (two-dimensional) holographic mapping on a shell around 
space. Verlinde hypothesizes fictitious molecules on this shell, which show the entropy as 
prescribed by the second law of thermodynamics. Physical mass objects in this fictitious 
world appear to show a motion behavior that can be described mathematically in a format 
that equals Newton’s law of gravity. He claims that, similarly as with MOND, this mechanism 
gives a clue to understand the behavior of mass objects at a cosmological scale without the 
need to accept the existence of dark matter. 
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In this article, I wish to show that there might be fundamental physical reasons why mass 
objects in deep space behave differently from the behavior of mass objects in non-
cosmological space. These reasons have to do with the relationship between mass, gravity, 
electromagnetism and the two basic nuclear forces. It all starts with the concept of quarks as 
described in previous work [3,4]. In this concept, a bare quark is a massless pointlike source 
of an energetic flux. This flux produces two energetic fields, namely a vector type repelling 
“far field” and a scalar type attracting “near field”. This enables the origin of stable bonds 
between two quarks, known as mesons, and  between three quarks, known as baryons. 
These configurations behave as quantum mechanical oscillators.  The energetic state of 
these oscillators becomes manifest as mass. A quark on its own, has no relevant mass 
attribute. Mass is the consequence of the quantum mechanical junction of quarks 
(confinement). Electric charge is a consequence of this junction as well. It is the 
manifestation of the (iso)spin condition of the quark junction. As a result, electric charge is 
quantized in integer units. Mass is quantized as well, albeit as a quantization level of the 
quantum mechanical oscillator state. This shows an irregular energy spacing. It is due to the 
characteristics of this oscillator, which is not purely harmonic as it would be in a quadratic 
field of energy. Instead, it is slightly anharmonic as a consequence of the Proca type of the 
quark’s nuclear far field and the Yukawa type of the nuclear near field. There is, however, a 
clear parallel. Electromagnetism, which originates from the phenomenon of electric charge, 
and gravity, which originates from the phenomenon of mass, are indirect forces that follow 
from the existence of the energetic field of the two basic nuclear forces.     
 
We know that the electromagnetic force has a vector potential next to a scalar potential. 
Taking into account the parallel between electromagnetism and gravity as just described, it 
would be reasonable to suppose that such would hold for gravity as well. So, where is the 
vector potential of gravity? It might well be that this potential escapes from our observation 
because of its weakness. Would it be possible that this vector potential may show its 
existence at the cosmological scale? It is the aim of this article, to explore if such could be 
true.  If gravity would be incomplete, in the sense that next to its scalar field a hidden 
vectorial field would exist, it could well be possible that currents of mass particles would 
show similar properties as currents of electrically charged particles. In that case, mass 
currents would create the equivalent of a magnetic field and so could execute the equivalent 
of the Lorentz force on other mass currents. Such an effect may manifest itself at a 
cosmological scale as the force that enhances the Newtonian force, thereby suggesting that 
some dark matter increases the strength of the scalar gravity force. 
 
The idea of gravimagnetism is not new. In fact, it traces back to Heaviside [5]. The present 
approach to it is based upon a relativistic formalism, derived from Einstein’s Field Equation. 
The suggestion that the (equivalent) Lorentz force might be related with dark matter is not 
new either. Attempts to explain the dark matter phenomenon in terms of a gravimagnetic 
Lorentz force have remained unsuccessfully, because its strength is considered as being too 
weak. In this article, I wish to review the dark matter problem once more as well as the 
shortcoming of gravimagnetism to explain outstanding cosmological problems. After that, I’ll 
propose a novel concept of Cosmological Gravity in an attempt to find a way out.  
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The galaxy rotation curve problem: dark matter or dark force? 
Newtonian laws prescribe that the transverse velocity )(rvϕ of a cosmic object revolving in a 
circular orbit with radius r  in a gravity field  is determined by 
 

r
GrMrv )()(2 =ϕ ,                                                                                                                                                (1) 

 
where )(rM is the amount of enclosed mass and where G is the gravitational constant. This 
relationship is often denoted as Kepler’s third law.  As illustrated in figure 1, the velocity curve of 
cosmic objects in a galaxy, such as, for instance, the Milky Way, appears to be almost flat. It is 
tempting to believe that this can be due to a particular spectral distribution of the spectral density to 
compose )(rM . This, however, cannot be true, because )(rM builds up to a constant value of the 
overall mass. And Kepler’s law states in fact that a flat mass curve )(rM is not compatible with a flat 
velocity curve. 
 

 
Figure 1: Rotation curves of solar objects in the Milky Way (From ircamera.as.arizona.edu) 
 
 Figure 2 illustrates the problem. It is one of the two: either some additional force on top of the 
Newtonian law is responsible for the phenomenon, or dark matter, affecting the mass distribution is 
responsible. Apart from this, it can be readily concluded from Table I that the mass data of the Milky 
Way are inadequate to explain the high value of )(rvϕ  at the edge of the galaxy.  

 
 
Figure 2. Incompatibility of a flat enclosed mass curve with a flat rotation curve.  
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Figure 1 shows that the revolution speed of the sun (at 8=R kpc) in the Milky Way has 
about the same value of some 220 km/s as the one of a star at the edge of the Milky Way (

20=R kpc). For a stellar object at the edge, all Milky Way mass can be considered as if it 
were central. Using the values shown in Table I, it would result into a revolution speed of 
132 km/s. The amount of missing mass can thus be estimated from 
 

=→=
−

=
+ α

α
2)

132
220(

1
1

G

darkG

M
MM

0.64.                                                                                     (2) 

 
It means that some 64% of the Milky Way would consist of dark matter. 
 
Table I. Characteristics of the Milky Way 
 
distance unit  1 kpc 3.06 1019 [m] 
grav. constant G  6.67 x 10-11 [m3kg-1s-2]
solar mass solM  1.99 1030 [kg] 

mass of the bulge ebuM lg  2 x 1010 
solM  

mass of the disc discM  6 x 1010 solM  
Mass Milky Way 

RM   8 x 1010 solM  
Radius Milky Way R  20 kpc 
 
 
Gravimagnetism as dark force? 
As already stated, another possibility for explaining the anomalous rotation curve is the 
hypothetical existence of some dark force. Let us consider if the concept of gravimagnetism 
may reveal such. Many galaxies, such as, for instance, the Milky Way show a typical 
topological structure of the type as shown in figure 3.  
 

 
 
Figure 3: Milky Way (from http://www.atlasoftheuniverse.com/milkyway2.jpg) 
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This structure is a collection of spiral arms in which solar objects show an orbital motion 
around the center of the galaxy. It will be clear that neighboring arms can be conceived as 
parallel currents of massive particles. In terms of the analogy between electromagnetism 
and gravity, such as summarized in Table II, one might hypothesize that these currents 
execute an attracting Lorentz force on each other of the type as shown in the last row of 
Table I.  This would mean that, apart from the Newtonian gravity force that attracts massive 
objects to the center of the galaxy, an additional central force influences the equation of 
motion of such masses. This effect is formally expressed in  the energy relationship  
 

ErVrVJmv LG =+++ )()(
2
1

2
1 22 ω ,                                                                                                 (3) 

 
where m is the mass of the particle, v its radial velocity, J its moment of inertia with respect 
to the galaxy center, ω (= td/dϕ ) its angular frequency, GV its potential energy due to 
gravity, LV its potential energy due to the Lorentz force and E  the total particle’s energy. 
Next to conservation of energy as expressed by (3), the angular momentum is a conserved 
quantity, so 
 

b
t

mr =
d
d2 ϕ ,                                                                                                                                           (4) 

 
where b is a constant. It is well known that, by evaluating of this expression for the case that 
GV  is the potential energy associated with Newton’s gravity law and that no Lorentz force is 

involved, under consideration of these conservation laws , elliptic orbits appear for the 
motion of the mass particle m . Among the variety of elliptic orbits possible, the circular 
motion, where the radial velocity =v  0,  is a valid special case. As shown in figure 3, orbits in 
the Milky Way are more or less circular. 
 
Table II: Analogy of (naive) gravimagnetism with electromagnetism.  
 
 electric gravitational (gravi)dimension 
current tqI ΔΔ= / tmI ΔΔ= /  [kg s-1] 
Coulomb/Newton  2

021 4/ rqqF πε= 2
21 / rGmmF =  [kg m s-2] 

Lorentz force Bqv×  Bmv×  [kg m s-2] 
(gravi) magn. field rIB 2/0μ=  rIB G 2/μ=  [s-1] 
constant of nature 0ε  GG πε 4/1=  [(m3 kg-1 s-2)-1] 
propagation speed 2/1

00 )( −= μεc  c  [m s-1] 
gravimagnetic constant  12 )( −= GGG c εμ  [kg-1 m] 
force between two  
l  long current wires 

rlIIF πμ 2/210=  rlIIF G πμ 2/21= [kg m s-2] 

 
 
This picture shows a core (the bulge) and a number of spiral arms. Both the bulge and the 
massive objects (stellar) in the spiral arms rotate around the center. Experimental evidence 
shows that the tangential velocity of the stellars is different from the Keplian law as 
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expressed by (1). As discussed before and shown in figure 1, this value appears to approach 
a value independent of r , at remote distances from the center.  A few number of spiral arms 
can be distinguished. These spiral arms have a certain width and a certain spacing between 
them. To keep the model simple, it will be supposed that the width Δ  of the spiral arms is 
about the same as the spacing between them. The particle streams in the arms will be 
considered as gravitational currents iI in parallel wires. In accordance with the hypothetical 
equivalence of electromagnetism and gravity, the currents in the arms execute a 
gravitational Lorentz force that can be calculated according to the formula as shown in the 
last row of Table I. This builds a certain potential energy )(rUL  of the outer spiral arm with 
respect to the galaxy center, such that 

}d)(......d)(d)({.d)()(
2

00
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Δ
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rrIIrrF π
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μ ,                                                                                                              (6) 

with  Δ= iti vI ρ  [kg s-1], 

where tv is the tangential velocity of the massive objects and where )(rρ is the mass density (in 

kg/m2) in the spiral arms. The observer’s position here and elsewhere in this analysis, is assumed 
being in the center of the galaxy. In the case that the orbit of the massive object under consideration 
is circular, the tangential velocity tv  is  the same as the transverse velocity v as defined in (1).  In 

non-circular orbits, the value of the latter one decreases with r as a consequence of the conserved 
angular momentum as defined by (4).  It has to be noted, though, that this conservation law only 
holds within an orbit under consideration. It does not apply when comparing massive objects in 
different orbits.  Experimental observation reveals that tv is  more or less independent of r . So, let 

us continue under this assumption and  let us investigate if a consistent theory can be built that is 
not in conflict with it.  

 Further analysis reveals 
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μ                                        (7) 

Under use of the definitions GG πε 4/1=  and 1)( −= GGGc με , it follows from (5) and (7), 


==

Δ−=Δ−=
N

i
iit

G

N

i
iitGL rv

c
GrvrU

1

222
2

1

222 4)( ρπρμ .                                                                                   (8) 

as the total potential energy  of the thN spiral arm due to the gravitational Lorentz force.  

Per unit of mass, the contribution is  
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with      
=

Δ=
N
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ii
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rM
1

2

2
ρ
ρπ .                                                                                                                          (10) 

 It will be clear that rsM has about the same value as the  sum rM of mass in the N  spiral arms 

within the radius r under consideration. 

 From (3) and (8), we have, without Lorentz force 

r
mGMmv r

t =2

2
1 ,                                                                                                                                             (11) 

and with Lorentz Force,  

r
mGMvm r

t =− 2)1(
2
1 α , where                                                                                                                   (12) 

r
GM

c
rs

G
2
2

π
α = .                                                                                                                                               (13) 

It will be clear that if α would have a substantial value, it would have a substantial influence 
on the tangential velocity tv  of the star in the spiral arms rotating around the center of the 
galaxy. Note that rGMr / has the dimension of a squared velocity. As long as 1<α , 
equation (12) is consistent with a circular orbit equation. The circular motion would change 
into a spiral one if α exceeds 1. If α is about 0.9, it would seem as if the central mass rM is 
raised to a tenfold. It would seem as if 90% of its mass is “dark”. Depending on the radial 
dependency of rM and on the value )1( α− , it might well be that tv will not only show a flat 
behavior as a function of r , but that it will be substantially larger than expected from the 
amount of visible mass as well.   
 
So, the crucial question is whether α may have a substantial value. It will be clear that if Gc
would equate the light velocity in empty space, gravimagnetism cannot be the substitute for 
dark matter. So, the crucial question is if there is a reason to suppose that Gc can be 
different from the light velocity. This issue will be further addressed in the next paragraph. Before 
doing so,  I wish to point to a seeming anomaly. In this analysis it has been taken for granted that the 
velocity curve of moving objects in the galaxy is flat, implying that the tangential velocity of orbiting 
objects is independent of the distance to the center. This corresponds with experimental evidence. It 
means, though, that the objects are revolving in a circle. The structure of the galaxy, however, shows 
spirals. The implication is that stellars cannot maintain their position in the spiral arms. If they 
did, their velocity should increase with the radius, because it would seem as if they were 
part of a rigid body. This seems being a paradox. In fact, it is not, because the spirals have to 
be considered as a pattern of mass density, which for some reason, is created in the dark 
initial phase of the galaxy.  So, where the spiral arms with their high mass density preserve 
their position in the galaxy, individual stars don’t. The spiral arms have to be considered as 
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traffic jams, where stellars move in and move out. If this were not the case, the flatness of 
the velocity curve would demolish the spiral characteristic.  
 
 
General Relativity and gravimagnetism 
The resemblance between the electromagnetic field and the gravitational field does not 
necessarily mean that the one is a Chinese copy of the other. One thing is, for instance, the 
fact that where in electromagnetism charges are bipolar, charges in gravity are unipolar. 
Where the vectorial character of the electromagnetic field’s potential function is without any 
doubt, it might still be that the potential function of the gravitational field is scalar. The 
observation that the weak field limit of the gravitational field, as expressed by Einstein’s field 
equation, gives rise to a wave equation, does not necessarily imply that the gravity field’s 
potential function is vectorial.  To provide more insight in this, it might be useful to compare 
the origin of Maxwell’s wave equation with the gravity wave equation that results from 
Einstein’s Field Equation. Maxwell’s wave equation is straightforwardly derived from the 
four well known Maxwell equations, written in SI notation as, 
 

0/ερ=⋅∇ E ; 0=⋅∇ B ; t∂−∂=×∇ /BE  and )/( 00 t∂∂+=×∇ EjB εμ                                (14) 
 

Combining the time derivatives of these equations followed by elementary algebraic 
manipulation, results in the well known Maxwellian wave equations for the electric field 
strength E and the magnetic field strength B , which are spatially and temporally of second 
order. These fields are created as a consequence of a spatial charge ρ (which may reduce to 
a Dirac type distribution) and a current density j .The Maxwell equations as such are not 
sufficient for describing mechanical forces on charged particles. As soon as a force F is 
assigned on a particle with electrical charge q as qEF = , Einstein’s description of Maxwell’s 
laws in terms of special relativity prescribes the generalization of the force by including the 
Lorentz force as a consequence of a moving charge qwith velocity v  as 
 

BvEF ×+= qq .                                                                                                                                 (15) 
 
The Faraday induction t∂∂ /B  and the displacement current t∂∂ /0 Eε , which mutually 
couple a magnetic field with an electric field, are the essential ingredients to generate the 
wave equation. This evokes the question in how far the bipolarity of electric charges in the 
source terms 0/ ερ and j is responsible for these essential ingredients. Anyhow, where the 
displacement current in electromagnetism can be readily understood from the interaction 
between positive and negative charges in the interrupt of a charged conductor by a 
condenser, there is not such equivalence available with unipolar charges in gravity. Whether 
a one-to-one mapping of the electromagnetic Maxwellian equations to gravity is allowed is 
an open question still. This holds in particular for the dynamic terms t∂∂ /0 Eε (displacement 
current) and t∂∂ /B  (Faraday induction). It might well be that these ingredients are absent in 
gravimagnetism. 
 
Let us now consider the gravitational wave equation as a consequence of the weak field limit 
of the Einsteinean Field Equation. The equation reads as, 
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μνμν
π T
c
GG 4

8=      with  μνμνμν RgRG
2
1−= .                                                                                        (16) 

 
where μνT is the stress-energy tensor, which describes the energy and the momenta of the source(s) 

and where μνR and R  are respectively the so-called Ricci tensor and the Ricci scalar, which can be 

calculated if the metric tensor components μνg are known [6,7].  In the case that a particle under 

consideration is subject to a central force only, the time-space condition shows a rotational 
symmetric isotropy. This allows to read the metric elements ijg from a simple line element 
that can be written as  
 

2222222
000

2 ddsind),(d),(d ϑϕϑ rrrtrgqtrgs rr +++= ,                                                            (17) 
 
where ctq i0 =  and 1i −= . 
 
It means that the number of metric elements ijg reduce to a few, and only two of them are 
time and radial dependent. In the weak field limit, we have 
 

),(1),( 0000 trhtrg += , where 1),(00 <<trh , and 

),(1),( trhtrg rrrr += , where 1),( <<trhrr .                                                                                 (18) 
 
Under this condition, Einstein’s Field Equation can be evaluated into a wave equation (see 
Appendix A), 
 

01
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00
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22
00
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t
h

cr
h  and 01
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r
h

r
h rr

∂
∂

−=
∂

∂ 00 .                                   (19) 

 
Obviously, a central force from a sudden source in the center of empty space is enough to 
create a gravitational wave function. This wave function propagates with the vacuum light 
velocity, thereby proving the causality of the gravitational force. It was Karl Schwarzchild, 
who calculated the numerical value for the metric elements for the case that the central 
force is Newton’s gravity force from a central mass M . In that case 
 

2
)/(2

c
rGMhrr =   and 200

)/(2
c

rGMh −= .                                                                                       (20) 

 
So far in these considerations, possible rotation energy of the source in the center, has not 
been considered. Inclusion of it will, of course, affect the metric tensor. It makes it more 
complex, because one might expect that the nice symmetric isotropy will be lost. 
Generically, the line element has to be expressed in terms of the Kerr metric [8], which in 
the canonical gravimagnetic formalism is simplified to [9] 
 

ji
ij xx

c
t

c
t

c
cs dd)21(d)d.(4d)21(d 2

2
2

22 δΦ++⋅−Φ−−= xA ,                                                       (21) 
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where ijδ is the Kronecker delta and where, far from the source, 
 

r
GM=Φ  , 3rc

G xJA ×=  ,  x=r   and where J is the angular momentum of the source. As 

will be shown later in this text, this metric is the basis for a canonic formulation of the 
gravimagnetic equation set, which will appear somewhat different from a naïve 
transposition of the Maxwellian set that we shall pursue first. 
                             
In the special case that a particle subject to this metric is revolving in the equatorial plane of 
the source, the influence of the source’s angular momentum becomes manifest as a quasi 
Lorentz force, which can be modeled as an add-on to the central force. Under this condition 
the nice symmetric isotropy is restored. It will be clear that the value of the proportionality 
constant Gμ has a large impact on the strength of the quasi Lorentz force. It is quite common 
to establish this value from the following observation. First of all, Poisson’s law for gravity is 
invoked, which states 
 

ρπG42 =Φ∇ .                                                                                                                                     (22) 
 
In analogy with Poisson’s law for electromagnetism a gravity equivalent Gε for electric 
permeability is defined, such that 
 

GG πε 4/1= .                                                                                                                                       (23) 
 
The next step is relating 
 

?11 2

00

2

GG
Gcc

μεμε
=⇔=                                                                                                               (24) 

 
The justification for equating 2c with 2

Gc , as is common practice, is the statement that the 
presence of a vector potential associated with the angular momentum brings the causality of 
the gravity field such that it propagates with the vacuum light velocity. The presence of the 
angular momentum is not required for bringing the causality. As proven in the Appendix, the 
causality is implicitly provided by Einstein’s Field equation even in the absence of an angular 
momentum of the source. Therefore, causality of the gravity field is no reason to equate 2c
with 2

Gc .   
Gravimagnetism might be essentially different from electromagnetism in the sense that the 
mutual coupling between a gravitational equivalent of an electric field generated by a scalar 
potential and a gravitational equivalent of a magnetic field generated by a vector potential 
might be absent. The two types of fields might exist, however, maybe without mutual 
coupling. Without the coupling, the quantity Gc is just a constant that has nothing to do with 
radiation or propagation of gravitational energy by a Poynting vector. Arguments for believe 
in the absence of this coupling is given above, where the role of the difference in polarity of 
charges has been discussed. Let us continue by estimating the value of Gμ from known 
experiments. This will be done in the next paragraph. 
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Implications from the Gravity B Probe experiment 
Probably the most relevant experiment for establishing the value of the gravimagnetic 
constant Gμ  has been offered by the Gravity B Probe project [10,11]. This project has been 
set up to compare theoretical values of two gravitational effects with experimental 
evidence. These effects are, respectively, the geodetic effect and frame dragging (also 
known as the Lense-Thirring effect [12,13]). The geodetic effect is related with the 
phenomenon of the perihelium shift of planets in the solar system. This shift is predicted by 
Einstein’s General Relativity. The perihelium of a planet in an almost circular loop with radius 
0r shifts each revolution by an amount of [7,14] 

 

0

3
r
RSπϕ =′Δ ,  where 2

2
c
GM

R sol
S = .                                                                                             (25) 

 
The quantity SR is known as the Schwartzschild radius. A satellite orbiting around the earth 
will show the same effect. It can be measured by a gyroscope on board of a satellite with its 
axis pointing to a cosmological object in deep space. As a consequence of the curving of 
space-time due to the energetic gravitational field of the earth, the gyroscope on board of 
the satellite will show a precession motion. One might think that, per revolution of the 
satellite at a radius )r ′ around the earth enter, the angle of the gyroscope axis will shift by an 
amount that equals the value of the perihelium shift. Actually, it is more complicated than 
that. The theoretical value of the perihelium shift is calculated from the line element of an 
isotropic non-rotating metric of the type as given by (17). More particularly, 
 

2222221-22 ddsind)1()d1(d ϑϕϑ rrr
r
R

t
r
R

s ss ++−+−−= .                                                       (26)    

 
The calculated value of the perihelium shift nicely fits with experimental evidence from 
orbiting planets indeed. However, as noted before, this line element is incomplete, because 
the influence of the rotation energy of the central mass (of the sun for planets or the earth 
for orbiting satellites) is not included. Nevertheless, the perihelium shift behaves as 
predicted by (25). This can be understood as follows. The influence of the rotation energy 
can be accounted for by two different mechanisms. These mechanisms are physically 
equivalent, but are different in modeling. The first one is changing the line element of field 
metric followed by an analysis of the angular momentum of a mass object moving in this 
field. The second one is leaving the field metric unchanged and modeling the influence of the 
rotation energy as the add-on of a gravimagnetic field.  In the latter model, a gravitational 
Lorentz force is associated with this field and as long as the revolving of a massive object 
takes place in the equatorial plane of a rotating central mass, the gravitational Lorentz force 
is central. This force is just a slight add-on on the Newtonian force, thereby hardly affecting 
the amount of perihelium shift of a revolving massive object in the equatorial plane. The 
angle of the axis of a gyroscope placed in a satellite orbiting in the equatorial plane of the 
earth will show per orbit a slight additional amount of phase shift in the equatorial plane. 
Later in this article, I’ll show that this additional amount is virtually indistinguishable from 
the amount as predicted by the perihelium shift of a non-rotating metric. For that reason the 
perihelium shift of planets is not different from the one as calculated from the Schwarzschild 
metric (26). In fact, the only thing to be done is to relate the radius of Mercury’s orbit and 
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the solar mass with the radius of the Gravity B satellite ( ≈ 7000 km) and the earth mass. This 
gives 13188 macs/yr (milliarcsec per year). Curiously, this is about twice the value as 
reported from the Gravity B project [10,11]. The reason of the difference will be discussed 
later in this text. 

 
 
Figure 4. The two orbital precession influences (perihelium shift/geodetic effect and Lorentz force/Lense-
Thirring effect) are coherent (i.e. in the same direction) for massive objects in an equatorial plane and non-
coherent for massive objects in a polar plane. IM Pegasi is the guide star for the gyroscope. From: 
large.stanford.edu/courses/2007/ph210 
 
This picture will change in the case that the satellite with gyroscope(s) orbits in the polar 
plane. A gyroscope is a device that always keeps its orientation, irrespective of the bottom 
on which it is placed. If, for some reason whatever, the bottom tilts or turns, the orientation 
the gyroscope’s axis is preserved. For an observer fixed to the bottom, however, it seems as 
if the gyroscope’s axis shifts (precession). A particular example is Foucault’s pendulum. The 
earth rotates under the plane of swinging. For the observer on earth it seems as if the 
pendulum plane rotates. The Lorentz force on a massive object orbiting in a polar plane is no 
longer oriented in the same direction as the gravitational force. The force is maximum and 
orthogonal to the gravitational force when the satellite passes the poles and the force is zero 
when the satellite passes the equator. As a consequence the orientation of the plane of orbit 
will be subject to a spatial phase shift orthogonal to the polar plane. This will be experienced 
by an observer in the satellite as a precession of the gyroscope next to the orbital perihelium 
phase shift. Figure 4 illustrates the process. Let us first consider the gravimagnetic view.  
 
The gravimagnetic view 
In line with the reflections on gravimagnetism earlier in this article,  I wish to develop the 
gravimagnetic view by conceiving mass particles as charged particles with charge m . I wish 
to do so on the basis of the naive analogy as summarized in Table II. The 
correspondence/difference with the canonical view will be discussed later.  A large massive 
volume will be modeled as a massive body with some internal mass density ρ . As a 
consequence of this mass density, a gravimagnetic field is generated, similar to the magnetic 
field of a volume with some electrical space charge. According to this picture, the earth will 
be modeled as a sphere with a uniform mass density ρ . The calculation of the generated 
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(gravi)magnetic field GB  is not trivial. The field for a sphere with uniform surface charge 
density σ can be found in textbooks [15]. It appears that, 
 

}ˆsinr̂cos2{
3 3

4

ϑϑϑωσμ
+=

r
RG

GB , for Rr ≥ ,                                                                       (27) 

 
( zx ϑϑϑϑϑ coscossincosr̂cos += ; zx ϑϑϑϑϑϑ sinsincossinˆsin −−= ) 
 
whereω is the angular velocity of the earth rotation and where r̂ and ϑ̂ , respectively, are 
unit vectors in −r direction and in −ϑ direction.  This can be converted into the field of a 
sphere with uniform volume charge density ρ by integrating over shells σρ =rd , so that 
 

}ˆsinr̂cos2{
53

5

3 ϑϑϑωρμ
+= R

r
G

GB , for Rr ≥ .                                                                        (28) 

 
 

 
Figure 5. The rotational symmetry of the gravimagnetic field strength B. 
 
 
In terms of the peripheral equatorial speed ee Rv ω= and the mass 3/4 3

ee RM πρ= , the 
magnitude of the equatorial magnetic field ( 2/πϑ = ) can be expressed as 
 

e
e

eG
G v

R
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r
RB 23

3

20π
μ=  .                                                                                                                                (29) 

 
As a consequence of this gravimagnetic field, a massive object with mass m , orbiting in the 
equatorial plane with tangential velocity v , is subject to a Lorentz force, the magnitude LF
of which is determined from GBv×m  as 
 

                                                                           (30) 

 
In the equatorial plane, this force is balanced by a centripetal force, so that 
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This gives per orbit an additional shift on top of the perihelium shift to the amount of 
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with 2

2

G

e
SG c

GMR = . 

 
If Gc is equated with the vacuum light velocity c , SGR is the same as the Schwarzschild 
radius. 
 
It will be clear that if this is the case, this additional shift as a consequence of the rotation of 
the central mass is negligible for planets in orbits around the sun, because of the large 
mismatch between the radius of the sun and the average radius of the orbit. This is different 
for a satellite orbiting in the periphery of the earth. 
 
In the Gravity Probe B project the distance of the satellite to the earth center amounts to 

=r 7000 km. The peripheral speed of the earth is =ev 2π x 6400/(24 x 60 x 60) km/s. From 
these expressions is straightforwardly calculated that, under assumption of ccG = , this 
additional precession over a year amounts to 50 macs, while, as noted before, the 
perihelium shift amounts to 13188 macs/yr (milliarcsec per year). Note that the perihelium 
shift is not dependent on Gc , but on c instead.  
 
Let us now suppose that the satellite orbits in the polar plane. Now the satellite experiences 
a Lorentz force orthogonal to the orbit plane. From (28) it is obvious that the Lorentz force 
while passing the poles is twice as large as in the equatorial case. It is zero while passing the 
equator. In other positions, the strength of the Lorentz force is composed as 
 

zxxzL vBvBF += , where                                                                                                                (33) 
 
the two components of the gravimagnetic field strength are given by, 
 

)sinsincoscos2( ϑϑϑϑ −= Gz BB     and  )cossinsincos2( ϑϑϑϑ −= Gx BB , 
 
and where the tangential velocity v  is  decomposed as  
 

ϑsinvvz −=  and ϑcosvvx = . 
 
Figure 6 shows these quantities as a function of ϑ . 
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Figure 6. Upper part: The z and x component of the gravimagnetic fieldstrength B as a function of ϑ (the y 
component is zero). Lower part: The Lorentz force as a function of ϑ and its average value (0.42). 
 
The Lorentz force is orthogonal to the plane of motion.  Averaged over the orbit, the 
effective Lorentz force is 0.42 x in magnitude as in the equatorial case (thereby resulting in a 
frame dragging effect of 21 macs/yr). Now, however, the phase shift is orthogonal to the 
perihelium phase shift. The labor executed by the Lorentz force is converted into the energy 
of a precession motion orthogonal on the plane of motion. In the equatorial case the two 
precessions are coherent, i.e. pointing in the same direction, while they are incoherent in 
the polar case. In the latter case observation of the gyroscope allows to measure the two 
effects independently.  
 
The reported measurement data from the Gravity B probe project are, respectively, for the 
geodetic effect, 6606.1 macs/yr (milliarcsec per year), and for the frame dragging effect 37.2  
macs/yr. Curiously, where, as already noted, the figure for the geodetic effect is almost 
exactly a factor 2 smaller than results from the analysis above of the perihelium shift, it is 
about a factor 2 larger for the gravimagnetic effect. The reasons for these discrepancies will 
be discussed below.  
 
Schiff’s view 
The gravity B probe project has been set-up for testing the gravity theory as documented by  
L.I. Schiff in his classic article [16] . This theory describes the influence of a rotatic metric, 
such as produced by the earth, on the spin vector (= angular momentum vector) S  of a 
gyroscope placed in an orbiting satellite. The conclusion of the theory is that the time 
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behavior of the spin vector from the perspective of an observer in the satellite and corrected 
for the earth time t , can be expressed as 
 

SΩS ×=
td

d ,                                                                                                                                         (34) 

 
where  
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where I is the earth’s moment of inertia. The first term is independent of the earth’s 
rotation, while the second term determines its impact. In terms of the earth’s angular 
momentum ωJ I= , this can be rewritten as, 
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The energy GE associated with the first term amounts to 
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This energy is converted into a rotational precession energy pE  , so that 
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and so 
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 Per orbit of the satellite, it results in a phase shift GϕΔ to the amount of 
  

r
Rs

G
πϕ 3

=Δ  .                                                                                                                                     (39) 

 
This is the same as the value of the perihelium shift defined in the previous paragraph. For 
the second term precession energy of a gyroscope in the equatorial plane, we have from 
(36) 
 

J
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G

t
mrEG 32d

dϕ=⋅= FDΩS .                                                                                                        (40) 

 
For the angular momentum of the earth, interpreted as a spherical object, we have                                            
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where eT is the rotation period of the earth. 
 
With these expressions the second term of the gyroscope precession in the equatorial plane 
results from 
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so that  
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and therefore 
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This gives 200 macs/yr. It is 4x larger than in the gravimagnetic view for ccG = . A gyroscope 
in a polar plane shifts (200 x 0.42 =) 84 macs/yr. Similar as the perihelium shift, it is 2x larger 
than quoted from the Gravity B probe project. The reason for this discrepancy has to do with 
the semantics of FDΩ . Although the dimensionality of FDΩ  is [s-1], it should not be 
interpreted as td/dϕ . In fact FDΩ represents the gravimagnetic field, which has a 
dimensionality of [s-1] as well (see Table II). This implies that the product ΩS ⋅  is an energy. 
Equating this energy with the rotational energy of the gyroscope, we get, 
 

FDFD tt
mr

t
mr Ω=→Ω= 2

d
d

d
d)

d
d(

2
1 222 ϕϕϕ

.                                                                                        (45) 

 
This makes the td/dϕ twice the value of FDΩ . It might be instructive here to note that other 
authors, e.g. Iorio [17], have expressed the Lense-Thirring formulae as LTΩ , i.e, with a “dot”.  
These formulae represent td/dϕ  and have twice the value as Schiff’s FDΩ indeed. It is 
therefore quite probable that the measurement data reported from the Gravity B project 
apply to Ω  instead to td/dϕ .   
 
Comparing Schiff’s theory with gravimagnetism 
The result of the Gravity B probe experiment confirms Schiff’s conclusion about the weak 
limit of Einstein’s Field Equation. Compared with the gravimagnetic view, there is no 
difference in the geodetic part, which, in a proper interpretation of the reported data, is the 
same as the well known perihelium shift of planetary objects in the solar system. The frame 
dragging result in the weak limit is exactly 4x larger than follows from a one-to-one 
transposition of Maxwellian laws to gravity. Repairing this discrepancy requires a 
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modification of the Lorentz force by a factor 4.  This can be done in the naive view on 
gravimagnetism by accepting 2/16 cGG πμ = , implying that 22

Gcc ≠ . The better approach is 
to derive a canonical formulation of the gravimagnetism that does not show the discrepancy, 
while sticking to 22

Gcc =  [9]. Starting point is the metric shown in (21). This allows a 
derivation for the field’s Lagrangian density, which executes a (Lorentz) force on a test 
particle with mass m  to the amount of   
 

BvEF ×+= )2( mm ,                                                                                                                         (46) 
 

where, under stationary conditions, the gravimagnetic quantities E and B are related with 
the quantities in the metric tensor (21) as 
 

Φ−∇=E  and AB ×∇= .                                                                                                                (47) 
 
Curiously, the factor 4 is now immediately obvious, because of the 4 times larger strength of the 
Lorentz force (..). The very same result is obtained if in the naïve formulation the current is modified 

tmtmI ΔΔ→ΔΔ= /)2(/  (because apart from the doubling mm 2→ , B will be doubled as well, 
due to its −I dependency).  All this means that, rather than a naïve transposition of the Maxwell set 
(14), a (canonical) modified one is derived, where 

Gερ /=⋅∇ E ; 0)2/( =⋅∇ B ; t∂−∂=×∇ /)2/(BE  and )/()2/( tGG ∂∂+=×∇ EjB εμ .       (48) 

It has to be noted, however, that where the increase of the Lorentz force by a factor 4 
straightforwardly follows from the metric, the gravitational equivalents for the Faraday induction and 
the displacement current are heuristically introduced  to obtain symmetry between gravimagnetism 
and electromagnetism. It might well be that the gravitational field is not radiating and that a spin-1 
graviton is non-existing. 

 
Cosmological Gravity 
The experimental results of the Gravity B project have shown that gravimagnetism exists, 
but that it is inadequate to explain the origin of black matter, because of the weakness of 
the frame dragging effect. So, something else is required to explain the phenomenon of flat 
rotation curves in a galaxy. Unusual problems ask for unusual explanations. In this 
paragraph, I wish to propose an unusual explanation, albeit that use will be made of 
common concepts in field theory. To this end, the Lagrangian density of the cosmological 
gravity field will be derived from the generic expression, 
 

Φ+Φ+Φ∂Φ∂−= ρμ
μ )(

2
1 U ,                                                                                                      (49) 

 
where )(ΦU is the potential energy of the field and where Φρ is the source term. Let us 
compare three different options for )(ΦU , respectively 2/)(,0)( 2Φ=Φ=Φ λUU and 

2/)( 2Φ−=Φ λU , where 0>λ and real. Application of the Principle of Action as embodied in the 
Lagrange-Euler equation yields a differential equation for the spatial behavior of the field’s potential 
energy. The homogenous equations are respectively 
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The non-trivial solutions for the first and second case are 
 

rλ
0Φ

=Φ  and 
r
r

λ
λ )exp(

0
−Φ=Φ .                                                                                                     (51) 

 
The first case applies to electromagnetism (for 00 4/ πελQ=Φ ) and Newtonian gravity (for 

λMG=Φ 0 ). The second case applies to Proca’s generalization of the Maxwellian field. It 
reduces to the first case if 0→λ , while keeping λ/0Φ  constant. Generically, it represents a 
field with a format that corresponds with the potential as proposed by Yukawa to explain 
the short range of the nuclear force. It has been used by the author of this article for the 
purpose to express the Gravitational Constant in quantum mechanical quantities[3].  
 
Let us now consider the third case. It can be readily verified from (50c) that a non-trivial 
solution for this case is, 
 

r
rr

λ
λλ sincos

0
+Φ=Φ .                                                                                                                     (52) 

 
In accordance with the concepts of classical field theory, the field strength can be 
established as the spatial derivative of the potential Φ . Identifying λ/0Φ as MG  and λ  as 
a range parameter, we may identify this field strength as a cosmological gravity force CGF . 
Let us compare this force with the Newtonian force NF . To do so more explicitly, we 
compare 2rFN with 2rFCG . The comparison is shown in figure 7.  

 
 
Figure 7: The cosmological gravity force compared with the Newtionian force  
 
This figure shows that, for relative small values of r , the cosmological gravity force behaves 
similarly as the Newtonian force, but that its relative strength over the Newtonian force 
increases significantly for large values of r . This is a similar behavior as heuristically 
implemented in MOND. The effective range is determined by the parameter λ . It might 
therefore well be that the cosmological gravity force manifests itself only at cosmological 
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scale. Figure 8 shows that under influence of this force, the rotation curves in the galaxy may 
assume a flat behavior. 

 
 
Figure 8: boost of the rotation curve under influence of cosmological gravity. 
 
This hypothetical cosmological gravity shows an intriguing phenomenon. At very far 
cosmological distance, the attraction of gravity is inverted into repulsion. There is some  

 
 
Figure 9: Inversion of the gravity force to antigravity at large cosmological distances. Black: Newtonian. Blue: 
Cosmological Gravity.  
 
speculation reported in literature that such antigravity is required to explain the 
phenomenon of dark energy, responsible for the accelerated expansion of the universe [18]. 
Exploration of this phenomenon is a subject outside the scope of this article.  It has to be 
noted that the solution (49) is not unique. There are more solutions possible by modifying 
the magnitude of rλsin  over rλcos . I have simply chosen here for the symmetrical solution. 
Cosmological observations would be required to obtain more insight in this. Such 
observations are required as well for establishing meaningful values for λ . In fact, 
combining a variety of mass density distributions and values for λ offer a wealth of galaxy 
rotation curves that are possible within the validity of the hypothesis. 
 
This view on gravity has an exciting beauty. It unifies the four forces of nature in a single 
expression for the scalar part of their Lagrangian density, because of 

Φ+Φ+Φ∂Φ∂−= ρμ
μ )(

2
1 U , where 

2/)( 2Φ−=Φ λU   for gravity, 
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2/)( 2Φ=Φ λU   for the nuclear forces [3,4], 

0)( =ΦU         for electromagnetism.                                                                                             (53)   

A remaining challenge now is, to harmonize the symmetry that shows up in this classical field 
view, with Einstein’s Field Equation, in which the potential function concept is absent. It might 
well be that the cosmological parameter λ , which I have introduced here, can be related 
with the  cosmological constant Λ that has been added as a degree of freedom by Einstein in 
his field equation. Let us see if such could be true. Most generically, Einstein’s Field Equation 
reads as 
 

μνμνμν
π T
c
GgG 4

8=Λ+ .                                                                                                                               (54) 

 
Because no experimental evidence could be found that this constant Λ would be different from zero, 
Einstein regretted its introduction by saying “The introduction of the cosmological constant was the 
biggest blunder in my life”. But I believe, it wasn’t. As shown in Appendix B, we may relate Einstein’s 
cosmological constant Λ with the cosmological parameter λ indeed, as 

2λ=Λ .                                                                                                                                                               (55) 

It is probably fair to say that, apart from the explanation given for dark matter as proposed in this 
paragraph, this interpretation of the Einstein’s cosmological constant, gives a possible  support for 
the cosmological gravity as developed in this article. From textbooks [19], it can be readily concluded 
that Friedmann’s equations predict an accelerated expansion of the universe under a positive value 
for the gravitational constant. That means that the hypothesis developed in this article does not only 
give a possible explanation for dark matter, but for dark energy as well.  

Discussion 
The search for relationships between the four basic forces of nature is an on-going 
challenge. In this respect, the gravitational force is the most problematic one. Even to the 
extent that the question if gravity is a basic force indeed, or just emergent from the other 
basic forces, is still subject to debate. Where electromagnetism and the two nuclear forces 
are unified in the context of quantum physics, gravity is still on its own. This, in spite of the 
beauty of Einstein’s General Relativity, which has revealed and explained so many gravity 
related cosmological phenomena. In this article, I have described gravity from a point of 
view inherited from my earlier work on quantum physics, in which I have positioned quarks 
as pointlike sources spreading a composite field of energy, identified by me as the Higgs 
field. It gives rise to bonds of two quarks (mesons) and three quarks (baryons), to which 
attributes can be assigned that we know as electric charge and mass. In this view, the fields 
of the strong nuclear force and the weak nuclear force are basic and the fields of 
electromagnetism and gravity are sourced by the attributes of the quark bonds. In earlier 
work, this view has enabled me to express the Gravitational Constant in terms of quantum 
mechanical quantities [3], probably so far considered as just a curiosity. It appeared being 
possible by combining views of General Relativity with the views of classical field theory. One 
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of the instruments used, was applying Proca’s generalization of Maxwell’s laws to the 
nuclear fields of energy. In the context of this article, I have done something similar for 
gravity. Just by changing the polarity of the mass term in Proca’s generalization. In this 
article gravity has been modeled as a scalar field, i.e., as a field with a scalar potential. 
Whether this field can be generalized to a vectorial one (that therefore radiates) depends on 
the question if the gravitational equivalents of the Faraday induction and the displacement 
current exist in the gravimagnetic view on gravity. If so, my hypothesis could possibly meet 
serious problems with respect to gauging the field under a gauge invariance constraint of the 
proposed modified Proca description for the gravity field. It is for that reason I have included  
Appendix A, in which I have shown that the causality of the gravity field does not need a 
vectorial bosonic description.  

According to the hypothesis developed in this article, there is no dark matter. There is no 
dark force either. There is just a generalization of gravity laws. This generalization gives an 
answer to the anomaly of the rotation curves in galaxies. It also shows how to interpret 
Einstein’s cosmological constant, thereby also giving an explanation for the accelerated 
expansion of the universe. One of the intriguing consequences is the potential existence of 
antigravity. This, however, does not mean that there is a domain for it. It is relative. Those 
who are living in that domain, do not experience antigravity. They just see us living in an 
antigravity domain instead. 

 Let me conclude by expressing that my hypothesis is still in a state of immaturity. It gives a 
challenge, though, for further exploration. The ultimate challenge is proving or disproving it 
by experiment.   

Appendix A: The causality of gravity 
The objective in this appendix is to show how the causality of gravity, such as shown in the wave  
equation (19) in the main text, is implicitly contained in Einstein’s wave equation, even in the case 
that the source of gravity does not show an amount of rotation energy. This objective implies that we 
have to solve the weak limit of Einstein’s Field Equation for a space-time metric that is given by the 
line element (17), 
 

2222222
000

2 ddsind),(d),(d ϑϕϑ rrrtrgqtrgs rr +++= ,                                                           (A-1) 
 
where ctq i0 = .  
 
Note: The space-time (ict,r, ϕϑ , ) is described on the basis of the “Hawking” metric (+,+,+,+). 
 
The weak field limit condition is defined as (18), 
 

),(1),( 0000 trhtrg += , where 1),(00 <<trh , and 

),(1),( trhtrg rrrr += , where 1),( <<trhrr .                                                                              (A-2) 
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In empty space, the Einstein Field Equation (16) under this symmetric spherical isotropy, 
reduces to a simple set of equations for the elements μμR  of the Ricci tensor,  
 
(a):  000 =R ; (b): 0=rrR ;  (c): 0=ϑR   and (d): 0=ϕϕR .                                                      (A-3) 
 
The hard task is to calculate these elements. As I wish to show later in Appendix A, the 
calculation gives the result as shown in Table A1.  
 (Note: h′ and h ′′ means differentiation, respectively double differentiation of h into r ;  
 h and h means differentiation, respectively double differentiation of h  into t ) 
 
Adding (A-3b) to (A-3a) results in 
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h
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c
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+−′′ 22 00
200
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.                                                                                                                        (A-4) 

 
From (A-3c) and (A-3d) it follows that 
 

rrhh ′−=′00 .                                                                                                                                                 (A-5) 
 
From (A-4) and (A-5) then follows, 
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,                                                                                                       (A-6) 

 
or written differently, 
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Table A1: metric tensor and Ricci tensor 
 
metric tensor Ricci tensor 
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2rg =ϑϑ  )(
2 00 rrhhrR ′+′−=ϑϑ  

)(sin 22 ϑϕϕ rg =  ))((sin
2 00

2
rrhhrR ′+′−= ϑκϕ  

 
 
It will be clear that (A-7) is the equation of a wave that propagates in the direction of r with a 
velocity c . This equation is identical in format as Maxwell’s wave equation for electromagnetism. It 
proves  the causality of gravity without requiring an equivalent of magnetism in the source of the 
field.  
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Calculation of the Ricci tensor 
The Ricci tensor is described in expanded form by 
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The Christoffel  symbols k

ijΓ represent functions of the metric elements, such that 
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Under symmetric spherical isotropy, only diagonal terms remain, so that the expression reduces to 
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and the Christoffel symbols reduce to 
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such that only three different forms remain,  
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Table A2 shows the Christoffel elements different from zero, where 
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Application of (A-13) on (A-10) gives the Ricci tensor as listed in Table A1.  
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Table A2: Christoffel elements and affine connections of the isotropic non-rotating metric 
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Appendix B: The Cosmological Constant 
So far, the view on cosmological gravity in this article, has been based upon the Lagrangian density 
concept of a classical field, in which the potential energy )(ΦU is  expressed in terms of a potential 
function Φ , such that, c.f. (53), 
 

2/)( 2Φ−=Φ λU .                                                                                                                                          (B-1) 
 
The potential function concept is absent in General Relativity. Instead, the energetic influence of the 
field is comprised in the elements μνg  of the metric tensor. If we could relate Φ with the metric 
tensor, we might possibly relate Λ with λ . Because Λ is a constant, we may restrict ourselves to 
 

00400
8 T
c
GgG π

μν =Λ+ .                                                                                                                                (B-2) 

 
Three equations will be invoked to relate Λ with λ . These are 
 

Φ∇=∇ 200
2
c

g , 

 

00
2

00 gG ∇= , 
 

2
0022 4
c
TGπλ =Φ+Φ∇ .                                                                                                                         (B-3abc) 
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As I shall show below, the first one is derived from Einstein’s geodesic equation of motion. The 
second is straightforwardly derived from the expression of the Einstein tensor μνG . The third one is 
derived from the Principle of Action on the Lagrangian density of the field (by applying the Euler-
Lagrange equation). Assuming the three equations hold true, elementary algebraic operations on 
these three equations yield, 
 

00400
2

00
8 T
c
GgG πλ =+ .                                                                                                                                (B-4) 

 
From (B-2) and (B-4) we find, 
 

2λ=Λ . 
 
The remaining task is to justify the three equations (B-3abc). The methodology to do so can be found 
in Einstein’s article [6,7]. Let us review it briefly. We shall do so for Cartesian space-times ),,,( zyxt ′
and ),,,( zyxτ ′ , where lab time and proper time are, respectively, normalized as ctt i=′ and 

ττ ci=′ , where 1i −= , in accordance with a “Hawking metric”  (+,+,+,+). The virtue of this metric 
is the disappearance of the ugly η symbols that show up in Minkowski space-time with metric (-
,+,+,+).  Furthermore, we shall assume that our space-time is stationary and isotropic.  
 
Equation (B-3a) follows from the 00-component of Einstein’s geodesic equation of motion, 
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d
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d
d 2
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tx kk .                                                                                                                                 (B-5) 

 
In the weak field limit of a stationary isotropic field, this equation of motion reduces to 
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This justifies (B-3a).  
 
Equation (B-3b) follows from the general expression 
 

RRG
2
1

0000 −=  ,                                                                                                                                           (B-7) 

 
where 00R is the 00-component of the Ricci tensor as shown in (A-10) and where R is the Ricci scalar, 
which is defined as, 
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In the weak field limit, this reduces in a stationary isotropic field to 
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00
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where 00R can be calculated as 
 

00
2

00 gR −∇= .                                                                                                                                              (B-10) 
 
From (B-7) – (B-10), we conclude 
 

00
2

00 gG ∇=                                                                                                                                                   (B-11) 
 
This justifies (B-3b).  
 
To justify (B-3c), we have to invoke the Principle of Action, by applying the Euler-Lagrange equation 
to (44). This results into a generalization of Poisson’s equation, which now reads as, 
 

ρπλ G422 =Φ+Φ∇ ,                                                                                                                                 (B-12) 
 
where ρ is the spatial mass distribution, which in the stress-energy tensor is identified as 
 

2
00

c
T

=ρ .                                                                                                                                                        (B-13) 

 
The justification of (B-3c) follows from (B-12) and (B-13). 
 
 

 References 
[1] R.H. Sanders, S.S. McGaugh, Annu. Rev. Astron. Astrophys, 40, 263 (2002) 
[2] E. Verlinde, arXiv:10010785v1 [hep-th] (2010) 
[3] E. Roza, Results in Physics, 6, 149 (2016) 
[4] E. Roza , Results  in Physics, 6, 468 (2016) 
[5] O. Heaviside, The Electrician, 31, 359 (1893) 
[6] A. Einstein, Relativity: The Special and General Theory, H. Holt and Company, New York (1916, 
translation 1920) 
[7] T.A. Moore, A General Relativity Workbook , University Science Books, (2013) 
[8] https://en.wikipedia.org/wiki/Kerr_metric 
[9] B. Masshoon, arXiv: gr-qc/031103v2 (2008) 
[10] C.W.F. Everitt et al., Phys.Rev. Lett. 106, 221101 (2011)  
[11] J. Mester and the GP-B Collaboration, Séminaire Poincaré IX, 55 (2006) 
[12] J. Lense and H. Thirring, Phys. Zeitschrift 19, 156 (1918) 
[13] H. Pfister, General Relativity and Gravitation 39 (11), 1735 (2007) 
[14]  www.math.toronto.edu/~colliand/426_03/Papers03/C_Pollock.pdf 
[15] www.physicspages.com/2013/04/07/magnetic-field-of-rotating-sphere-of-charge/ 
 [16] L.I. Schiff, Proc. N.A.S., 46, 877 (1960) 
[17] L. Iorio, arXiv:gr-qc/0411084 (2004) 
[18] L.M. Krauss, Scientific American, 59 (1999) 
[19] https://ned.ipac.caltech.edu/level5/Carroll2/Carroll1_2.html 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 November 2016                   doi:10.20944/preprints201610.0033.v3

http://dx.doi.org/10.20944/preprints201610.0033.v3

