Preprint
Article

EEG Signal Recognition Based on Wavelet Transform and ACCLN Network

Altmetrics

Downloads

1764

Views

1137

Comments

0

This version is not peer-reviewed

Submitted:

18 October 2016

Posted:

19 October 2016

You are already at the latest version

Alerts
Abstract
The electroencephalogram (EEG) is a record of brain activity. Brain Computer Interface (BCI) technology formed by the EEG signal has become one of the hotspots at present. How to extract the feature signal of EEG is the most basic research of BCI technology. In this paper, A new method of recognizing fatigue, conscious, concentrated state of human brain is proposed by the combination of discrete wavelet transform and the neural network based on EEG signal. First of all, the law signal is preprocessed by the wavelet denoising method because the law EEG signal contains a large number of high frequency noise, which is decomposed into multi-layer high frequency signal and low frequency signal. thus, δ wave, θ wave, α wave, β wave are obtained by the wavelet transform. And then, frequency band energy of the different wave is regards as the feature signal of EEG. In the experiment, the feature signal is classified by radial basic function (RBF) and annealed chaotic competitive learning network (ACCLN). RBF and ACCLN networks are trained with 500 sets of sample data and are tested by 100 sets of samples in different mental states. The experimental results show that the average accuracy of RBF network under three conditions are 88.75%, 88.25%, 88.5%, respectively, and the correct rate of ACCLN network is 97%, 98%, 98%, respectively.
Keywords: 
Subject: Computer Science and Mathematics  -   Signal Processing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated