The key links of face recognition are digital image preprocessing, facial feature extraction and pattern recognition, this article aimed at the current problem of slow speed and low recognition accuracy of face recognition , from the above three key links, on the basic of analyzing the therories of Fractional Differential Masks Operator (FDMO), Principal Component Analysis (PCA) and Support Vector Machine (SVM), design a kind of FDMO+PVA+SVM coupling algorithm that applies to face recognition to improve the speed and accuracy of it. To realize FDMO+PCA+SVM coupling algorithm, first, we should apply FDMO to face image processing binary marginalization, the purpose is getting face contour; Then, we apply PCA to get the feature of face image which is disposed by binary marainalization. At last, we can apply One-Against All of the SVM classifier and LibSVM software package to realize face recognition. Beside, the article with nine different coupling algorithm design four groups of experimental reaults on the ORL face database verified by comparative analysic FDMO+PCA+SVM coupling algorithm in the superiority of face recognition accuracy and speed.
Keywords:
Subject: Computer Science and Mathematics - Data Structures, Algorithms and Complexity
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.