Preprint
Article

Crustal and Upper Mantle Density Structure Beneath the Qinghai-Tibet Plateau and Its Surrounding Areas Derived from EGM2008 Geoid Anomalies

Altmetrics

Downloads

1093

Views

1087

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

14 October 2016

Posted:

15 October 2016

You are already at the latest version

Alerts
Abstract
As the most active plateau on the Earth, the Qinghai-Tibet Plateau has a complex crust-mantle structure. Knowledge of the distribution of such a structure provides information for understanding the underlying geodynamic processes. We obtains a three-dimensional density model of crustal and upper mantle beneath Qinghai-Tibet plateau and its surrounding areas from the residual geoid anomalies using the Earth Gravitational Model (EGM) 2008. We estimate a refined density model by iterations, using an initial density contrast model. We confirm that the EGM2008 mission products can be used to constrain the crust-mantle density structures. Our major findings are: (1). At 300-400 km depth, high-D anomalies terminate around Jinsha River Suture (JRS) in the central TP, suggesting that the Indian plate has been reached over the Bangong Nujiang Suture (BNS) and almost reach to the JRS. (2). On the eastern TP, low-D anomalies at the depth of 0-300 km together with high-D anomalies at 400-670 km further verified the current eastward subduction of Indian plate. The ongoing subduction provides forces to the occurrences of frequent earthquakes and volcano. (3). At 600 km depth, low-D anomalies inside the TP illustrate the existence of hot weak material beneath there, contributing to the external material inward-thrusting.
Keywords: 
Subject: Environmental and Earth Sciences  -   Geophysics and Geology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated