
Article

Guaranteed Bounds on Information-Theoretic
Measures of Univariate Mixtures Using Piecewise
Log-Sum-Exp Inequalities

Frank Nielsen 1,2,* and Ke Sun 1

1 École Polytechnique, Palaiseau 91128, France; sunk.edu@gmail.com
2 Sony Computer Science Laboratories Inc., Paris 75005, France
* Correspondence: Frank.Nielsen@acm.org

Abstract: Information-theoretic measures such as the entropy, cross-entropy and the Kullback-Leibler
divergence between two mixture models is a core primitive in many signal processing tasks. Since
the Kullback-Leibler divergence of mixtures provably does not admit a closed-form formula, it is in
practice either estimated using costly Monte-Carlo stochastic integration, approximated, or bounded
using various techniques. We present a fast and generic method that builds algorithmically
closed-form lower and upper bounds on the entropy, the cross-entropy and the Kullback-Leibler
divergence of mixtures. We illustrate the versatile method by reporting on our experiments for
approximating the Kullback-Leibler divergence between univariate exponential mixtures, Gaussian
mixtures, Rayleigh mixtures, and Gamma mixtures.
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1. Introduction

Mixture models are commonly used in signal processing. A typical scenario is to use mixture
models [1–3] to smoothly model histograms. For example, Gaussian Mixture Models (GMMs) can be
used to convert grey-valued images into binary images by building a GMM fitting the image intensity
histogram and then choosing the threshold as the average of the Gaussian means [1] to binarize the
image. Similarly, Rayleigh Mixture Models (RMMs) are often used in ultrasound imagery [2] to model
histograms, and perform segmentation by classification. When using mixtures, a fundamental primitive
is to define a proper statistical distance between them. The Kullback-Leibler divergence [4], also called
relative entropy, is the most commonly used distance: Let m(x) = ∑k

i=1 wi pi(x) and m′(x) = ∑k′
i=1 w′i p

′
i(x)

be two finite statistical density1 mixtures of k and k′ components, respectively. In statistics, the mixture
components pi(x) are often parametric: pi(x) = p(x; θi), where θi is a vector of parameters. For
example, a mixture of Gaussians (MoG also used as a shortcut instead of GMM) has its component
distributions parameterized by its mean µi and its covariance matrix Σi (so that the parameter vector is
θi = (µi, Σi)). Let X = {x ∈ R : p(x; θ) > 0} denote the support of the component distributions, and
denote by H×(m, m′) = −

∫
X m(x) log m′(x)dx the cross-entropy [4] between two continuous mixtures

of densities m and m′. Then the Kullback-Leibler (KL) divergence between m and m′ is given by:

KL(m : m′) = H×(m, m′)− H(m) =
∫
X

m(x) log
m(x)
m′(x)

dx, (1)

with H(m) = H×(m, m) = −
∫
X m(x) log m(x)dx denoting the Shannon entropy [4]. The notation

“:” is used instead of the usual coma “,” notation to emphasize that the distance is not a metric

1 The cumulative density function (CDF) of a mixture is like its density also a convex combinations of the component CDFs.
But beware that a mixture is not a sum of random variables (RVs). Indeed, sums of RVs have convolutional densities.
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distance since it is not symmetric (KL(m : m′) 6= KL(m′ : m)), and that it further does not satisfy
the triangular inequality [4] of metric distances (KL(m : m′) + KL(m′ : m′′) 6≥ KL(m : m′′)). When the
natural base of the logarithm is chosen, we get a differential entropy measure expressed in nat units.
Alternatively, we can also use the base-2 logarithm (log2 x =

log x
log 2 ) and get the entropy expressed in bit

units. Although the KL divergence is available in closed-form for many distributions (in particular as
equivalent Bregman divergences for exponential families [5]), it was proven that the Kullback-Leibler
divergence between two (univariate) GMMs is not analytic [6] (the particular case of mixed-Gaussian of
two components with same variance was analyzed in [7]). See appendix A for an analysis. Note that
the differential entropy may be negative: For example, the differential entropy of a univariate Gaussian
distribution is log(σ

√
2πe), and is therefore negative when the standard variance σ < 1√

2πe
≈ 0.242. We

consider continuous distributions with entropies well-defined (entropy may be undefined for singular
distributions like Cantor’s distribution).

Thus many approximation techniques have been designed to beat the computational-costly
Monte-Carlo (MC) stochastic estimation: K̂Ls(m : m′) = 1

s ∑s
i=1 log m(xi)

m′(xi)
with x1, . . . , xs ∼ m(x) (s

independently and identically distributed (iid) samples x1, . . . , xs). The MC estimator is asymptotically
consistent, lims→∞ K̂Ls(m : m′) = KL(m : m′), so that the “true value” of the KL of mixtures is
estimated in practice by taking a very large sampling (say, s = 109). However, we point out that
the MC estimator is a stochastic approximation, and therefore does not guarantee deterministic bounds
(confidence intervals may be used). Deterministic lower and upper bounds of the integral can be
obtained by various numerical integration techniques using quadrature rules. We refer to [8–11] for
the current state-of-the-art approximation techniques and bounds on the KL of GMMs. The latest work
for computing the entropy of GMMs is [12]: It considers arbitrary finely tuned bounds of computing
the entropy of isotropic Gaussian mixtures (a case encountered when dealing with KDEs, kernel density
estimators). However, there is catch in the technique of [12]: It relies on solving for the unique roots of
some log-sum-exp equations (See Theorem 1 of [12], pp. 3342) that do not admit a closed-form solution.
Thus it is a hybrid method that contrasts with our combinatorial approach. Bounds of KL divergence
between mixture models can be generalized to bounds of the likelihood function of mixture models [13],
because log-likelihood is just the KL between the empirical distribution and the mixture model up to a
constant shift.

In information geometry [14], a mixture family of linearly independent probability distributions
p1(x), ..., pk(x) is defined by the convex combination of those non-parametric component distributions:
m(x; η) = ∑k

i=1 ηi pi(x). A mixture family induces a dually flat space where the Kullback-Leibler
divergence is equivalent to a Bregman divergence [5,14] defined on the η-parameters. However, in
that case, the Bregman convex generator F(η) =

∫
m(x; η) log m(x; η)dx (the Shannon information) is

not available in closed-form for mixtures. Except for the family of multinomial distribution that is both
a mixture family (with closed-form KL(m : m′) = ∑k

i=1 mi log mi
m′i

, the discrete KL [4]) and an exponential

family [14].
In this work, we present a simple and efficient method that builds algorithmically a closed-form

formula that guarantees both deterministic lower and upper bounds on the KL divergence within an
additive factor of log k + log k′. We then further refine our technique to get improved adaptive bounds.
For univariate GMMs, we get the non-adaptive bounds in O(k log k + k′ log k′) time, and the adaptive
bounds in O(k2 + k′2) time. To illustrate our generic technique, we demonstrate it based on Exponential
Mixture Models (EMMs), Rayleigh mixtures, Gamma mixtures and GMMs. We extend our preliminary
results on KL divergence [15] to other information theoretical measures such as the differential entropy
and α-divergences.

The paper is organized as follows: Section 2 describes the algorithmic construction of the formula
using piecewise log-sum-exp inequalities for the cross-entropy and the Kullback-Leibler divergence.
Section 3 instantiates this algorithmic principle to the entropy and discusses several related work.
Section 6 reports on experiments on several mixture families. Finally, Section 7 concludes this work
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by discussing extensions to other statistical distances. Appendix A proves that the Kullback-Leibler
divergence of mixture models is not analytic. Appendix B reports the closed-form formula for the
KL divergence between scaled and truncated distributions of the same exponential family [16] (that
includes Rayleigh, Gaussian and Gamma distributions among others).

2. A generic combinatorial bounding algorithm

Let us bound the cross-entropy H×(m : m′) by deterministic lower and upper bounds, L×(m :
m′) ≤ H×(m : m′) ≤ U×(m : m′), so that the bounds on the Kullback-Leibler divergence KL(m : m′) =
H×(m : m′)− H×(m : m) follows as:

L×(m : m′)−U×(m : m) ≤ KL(m : m′) ≤ U×(m : m′)− L×(m : m). (2)

Since the cross-entropy of two mixtures ∑k
i=1 wi pi(x) and ∑k′

j=1 w′j p
′
j(x):

H×(m : m′) = −
∫
X

(
k

∑
i=1

wi pi(x)

)
log

(
k′

∑
j=1

w′j p
′
j(x)

)
dx (3)

has a log-sum term of positive arguments, we shall use bounds on the log-sum-exp (lse) function [17,18]:

lse
(
{xi}l

i=1

)
= log

(
l

∑
i=1

exi

)
.

We have the following inequalities:

max{xi}l
i=1 < lse

(
{xi}l

i=1

)
≤ log l + max{xi}l

i=1. (4)

The left-hand-side (lhs) inequality holds because ∑l
i=1 exi > max{exi}l

i=1 = exp
(

max{xi}l
i=1

)
since

ex > 0, ∀x ∈ R, and the right-hand-side (rhs) inequality follows from the fact that ∑l
i=1 exi ≤

l max{exi}l
i=1 = l exp(max{xi}l

i=1). The lse function is convex (but not strictly convex) and enjoys

the following translation identity property: lse
(
{xi}l

i=1

)
= c + lse

(
{xi − c}l

i=1

)
, ∀c ∈ R. Similarly, we

can also lower bound the lse function by log l + min{xi}l
i=1. Note that we could write equivalently that

for l positive numbers x1, . . . , xl , we have:

max
{

log max{xi}l
i=1, log l + log min{xi}l

i=1

}
≤ log

l

∑
i=1

xi ≤ log l + log max{xi}l
i=1. (5)

Therefore a mixture model ∑k′
j=1 w′j p

′
j(x) must satisfy

max
{

max{log w′j p
′
j(x)}k′

j=1, log k′ + min{log w′j p
′
j(x)}k′

j=1

}
≤ log

(
k′

∑
j=1

w′j p
′
j(x)

)
≤ log k′ + max{log w′j + log p′j(x)}k′

j=1. (6)

Therefore we shall bound the integral term
∫
X m(x) log

(
∑k′

j=1 w′j p
′
j(x)

)
dx using piecewise lse

inequalities where the min/max are kept unchanged.
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− log(wipi(x)) wipi(x)

Figure 1. Lower envelope of parabolas corresponding to the upper envelope of weighted components
of a Gaussian mixture (here, k = 3 components).

Using the log-sum-exp inequalities, we get

L×(m : m′) = −
∫
X

m(x)max{log w′j p
′
j(x)}k′

j=1dx− log k′, (7)

U×(m : m′) = −
∫
X

m(x)max
{

min{log w′j p
′
j(x)}k′

j=1 + log k′, max{log w′j p
′
j(x)}k′

j=1

}
dx. (8)

In order to calculate L×(m : m′) and U×(m : m′) efficiently using closed-form formula, let us
compute the upper and lower envelopes of the k′ real-valued functions EU(x) = max{w′j p′j(x)}k′

j=1 and

EL(x) = min{w′j p′j(x)}k′
j=1 defined on the support X . These envelopes can be computed exactly using

techniques of computational geometry [19,20] provided that we can calculate the roots of the equation
w′r p′r(x) = w′s p′s(x), where w′r p′r(x) and w′s p′s(x) are a pair of weighted components. (Although this
amounts to solve quadratic equations for Gaussian or Rayleigh distributions, the roots may not always
be available in closed form, say for example for Weibull distributions.)

Let the envelopes be combinatorially described by ` elementary interval pieces defined on support
intervals Ir = (ar, ar+1) partitioning the support X = ]`r=1 Ir (with a1 = minX and a`+1 =

maxX ). Observe that on each interval Ir, the maximum of the functions {w′j p′j(x)}k′
j=1 is given by

w′
δ(r)p′

δ(r)(x), where δ(r) indicates the weighted component dominating all the others, i.e., the arg max

of {w′j p′j(x)}k′
j=1 for any x ∈ Ir, and the minimum of {w′j p′j(x)}k′

j=1 is given by w′
ε(r)p′

ε(r)(x).
To fix ideas, when mixture components are univariate Gaussians, the upper envelope EU(x)

amounts to find equivalently the lower envelope of k′ parabola (see Fig. 1) which has linear complexity,
and can be computed in O(k′ log k′)-time [21], or in output-sensitive time O(k′ log `) [22], where `

denotes the number of parabola segments of the envelope. When the Gaussian mixture components
have all the same weight and variance (e.g., kernel density estimators), the upper envelope amounts to
find a lower envelope of cones: minj |x− µ′j| (a Voronoi diagram in arbitrary dimension).

To proceed once the envelope has been built, we need to calculate two types of definite integrals
on those elementary intervals: (i) the probability mass in an interval

∫ b
a p(x)dx = Φ(b) − Φ(a)

where Φ denotes the Cumulative Distribution Function (CDF), and (ii) the partial cross-entropy
−
∫ b

a p(x) log p′(x)dx [23]. Thus let us define these two quantities:

Ci,j(a, b) = −
∫ b

a
wi pi(x) log(w′j p

′
j(x))dx, (9)

Mi(a, b) = −
∫ b

a
wi pi(x)dx. (10)
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Then we get the bounds as

L×(m : m′) =
`

∑
r=1

k

∑
s=1

Cs,δ(r)(ar, ar+1)− log k′,

U×(m : m′) =
`

∑
r=1

k

∑
s=1

min
{

Cs,δ(r)(ar, ar+1), Cs,ε(r)(ar, ar+1)−Ms(ar, ar+1) log k′
}

. (11)

The size of the lower/upper bound formula depends on the complexity of the upper envelope, and
of the closed-form expressions of the integral terms Ci,j(a, b) and Mi(a, b). In general, when weighted
component densities intersect in at most p points, the complexity is related to the Davenport-Schinzel
sequences [24]. It is quasi-linear for bounded p = O(1), see [24].

Note that in symbolic computing, the Risch semi-algorithm [25] solves the problem of computing
indefinite integration in terms of elementary functions provided that there exists an oracle (hence the
term semi-algorithm) for checking whether an expression is equivalent to zero or not (however it is
unknown whether there exists an algorithm implementing the oracle or not).

We presented the technique by bounding the cross-entropy (and entropy) to deliver lower/uppers
bounds on the KL divergence. When only the KL divergence needs to be bounded, we rather consider
the ratio term m(x)

m′(x) . This requires to partition the support X into elementary intervals by overlaying
the critical points of both the lower and upper envelopes of m(x) and m′(x). In a given elementary
interval, since max(k mini{wi pi(x)}, maxi{wi pi(x)}) ≤ m(x) ≤ k maxi{wi pi(x)} , we then consider the
inequalities:

max(k mini{wi pi(x)}, maxi{wi pi(x)})
k maxj{w′j p′j(x)} ≤ m(x)

m′(x)
≤ k maxi{wi pi(x)}

max(k minj{w′j p′j(x), maxj{w′j p′j(x)}}) . (12)

We now need to compute definite integrals of the form
∫ b

a w1 p(x; θ1) log w2 p(x;θ2)
w3 p(x;θ3)

dx (see Appendix B
for explicit formulas when considering scaled and truncated exponential families [16]). (Thus for
exponential families, the ratio of densities remove the auxiliary carrier measure term.)

We call these bounds CELB and CEUB that stands for Combinatorial Envelope Lower and Upper
Bounds, respectively.

2.1. Tighter adaptive bounds

We shall now consider data-dependent bounds improving over the additive log k + log k′

non-adaptive bounds. Let ti(x1, . . . , xk) = log
(

∑k
j=1 exj−xi

)
. Then lse(x1, . . . , xk) = xi + ti(x1, . . . , xk)

for all i ∈ [k]. We denote by x(1), . . . , x(k) the sequence of numbers sorted in non-decreasing order.
Clearly, when xi = x(k) is chosen as the maximum element, we have

log

(
k

∑
j=1

exj−xi

)
= log

(
1 +

k−1

∑
j=1

ex(j)−x(k)

)
≤ log k

since x(j) − x(k) ≤ 0 for all j ∈ [k].
Also since exj−xi = 1 when j = i and exj−xi > 0, we have necessarily ti(x1, . . . , xk) > 0 for any

i ∈ [k]. Since it is an identity for all i ∈ [k], we minimize ti(x1, . . . , xk) by maximizing xi, and therefore,
we have lse(x1, . . . , xk) = x(k) + t(k)(x1, . . . , xk) where the t(k) term yields the smallest residual.

When considering 1D GMMs, let us now bound t(k)(x1, . . . , xk) in a combinatorial range Ir =

(ar, ar+1) of the lower envelope of parabolas. Let δ = δ(r) denote the index of the dominating weighted
component in this range. Then,
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∀x ∈ Ir, ∀i, exp

(
− log σi −

(x− µi)
2

2σ2
i

+ log wi

)
≤ exp

(
− log σδ −

(x− µδ)
2

2σ2
δ

+ log wδ

)
.

Thus we have:

log m(x) = log
wδ

σδ

√
2π
− (x− µδ)

2

2σ2
δ

+ log

(
1 + ∑

i 6=m
exp

(
− (x− µi)

2

2σ2
i

+ log
wi
σi

+
(x− µδ)

2

2σ2
δ

− log
wδ

σδ

))

Now consider the ratio term:

ρi,m(x) = exp

(
− (x− µi)

2

2σ2
i

+ log
wiσδ

wδσi
+

(x− µδ)
2

2σ2
δ

)
.

It is maximized in Ir = (ar, ar+1) by maximizing equivalently the following quadratic equation:

li,m(x) = − (x− µi)
2

2σ2
i

+ log
wiσδ

wδσi
+

(x− µδ)
2

2σ2
δ

Setting the derivative to zero (l′i,m(x) = 0), we get the root (when σi 6= σδ)

xi,δ =

µδ

σ2
δ

− µi
σ2

i
1

σ2
δ

− 1
σ2

i

.

If xi,δ ∈ Ir, the ratio ρi,δ(x) can be bounded in the slab Ir by considering the extreme values of the
three element set {ρi,δ(ar), ρi,δ(xi,δ), ρi,δ(ar+1)}. Otherwise ρi,δ(x) is monotonic in Ir, its bounds in Ir

is given by {ρi,δ(ar), ρi,δ(ar+1)}. In any case, let ρmin
i,δ (r) and ρmax

i,δ (r) represent the resulting lower and
upper bounds. Then tδ is bounded in the range Ir by:

0 < log

(
1 + ∑

i 6=m
ρmin

i,δ (r)

)
≤ tδ ≤ log

(
1 + ∑

i 6=m
ρmax

i,δ (r)

)
≤ log k

In practice, we always get better bounds using the data-dependent technique at the expense of
computing overall the O(k2) intersection points of the pairwise densities.

We call those bounds CEALB and CEAUB for Combinatorial Envelope Adaptive Lower Bound
(CEALB) and Combinatorial Envelope Adaptive Upper Bound (CEAUB).

Let us illustrate one scenario where this adaptive technique yields very good approximations: For
example, consider a GMM with all variance σ2 tending to zero (a mixture of k Diracs). Then in a
combinatorial slab Ir, we have ρmax

i,δ (r)→ 0 for all i 6= δ, and therefore we get tight bounds.
Notice that we could have also upper bounded

∫ ar+1
ar

log m(x)dx by (ar+1 − ar) log m(ar, ar+1)

where m(x, x′) denotes the maximal value of the mixture density in the range (x, x′). The maximal
value is either found at the slab extremities, or is a mode of the GMM: It then requires to find the modes
of a GMM [26,27], for which no analytical solution is known in general.

2.2. Another derivation using the arithmetic-geometric mean inequality

Let us start by considering the inequality of arithmetic and geometric weighted means applied to
the mixture component distributions:
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m′(x) =
k′

∑
i=1

w′i p(x; θ′i) ≥
k′

∏
i=1

p(x; θ′i)
w′i

with equality iff. θ′1 = . . . = θ′k′ .
To get a tractable formula with a positive remainder of the log-sum term log m′(x), we need to

have the log argument greater or equal to 1, and thus we shall write the positive remainder:

R(x) = log

(
m′(x)

∏k′
i=1 p(x; θ′i)

w′i

)
≥ 0.

Therefore, we can decompose the log-sum into a tractable part log ∏k′
i=1 p(x; θ′i)

w′i and the
remainder as:

log m′(x) =
k′

∑
i=1

w′i log p(x; θ′i) + log

(
m′(x)

∏k′
i=1 p(x; θ′i)

w′i

)
.

The first term can be computed accurately. For the second term, we have to notice that
∏k′

i=1 p(x; θ′i)
w′i can be computed exactly as long as p(x; θ) is an exponential family. We denote

p(x; θ0) = ∏k′
i=1 p(x; θ′i)

w′i . Then

R(x) = log

(
k′

∑
i=1

p(x; θi)

p(x; θ0)

)
As the ratio p(x; θi)/p(x; θ0) can be bounded above and below using techniques in section 2.1, R(x)
can be correspondingly bounded. This derivation is not used in our experiments but provided here
for future extensions. Essentially, the gap of the bounds is up to the difference between the geometric
average and the arithmetic average. If the mixture components are similar, this difference is small, and
the bounds have good quality in the sense of a small gap.

In the following, we instantiate the proposed method for the prominent cases of exponential
mixture models, Gaussian mixture models and Rayleigh mixture models often used to model intensity
histograms in image [1] and ultra-sound [2] processing, respectively.

2.3. Case studies

2.3.1. The case of exponential mixture models

An exponential distribution has density p(x; λ) = λ exp(−λx) defined on X = [0, ∞) for λ > 0.
Its CDF is Φ(x; λ) = 1− exp(−λx). Any two components w1 p(x; λ1) and w2 p(x; λ2) (with λ1 6= λ2)
have a unique intersection point

x? =
log(w2λ2)− log(w1λ1)

λ2 − λ1
(13)

if x? ≥ 0; otherwise they do not intersect. The basic quantities to evaluate the bounds are

Ci,j(a, b) = log
(

λ′jw
′
j

)
Mi(a, b) + wiλ

′
j

[(
a +

1
λi

)
e−λia −

(
b +

1
λi

)
e−λib

]
, (14)

Mi(a, b) =− wi

(
e−λia − e−λib

)
. (15)
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2.3.2. The case of Rayleigh mixture models

A Rayleigh distribution has density p(x; σ) = x
σ2 exp

(
− x2

2σ2

)
, defined on X = [0, ∞) for σ > 0. Its

CDF is Φ(x; σ) = 1− exp
(
− x2

2σ2

)
. Any two components w1 p(x; σ1) and w2 p(x; σ2) (with σ1 6= σ2) must

intersect at x0 = 0 and can have at most one other intersection point

x? =

√√√√log
w1σ2

2
w2σ2

1
/

(
1

2σ2
1
− 1

2σ2
2

)
(16)

if the square root is well defined and x? > 0. We have

Ci,j(a, b) = log
w′j

(σ′j )
2 Mi(a, b) +

wi
2(σ′j )

2

[
(a2 + 2σ2

i )e
− a2

2σ2
i − (b2 + 2σ2

i )e
− b2

2σ2
i

]

− wi

∫ b

a

x
σ2

i
exp

(
− x2

2σ2
i

)
log xdx, (17)

Mi(a, b) =− wi

(
e
− a2

2σ2
i − e

− b2

2σ2
i

)
. (18)

The last term in Eq. (17) does not have a simple closed form (it requires the exponential integral Ei).
One need a numerical integrator to compute it.

2.3.3. The case of Gaussian mixture models

The Gaussian density p(x; µ, σ) = 1√
2πσ

e−(x−µ)2/(2σ2) has support X = R and parameters µ ∈
R and σ > 0. Its CDF is Φ(x; µ, σ) = 1

2

[
1 + erf( x−µ√

2σ
)
]
, where erf is the Gauss error function. The

intersection point x? of two components w1 p(x; µ1, σ1) and w2 p(x; µ2, σ2) can be obtained by solving
the quadratic equation log (w1 p(x?; µ1, σ1)) = log (w2 p(x?; µ2, σ2)), which gives at most two solutions.
As shown in Fig. (1), the upper envelope of Gaussian densities correspond to the lower envelope of
parabolas. We have

Ci,j(a, b) =Mi(a, b)

(
log w′j − log σ′j −

1
2

log(2π)− 1
2(σ′j )

2

(
(µ′j − µi)

2 + σ2
i

))

+
wiσi

2
√

2π(σ′j )
2

(a + µi − 2µ′j)e
− (a−µi)

2

2σ2
i − (b + µi − 2µ′j)e

− (b−µi)
2

2σ2
i

 , (19)

Mi(a, b) =− wi
2

(
erf
(

b− µi√
2σi

)
− erf

(
a− µi√

2σi

))
. (20)

2.3.4. The case of gamma distributions

For simplicity, we only consider γ-distributions with fixed shape parameter k > 0 and varying

scale λ > 0. The density is defined on (0, ∞) as p(x; k, λ) = xk−1e−
x
λ

λkΓ(k) , where Γ(·) is the gamma function.

Its CDF is Φ(x; k, λ) = γ(k, x/λ)/Γ(k), where γ(·, ·) is the lower incomplete gamma function. Two
weighted gamma densities w1 p(x; k, λ1) and w2 p(x; k, λ2) (with λ1 6= λ2) intersect at a unique point

x? =
log w1

λk
1
− log w2

λk
2

1
λ1
− 1

λ2

(21)
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if x? > 0; otherwise they do not intersect. From straightforward derivations,

Ci,j(a, b) = log
w′j

(λ′j)
kΓ(k)

Mi(a, b) + wi

∫ b

a

xk−1e−
x
λi

λk
i Γ(k)

(
x
λ′j
− (k− 1) log x

)
dx, (22)

Mi(a, b) = − wi
Γ(k)

(
γ

(
k,

b
λi

)
− γ

(
k,

a
λi

))
. (23)

Again, the last term in Eq. (22) relies on numerical integration.

3. Upper-bounding the differential entropy of a mixture

First, consider a finite parametric mixture model m(x) = ∑k
i=1 wi p(x; θi). Using the chain rule of

the entropy, we end up with the well-known lemma:

Lemma 1. The entropy of a mixture is upper bounded by the sum of the entropy of its marginal mixtures:
H(m) ≤ ∑k

i=1 H(mi), where mi is the 1D marginal mixture with respect to variable xi.

Since the 1D marginals of a multivariate GMM are univariate GMMs, we thus get a loose upper
bound. A generic sample-based probabilistic bound is reported for the entropies of distributions with
given support [28]: The method considers the empirical cumulative distribution function from an iid
finite sample set of size n to build probabilistic upper and lower piecewisely linear CDFs given a
deviation probability threshold. It then builds algorithmically between those two bounds the maximum
entropy distribution [28] with a so-called string-tightening algorithm.

Instead, proceed as follows: Consider finite mixtures of component distributions defined on the
full support Rd that have finite component means and variances (like exponential families). Then
we shall use the fact that the maximum entropy distribution with prescribed mean and variance is a
Gaussian distribution2, and conclude the upper bound by plugging the mixture mean and variance in
the differential entropy formula of the Gaussian distribution.

Wlog, consider GMMs in the form m(x) = ∑k
i=1 wi p(x; µi, Σi) (Σi = σ2

i for univariate Gaussians).
The mean µ̄ of the mixture is µ̄ = ∑k

i=1 wiµi and the variance is σ̄2 = E[m2] − E[m]2. Since E[m2] =

∑k
i=1 wi

∫
x2 p(x; µi, Σi)dx and

∫
x2 p(x; µi, Σi)dx = µ2

i + σ2
i , we deduce that

σ̄2 =
k

∑
i=1

wi(µ
2
i + σ2

i )−
(

k

∑
i=1

wiµi

)2

=
k

∑
i=1

wi

[
(µi − µ̄)2 + σ2

i

]
.

The entropy of a random variable with a prescribed variance σ̄2 is maximal for the Gaussian
distribution with the same variance σ̄2, see [4]. Since the differential entropy of a Gaussian is
log(σ̄

√
2πe), we deduce that the entropy of the GMM is upper bounded by

H(m) ≤ 1
2

log(2πe) +
1
2

log
k

∑
i=1

wi

[
(µi − µ̄)2 + σ2

i

]
.

This upper bound generalizes to arbitrary dimension. We get the following lemma:

Lemma 2. The entropy of a d-variate GMM m(x) = ∑k
i=1 wi p(x; µi, Σi) is upper bounded by d

2 log(2πe) +
1
2 log det Σ, where Σ = ∑k

i=1 wi(µiµ
>
i + Σi)−

(
∑k

i=1 wiµi

) (
∑k

i=1 wiµ
>
i

)
.

In general, exponential families have finite moments of any order [16]: In particular, we have
E[t(X)] = ∇F(θ) and V[t(X)] = ∇2F(θ). For the Gaussian distribution, we have the sufficient statistics

2 In general, the maximum entropy with moment constraints yields as a solution an exponential family.
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t(x) = (x, x2) so that E[t(X)] = ∇F(θ) yields the mean and variance from the log-normalizer. It is easy
to generalize lemma 2 to mixtures of exponential family distributions.

Note that this bound (called the Maximum Entropy Upper Bound in [12], MEUB) is tight when the
GMM approximates a single Gaussian. It is fast to compute compared to the bound reported in [8] that
uses Taylor’ s expansion of the log-sum of the mixture density.

A similar argument cannot be applied for a lower bound since a GMM with a given variance may
have entropy tending to −∞ as follows: Wlog., assume the 2-component mixture’s mean is zero, and
that the variance approximates 1 by taking m(x) = 1

2 G(x;−1, ε) + 1
2 G(x; 1, ε) where G denotes the

Gaussian density. Letting ε→ 0, we get the entropy tending to −∞.
We remark that our log-exp-sum inequality technique yields a log 2 additive approximation range

for the case of a Gaussian mixture with two components. It thus generalizes the bounds reported in [7]
to arbitrary variance mixed Gaussians.

Let U(m : m′) and L(m : m′) denotes the deterministic upper and lower bounds, and ∆(m : m′) =
U(m : m′)− L(m : m′) ≥ 0 denotes the bound gap where the true value of the KL divergence belongs
to. In practice, we seek matching lower and upper bounds that minimize the bound gap.

Consider the lse inequality log k + mini xi ≤ lse(x1, . . . , xk) ≤ log k + maxi xi. The gap of that
ham-sandwich inequality is maxi xi −mini xi since the log k terms cancel out. This gap improves over
the log k gap of maxi xi < lse(x1, . . . , xk) ≤ log k + maxi xi when maxi xi −mini xi ≤ log k.

For log-sum terms of mixtures, we have xi = log pi(x) + log wi.

max
i

xi −min
i

xi = log
exp(maxi xi)

exp(mini xi)
= log

maxi wi pi(x)
mini wi pi(x)

For the differential entropy, we thus have

−∑
r

∫
Ir

m(x) log max
i

wi pi(x)dx ≤ H(m) ≤ −∑
r

∫
Ir

m(x) log min
i

wi pi(x)dx

Therefore the gap is:

∆ = ∑
r

∫
Ir

m(x) log
maxi wi pi(x)
mini wi pi(x)

dx = ∑
s

∑
r

∫
Ir

ws ps(x) log
maxi wi pi(x)
mini wi pi(x)

dx.

Thus to compute the gap error bound of the differential entropy, we need to integrate terms in the form

∫
wa p(x; θa) log

wb pb(x)
wc pc(x)

dx.

See appendix B for a closed-form formula when dealing with exponential family components.

4. Bounding α-divergences

The α-divergence [29–32] between m(x) = ∑k
i=1 wi pi(x) and m′(x) = ∑k′

i=1 w′i p
′
i(x) is defined as

Dα

(
m : m′

)
=

1
α(1− α)

(
1−

∫
X

m(x)αm′(x)1−αdx
)

, (24)

which clearly satisfies Dα (m : m′) = D1−α (m′ : m). The α-divergence is a family of information
divergences parametrized by α ∈ R \ {0, 1}. Let α → 1, we get the Kullback-Leibler (KL) divergence
(see [33] for a proof):

lim
α→1

Dα(m : m′) = KL(m : m′) =
∫
X

m(x) log
m(x)
m′(x)

dx, (25)
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and α→ 0 gives the reverse KL divergence:

lim
α→0

Dα(m : m′) = KL(m′ : m).

Other interesting values [30] includes α = 1/2 (squared Hellinger distance), α = 2 (Pearson Chi-square
distance), α = −1 (Neyman Chi-square distance), etc. Notably, the Hellinger distance is a valid distance
metric which satisfies non-negativity, symmetry, and the triangle inequality. In general, Dα(m : m′)
only satisfies non-negativity so that Dα (m : m′) ≥ 0 for any m(x) and m′(x). It is neither symmetric
nor admitting the triangle inequality. Minimization of α-divergences allow one to choose a trade-off
between mode-fitting and support fitting of the minimizer [34]. The minimizer of α-divergences
including MLE as a special case has interesting connections with transcendental number theory [35].

To compute Dα (m : m′) for given m(x) and m′(x) reduces to evaluate the Hellinger integral [36,37]

Hα(m : m′) =
∫
X

m(x)αm′(x)1−αdx, (26)

which in general does not have a closed form, as it was known that the α-divergence of mixture
models is not analytic [6]. Moreover, Hα(m : m′) may diverge making the α-divergence unbounded.
Once Hα(m : m′) can be solved, the Rényi and Tsallis divergences [33] and in general Sharma-Mittal
divergences [38] can be easily computed. Therefore the results presented here directly extend to those
divergences.

Similar to the case of KL divergence, the Monto-Carlo (MC) stochastic estimation of Hα(m : m′)
can be computed either as

Ĥn
α

(
m : m′

)
=

1
n

n

∑
i=1

(
m′(xi)

m(xi)

)1−α

,

where x1, . . . , xn ∼ m(x) are iid samples, or as

Ĥn
α

(
m : m′

)
=

1
n

n

∑
i=1

(
m(x)
m′(x)

)α

,

where x1, . . . , xn ∼ m′(x) are iid. In either case, it is consistent so that limn→∞ Ĥn
α (m : m′) =

Hα (m : m′). However, MC estimation requires a large sample and does not guarantee deterministic
bounds. The techniques described in [39] work in practice for very close distributions, and do not
apply between mixture models.

4.1. Basic Bounds

For a pair of given m(x) and m′(x), we only need to derive bounds of Hα(m : m′) in eq. (26) so that
Lα(m : m′) ≤ Hα(m : m′) ≤ Uα(m : m′). Then Dα(m : m′) can be bounded by a linear transformation of
the range [Lα(m : m′), Uα(m : m′)]. In the following we always assume w.l.o.g. α ≥ 1/2. Otherwise we
can bound Dα(m : m′) by considering equivalently the bounds of D1−α(m′ : m).

Recall that in each elementary slab Ir, we must have

max
{

kwε(r)pε(r)(x), wδ(r)pδ(r)(x)
}
≤ m(x) ≤ kwδ(r)pδ(r)(x). (27)

Notice that kwε(r)pε(r)(x), wδ(r)pδ(r)(x), and kwδ(r)pδ(r)(x) are all single component distributions up to
a scaling coefficient. The general thinking is to bound the multi-component mixture m(x) by single
component distributions in each elementary interval, so that the integral in eq. (26) can be computed in
a piecewise manner.
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For the convenience of notation, we rewrite eq. (27) as

cν(r)pν(r)(x) ≤ m(x) ≤ cδ(r)pδ(r)(x), (28)

where
cν(r)pν(r)(x) := kwε(r)pε(r)(x) or wδ(r)pδ(r)(x),

cδ(r)pδ(r)(x) := kwδ(r)pδ(r)(x).

(29)

(30)

If 1/2 ≤ α < 1, then both xα and x1−α are monotonically increasing on R+. Therefore we have

Aα
ν(r),ν′(r)(Ir) ≤

∫
Ir

m(x)αm′(x)1−αdx ≤ Aα
δ(r),δ′(r)(Ir), (31)

where

Aα
i,j(I) =

∫
I
(ci pi(x))α

(
c′j p
′
j(x)

)1−α
dx, (32)

and I denotes an interval I = (a, b) ⊂ R. The other case α > 1 is similar by noting that xα and x1−α are
monotonically increasing and decreasing on R+, respectively. In conclusion, we obtain the following
bounds of Hα(m : m′):

If 1/2 ≤ α < 1, Lα(m : m′) =
`

∑
r=1

Aα
ν(r),ν′(r)(Ir), Uα(m : m′) =

`

∑
r=1

Aα
δ(r),δ′(r)(Ir); (33)

if α > 1, Lα(m : m′) =
`

∑
r=1

Aα
ν(r),δ′(r)(Ir), Uα(m : m′) =

`

∑
r=1

Aα
δ(r),ν′(r)(Ir). (34)

The remaining problem is to compute the definite integral Aα
i,j(I) in the above equations. Here

we assume all mixture components are in the same exponential family so that pi(x) = p(x; θi) =

h(x) exp
(
θ>i t(x)− F(θi)

)
, where h(x) is a base measure, t(x) is a vector of sufficient statistics, and

the function F is known as the cumulant generating function. Then it is straightforward from eq. (32)
that

Aα
i,j(I) = cα

i (c
′
j)

1−α
∫

I
h(x) exp

((
αθi + (1− α)θ′j

)>
t(x)− αF(θi)− (1− α)F(θ′j)

)
dx. (35)

If 1/2 ≤ α < 1, then θ̄ = αθi + (1 − α)θ′j belongs to the natural parameter space Mθ . Therefore
Aα

i,j(I) is bounded and can be computed from the cumulative distribution function (CDF) of p(x; θ̄)

as Aα
i,j(I) = cα

i (c
′
j)

1−α exp(F
(
θ̄
)
− αF(θi) − (1− α)F(θ′j))

∫
I p
(
x; θ̄
)

dx. The other case α > 1 is more
difficult: if θ̄ = αθi +(1− α)θ′j still lie inMθ , Aα

i,j(I) can be computed in the same way. Otherwise we try
to solve it by a numerical integrator. This is not ideal as the integral may diverge, or our approximation
may be too loose to conclude. We point the reader to [40] and eqs.(61-69) in [33] for related analysis
with more details. As computing Aα

i,j(I) only requires O(1) time, the overall computational complexity
(disregard envelope computation) is O(`).

4.2. Adaptive Bounds

This section derives the shape-dependent bounds which improves the basic bounds in section 4.1.
We can rewrite a mixture model m(x) in a slab Ir as

m(x) = wζ(r)pζ(r)(x)

1 + ∑
i 6=ζ(r)

wi pi(x)
wζ(r)pζ(r)(x)

 , (36)
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where wζ(r)pζ(r)(x) is a weighted component in m(x) serving as a reference. We only discuss the case
that the reference is chosen as the dominating component, i.e., ζ(r) = δ(r). However it is worth to note
that the proposed bounds does not depend on this particular choice. Therefore the ratio

wi pi(x)
wζ(r)pζ(r)(x)

=
wi

wζ(r)
exp

((
θi − θζ(r)

)>
t(x)− F(θi) + F(θζ(r))

)
(37)

can be bounded in a sub-range of [0, 1] by analysing the extreme values of t(x) in the slab Ir. This can
be done because t(x) is usually a polynomial function with finite critical points which can be solved

easily. Correspondingly the function
(

1 + ∑i 6=ζ(r)
wi pi(x)

wζ(r)pζ(r)(x)

)
in Ir can be bounded in a subrange of

[1, k], denoted as [ωζ(r)(Ir), Ωζ(r)(Ir)]. Hence

ωζ(r)(Ir)wζ(r)pζ(r)(x) ≤ m(x) ≤ Ωζ(r)(Ir)wζ(r)pζ(r)(x). (38)

This forms better bounds of m(x) than eq. (27) because each component in the slab Ir is analysed more
accurately. Therefore, we refine the fundamental bounds of m(x) by replacing the boxed eqs. (29)
and (30) with

cν(r)pν(r)(x) := ωζ(r)(Ir)wζ(r)pζ(r)(x),

cδ(r)pδ(r)(x) := Ωζ(r)(Ir)wζ(r)pζ(r)(x).

(39)

(40)

Then, the improved bounds of Hα are given by eqs. (33) and (34) according to the replaced definition of
cν(r)pν(r)(x) and cδ(r)pδ(r)(x).

To evaluate ωζ(r)(Ir) and Ωζ(r)(Ir) requires iterating through all components in each slab.
Therefore the computational complexity is increased to O (`(k + k′)).

4.3. Variance-reduced Bounds

This section further improves the proposed bounds based on variance reduction [41]. By
assumption, α ≥ 1/2, then m(x)αm′(x)1−α is more similar to m(x) rather than m′(x). The ratio
m(x)αm′(x)1−α/m(x) is likely to have a small variance when x varies inside a slab Ir. We will therefore
bound this ratio term in

∫
Ir

m(x)αm′(x)1−αdx =
∫

Ir
m(x)

(
m(x)αm′(x)1−α

m(x)

)
dx =

k

∑
i=1

∫
Ir

wi pi(x)
(

m′(x)
m(x)

)1−α

dx. (41)

No matter α < 1 or α > 1, the function x1−α must be monotonic on R+, and we must have that, in each
slab Ir, (m′(x)/m(x))1−α ranges between these two functions:(

c′
ν′(r)p′

ν′(r)(x)

cδ(r)pδ(r)(x)

)1−α

and

(
c′

δ′(r)p′
δ′(r)(x)

cν(r)pν(r)(x)

)1−α

, (42)

where cν(r)pν(r)(x), cδ(r)pδ(r)(x), c′
ν′(r)p′

ν′(r)(x) and c′
δ′(r)p′

δ′(r)(x) is defined as in eqs. (39) and (40).
Similar to the definition of Aα

i,j(I) in eq. (32), we define

Bα
i,j,l(I) =

∫
I

wi pi(x)

(
c′l p′l(x)
cj pj(x)

)1−α

dx. (43)
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Therefore we have,

Lα(m : m′) = minS , Uα(m : m′) = maxS ,

S =

{
`

∑
r=1

k

∑
i=1

Bα
i,δ(r),ν′(r)(Ir),

`

∑
r=1

k

∑
i=1

Bα
i,ν(r),δ′(r)(Ir)

}
. (44)

The remaining problem is to evaluate Bα
i,j,l(I) in eq. (43). Similar to section 4.1, assuming the

components are in the same exponential family with respect to the natural parameters θ, we get similar
to section 4.2 that

Bα
i,j,l(I) =wi

w′1−α
l

w1−α
j

exp
(

F(θ̄)− F(θi)− (1− α)F(θ′l) + (1− α)F(θj)

) ∫
I

p(x; θ̄)dx, (45)

if θ̄ = θi + (1− α)θ′l − (1− α)θj is in the natural parameter space; otherwise Bα
i,j,l(I) can be numerically

integrated by its definition in eq. (43). The computational complexity is the same as the bounds in
section 4.2, i.e., O(` (k + k′)).

We have introduced three pairs of deterministic lower and upper bounds that enclose the true
value of α-divergence between univariate mixture models. Thus the gap between the upper and lower
bounds provide the additive approximation factor of the bounds. We conclude by emphasizing that the
presented methodology can be easily generalized to other divergence [33,38] relying on Hellinger-type
integrals Hα,β(p : q) =

∫
p(x)αq(x)βdx like the γ-divergence [42] as well as entropy measures [43].

5. Lower bounds on the f -divergence between distributions

The f -divergence between two distributions m(x) and m′(x) (not necessarily mixtures) is defined
for a convex generator f by:

D f (m : m′) =
∫

m(x) f
(

m′(x)
m(x)

)
dx.

If f (x) = − log x, then D f (m : m′) = KL(m : m′).
Let us partition the support X = ]`r=1 Ir arbitrarily into elementary ranges, which do not

necessarily correspond to the envelopes. Denote by MI the probability mass of a mixture m(x) in the
range I: MI =

∫
I m(x)dx. Then

D f (m : m′) =
`

∑
r=1

MIr

∫
Ir

m(x)
MIr

f
(

m′(x)
m(x)

)
dx.

Note that in range Ir, m(x)
MIr

is a unit weight distribution. Thus by Jensen inequalities f (E[X]) ≤ E[ f (X)],
we can bound the integrals as

D f (m : m′) ≥
`

∑
r=1

MIr f
(∫

Ir

m(x)
MIr

m′(x)
m(x)

)
=

`

∑
r=1

MIr f

(
M′Ir

MIr

)
. (46)

Notice that the RHS of eq. (46) is the f -divergence between (MI1 , · · · , MI`) and (M′I1
, · · · , M′I`), denoted

by DIf (m : m′). When ` = 1, I1 = X , the above eq. (46) turns out to be the usual Gibb’s inequality:
D f (m : m′) ≥ f (1), and Csiszár generator is chosen so that f (1) = 0.

For a fixed (coarse-grained) countable partition of the partition, we recover the well-know
information monotonicity [44] of the f -divergences:

D f (m : m′) ≥ DIf (m : m′) ≥ 0.
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In practice, we get closed-form lower bounds when MI =
∫ bi

ai
m(x)dx = Φ(bi)−Φ(ai) is available

in closed-form formula, where Φ(·) denote the Cumulative Distribution Function. In particular, if m(x)
is a mixture model, then its CDF can be computed by linearly combining the CDFs of its components.

To wrap up, we have proved that coarse-graining by making a finite partition of the range yields a
lower bound on the f -divergence by virtue of the information monotonicity property of f -divergences.
Therefore, instead of doing Monte-Carlo stochastic integration:

D̂ f (m : m′) =
1
s

s

∑
i=1

f
(

m′(xi)

m(xi)

)
,

with x1, . . . , xs ∼iid m(x), it is better to sort those s samples and consider the coarse-grained partition:

I = (−∞, x(1)] ∪
(
]s−1

i=1 (x(i), x(i+1)]
)
∪ (x(s), ∞)

to get a guaranteed lower bound on the f -divergence. We will call this bound CGQLB for coarse
graining quantization lower bound.

Given a budget of s splitting points on the range X , it would be interesting to find techniques to
find the best s points that maximize IIf (m : m′). This is ongoing research.

6. Experiments

We perform an empirical study to verify our theoretical bounds. We simulate four pairs of mixture
models {(EMM1, EMM2), (RMM1, RMM2), (GMM1, GMM2), (GaMM1, GaMM2)} as the test subjects. The component
type is implied by the model name. The components of each mixture model are given as follows.

1. EMM1’s components, in the form (λi, wi), are given by (0.1, 1/3), (0.5, 1/3), (1, 1/3); EMM2’s
components are (2, 0.2), (10, 0.4), (20, 0.4).

2. RMM1’s components, in the form (σi, wi), are given by (0.5, 1/3), (2, 1/3), (10, 1/3); RMM2 consists
of (5, 0.25), (60, 0.25), (100, 0.5).

3. GMM1’s components, in the form (µi, σi, wi), are (−5, 1, 0.05), (−2, 0.5, 0.1), (5, 0.3, 0.2), (10, 0.5, 0.2),
(15, 0.4, 0.05) (25, 0.5, 0.3), (30, 2, 0.1); GMM2 consists of (−16, 0.5, 0.1), (−12, 0.2, 0.1), (−8, 0.5, 0.1),
(−4, 0.2, 0.1), (0, 0.5, 0.2), (4, 0.2, 0.1), (8, 0.5, 0.1), (12, 0.2, 0.1), (16, 0.5, 0.1).

4. GaMM1’s components, in the form (ki, λi, wi), are (2, 0.5, 1/3), (2, 2, 1/3), (2, 4, 1/3); GaMM2 consists
of (2, 5, 1/3), (2, 8, 1/3), (2, 10, 1/3).

We compare the proposed bounds with Monte-Carlo estimation with different sample sizes in the
range {102, 103, 104, 105}. For each sample size configuration, we report the 0.95 confidence interval
by Monte-Carlo estimation using the corresponding number of samples. Fig. (3)(a-d) shows the input
signals as well as the estimation results, where the proposed bounds CELB, CEUB, CEALB, CEAUB,
CGQLB are presented as horizontal lines, and the Monto-Carlo estimations over different sample sizes
are presented as error bars. We can loosely consider the average Monte-Carlo output with the largest
sample size (105) as the underlying truth, which is clearly inside our bounds. This serves as an empirical
justification on the correctness of the bounds.

A key observation is that the bounds can be very tight, especially when the underlying KL
divergence has a large magnitude, e.g. KL(RMM2 : RMM1). This is because the gap between the lower and
upper bounds is always guaranteed to be within log k + log k′. Because KL is unbounded measure [4],
in the general case two mixture models may have a large KL. Then our approximation gap is relatively
very small. On the other hand, we also observed that the bounds in certain cases, e.g. KL(EMM2 : EMM1),
are not as tight as the other cases. When the underlying KL is small, the bound is not as informative as
the general case.
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Table 1. The estimated Dα and its bounds. The 95% confidence interval is shown for MC.

α MC(102) MC(103) MC(104) Basic Adaptive VR
L U L U L U

GMM1 & GMM2

0 15.96± 3.9 12.30± 1.0 13.63± 0.3 11.75 15.89 12.96 14.63
0.01 13.36± 2.9 10.63± 0.8 11.66± 0.3 -700.50 11.73 -77.33 11.73 11.40 12.27
0.5 3.57± 0.3 3.47± 0.1 3.47± 0.07 -0.60 3.42 3.01 3.42 3.17 3.51

0.99 40.04± 7.7 37.22± 2.3 38.58± 0.8 -333.90 39.04 5.36 38.98 38.28 38.96
1 104.01± 28 84.96± 7.2 92.57± 2.5 91.44 95.59 92.76 94.41

GMM3 & GMM4

0 0.71± 0.2 0.63± 0.07 0.62± 0.02 0.00 1.76 0.00 1.16
0.01 0.71± 0.2 0.63± 0.07 0.62± 0.02 -179.13 7.63 -38.74 4.96 0.29 1.00
0.5 0.82± 0.3 0.57± 0.1 0.62± 0.04 -5.23 0.93 -0.71 0.85 -0.18 1.19

0.99 0.79± 0.3 0.76± 0.1 0.80± 0.03 -165.72 12.10 -59.76 9.11 0.37 1.28
1 0.80± 0.3 0.77± 0.1 0.81± 0.03 0.00 1.82 0.31 1.40

Comparatively, there is a significant improvement of the data-dependent bounds (CEALB and
CEAUB) over the combinatorial bounds (CELB and CEUB). In all investigated cases, the adaptive
bounds can roughly shrink the gap by half of its original size at the cost of additional computation.

Note that, the bounds are accurate and must contain the true value. Monte-Carlo estimation gives
no guarantee on where the true value is. For example, in estimating KL(GMM1 : GMM2), Monte-Carlo
estimation based on 104 samples can go beyond our bounds! It therefore suffers from a larger estimation
error.

CGQLB as a simple-to-implement technique shows surprising good performance in several cases,
e.g., KL(RMM1, RMM2). Although it requires a large number of samples, we can observe that increasing
sample size has limited effect on improving this bound. Therefore, in practice, one may intersect the
range defined by CEALB and CEAUB with the range defined by CGQLB with a small sample size (e.g.,
100) to get better bounds.

We simulates a set of Gaussian mixture models besides the above GMM1 and GMM2. Fig. 4 shows the
GMM densities as well as their differential entropy. A detailed explanation of the components of each
GMM model is omitted for brevity.

The key observation is that CEUB (CEAUB) is very tight in most of the investigated cases. This is
because that the upper envelope that is used to compute CEUB (CEAUB) gives a very good estimation
of the input signal.

Notice that MEUB only gives an upper bound of the differential entropy as discussed in section 3.
In general the proposed bounds are tighter than MEUB. However, this is not the case when the mixture
components are merged together and approximate one single Gaussian (and therefore its entropy can
be well apporiximated by the Gaussian entropy), as shown in the last line of Fig. 4.

For α-divergence, the bounds introduced in sections 4.1 to 4.3 are denoted as “Basic”, “Adaptive”
and “VR”, respectively. Figure 2 visualizes these GMMs and plots the estimations of their α-divergences
against α. The red lines mean the upper envelope. The dashed vertical lines mean the elementary
intervals. The components of GMM1 and GMM2 are more separated than GMM3 and GMM4. Therefore these
two pairs present different cases. For a clear presentation, only VR (which is expected to be better than
Basic and Adaptive) is shown. We can see that, visually in the big scale, VR tightly surrounds the true
value.

For a more quantitative comparison, table 1 shows the estimated α-divergence by MC, Basic,
Adaptive, and VR. As Dα is defined on R \ {0, 1}, the KL bounds CE(A)LB and CE(A)UB are presented
for α = 0 or 1. Overall, we have the following order of gap size: Basic > Adaptive > VR, and VR is
recommended in general for bounding α-divergences. There are certain cases that the upper VR bound
is looser than Adaptive. In practice one can compute the intersection of these bounds as well as the
trivial bound Dα(m : m′) ≥ 0 to get the best estimation.

Note the similarity between KL in eq. (25) and the expression in eq. (41). We give without a formal
analysis that: CEAL(U)B is equivalent to VR at the limit α → 0 or α → 1. Experimentally as we slowly
set α→ 1, we can see that VR is consistent with CEAL(U)B.
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Figure 2. Two Pairs of Gaussian Mixture Models and their α-divergences against different values of
α. The “true” value of Dα is estimated by MC using 104 random samples. VR(L) and VR(U) denote
the variation reduced lower and upper bounds. The range of α is selected for each pair for a clear
visualization.
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Figure 3. Lower and upper bounds on the KL divergence between mixture models. The y-axis means
KL divergence. Solid/dashed lines represent the combinatorial/adaptive bounds, respectively. The
error-bars show the 0.95 confidence interval of the estimated KL by Monte-Carlo estimation using the
corresponding sample size (x-axis). The narrow dotted bars show the CGQLB estimation wrt the sample
size.
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Figure 4. Lower and upper bounds on the differential entropy of Gaussian mixture models. On the left
of each subfigure is the simulated GMM signal. On the right of each subfigure is the estimation of its
differential entropy. Note that the bounds collapse in several cases.
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7. Concluding remarks and perspectives

We have presented a fast versatile method to compute bounds on the Kullback-Leibler divergence
between mixtures by building algorithmically formula. We reported on our experiments for various
mixture models in the exponential family. For univariate GMMs, we get a guaranteed bound of the
KL divergence of two mixtures m and m′ with k and k′ components within an additive approximation
factor of log k + log k′ in O ((k + k′) log(k + k′))-time. Therefore the larger the KL divergence the
better the bound when considering a multiplicative (1 + α)-approximation factor since α =

log k+log k′
KL(m:m′) .

The adaptive bounds is guaranteed to yield better bounds at the expense of computing potentially
O
(
k2 + (k′)2) intersection points of pairwise weighted components.

Our technique also yields bound for the Jeffreys divergence (the symmetrized KL divergence:
J(m, m′) = KL(m : m′) + KL(m′ : m)) and the Jensen-Shannon divergence [45] (JS):

JS(m, m′) =
1
2

(
KL
(

m :
m + m′

2

)
+ KL

(
m′ :

m + m′

2

))
,

since m+m′
2 is a mixture model with k + k′ components. One advantage of this statistical distance is

that it is symmetric, always bounded by log 2, and its square root yields a metric distance [46]. The
log-sum-exp inequalities may also used to compute some Rényi divergences [47]:

Rα(m, p) =
1

α− 1
log
(∫

m(x)α p(x)1−α

)
dx,

when α is an integer, m(x) a mixture and p(x) a single (component) distribution. Getting fast
guaranteed tight bounds on statistical distances between mixtures opens many avenues. For example,
we may consider building hierarchical mixture models by merging iteratively two mixture components
so that those pair of components is chosen so that the KL distance between the full mixture and the
simplified mixture is minimized.

In order to be useful, our technique is unfortunately limited to univariate mixtures: Indeed,
in higher dimensions, we can still compute the maximization diagram of weighted components
(an additively weighted Bregman Voronoi diagram [48,49] for components belonging to the same
exponential family). However, it becomes more complex to compute in the elementary Voronoi cells
V, the functions Ci,j(V) and Mi(V) (in 1D, the Voronoi cells are segments). We may obtain hybrid
algorithms by approximating or estimating these functions. In 2D, it is thus possible to obtain lower
and upper bounds on the Mutual Information [50] (MI) when the joint distribution m(x, y) is a 2D
mixture of Gaussians:

I(M; M′) =
∫

m(x, y) log
m(x, y)

m(x)m′(y)
dxdy.

Indeed, the marginal distributions m(x) and m′(y) are univariate Gaussian mixtures.
A Python code implementing those computational-geometric methods for reproducible research

is available online at:

https://www.lix.polytechnique.fr/~nielsen/KLGMM/

Let us now conclude this work by noticing that the Kullback-Leibler between two smooth mixtures
can be approximated by a Bregman divergence [5]. We loosely derive this observation using two
different approaches:

• First, continuous mixture distributions have smooth densities that can be arbitrarily closely
approximated using a single distribution (potentially multi-modal) belonging to the Polynomial
Exponential Families [51,52] (PEFs). A polynomial exponential family of order D has
log-likelihood l(x; θ) ∝ ∑D

i=1 θixi: Therefore, a PEF is an exponential family with
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polynomial sufficient statistics t(x) = (x, x2, . . . , xD). However, the log-normalizer FD(θ) =

log
∫

exp(θ>t(x))dx of a D-order PEF is not available in closed-form: It is computationally
intractable. Nevertheless, the KL between two mixtures m(x) and m′(x) can be theoretically
approximated closely by a Bregman divergence between the two corresponding PEFs: KL(m(x) :
m′(x)) ' KL(p(x; θ) : p(x; θ′)) = BFD (θ

′ : θ), where θ and θ′ are the natural parameters of
the PEF family {p(x; θ)} approximating m(x) and m′(x), respectively (i.e., m(x) ' p(x; θ) and
m′(x) ' p(x; θ′)). Notice that the Bregman divergence of PEFs has necessarily finite value but the
KL of two smooth mixtures can potentially diverge (infinite value).

• Second, consider two finite mixtures m(x) = ∑k
i=1 wi pi(x) and m′(x) = ∑k′

j=1 w′j p
′
j(x) of k and

k′ components (possibly with heterogeneous components pi(x)’s and p′j(x)’s), respectively. In

information geometry, a mixture family is the set of convex combination of fixed3 component
densities. Let us consider the mixture families {g(x; (w, w′))} generated by the D = k + k′ fixed
components p1(x), . . . , pk(x), p′1(x), . . . , p′k′(x):{

g(x; (w, w′)) =
k

∑
i=1

wi pi(x) +
k′

∑
j=1

w′j p
′
j(x) :

k

∑
i=1

wi +
k′

∑
j=1

w′j = 1

}

We can approximate arbitrarily finely (with respect to total variation) mixture m(x) for any
ε > 0 by g(x; α) ' (1 − ε)m(x) + εm′(x) with α = ((1 − ε)w, εw′) (so that ∑k+k′

i=1 αi = 1) and
m′(x) ' g(x; α′) = εm(x) + (1− ε)m′(x) with α′ = (εw, (1− ε)w′) (and ∑k+k′

i=1 α′i = 1). Therefore
KL(m(x) : m′(x)) ' KL(g(x; α) : g(x; α′)) = BF∗(α : α′), where F∗(α) =

∫
g(x; α) log g(x; α)dx

is the Shannon information (negative Shannon entropy) for the composite mixture family. Again,
the Bregman divergence BF∗(α : α′) is necessarily finite but KL(m(x) : m′(x)) between mixtures
may be potentially infinite when the KL integral diverges. Interestingly, this Shannon information
can be arbitrarily closely approximated when considering isotropic Gaussians [12]. Notice that the
convex conjugate F(θ) of the continuous Shannon neg-entropy F∗(η) is the log-sum-exp function
on the inverse soft map.

Appendix The Kullback-Leibler divergence of mixture models is not analytic [6]

Ideally, we aim at getting a finite length closed-form formula to compute the KL divergence of
mixture models. But this is provably mathematically intractable because of the log-sum term in the
integral, as we shall prove below. Analytic expressions encompass closed-form formula and include
special functions (e.g., Gamma function) but do not allow to use limits nor integrals. An analytic
function f (x) is a C∞ function (infinitely differentiable) such that at any point x0 its k-order Taylor

series Tk(x) = ∑k
i=0

f (i)(x0)
i! (x − x0)

i converges to f (x): limk→∞ Tk(x) = f (x) for x belonging to a
neighborhood Nr(x0) = {x : |x − x0| ≤ r} of x0 where r is called the radius of convergence. The
analytic property of a function is equivalent to the condition that for each k ∈ N, there exists a constant

c such that
∣∣∣dk f

dxk (x)
∣∣∣ ≤ ck+1k!.

To prove that the KL of mixtures is not analytic (hence does not admit a closed-form formula),
we shall adapt the proof reported in [6] (in Japanese4). We shall prove that KL(p : q) is not analytic
for univariate mixtures of densities p(x) = G(x; 0, 1) and q(x; w) = (1− w)G(x; 0, 1) + wG(x; 1, 1) for

w ∈ (0, 1), where G(x; µ, σ) = 1√
2πσ

exp(− (x−µ)2

2σ2 ) is the density of a univariate Gaussian of mean µ

3 Thus in statistics, a mixture is understood as a convex combination of parametric components while in information geometry
a mixture family is the set of convex combination of fixed components.

4 We thank Professor Aoyagi for sending us his paper [6].
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and standard deviation σ. Let D(w) = KL(p(x) : q(x; w)) denote the divergence between these two
mixtures (p has a single component and q has two components).

We have log p(x)
q(x;w)

= − log(1 + w(ex− 1
2 − 1)), and

dkD
dwk =

(−1)k

k

∫
p(x)(ex− 1

2 − 1)dx.

Let x0 be the root of the equation ex− 1
2 − 1 = e

x
2 so that for x ≥ x0, we have ex− 1

2 − 1 ≥ e
x
2 . It follows

that: ∣∣∣∣∣dkD
dwk

∣∣∣∣∣ ≥ 1
k

∫ ∞

x0

p(x)e
kx
2 dx =

1
k

e
k2
8 Ak

with Ak =
∫ ∞

x0
1√
2π

exp(− x− k
2

2 )dx. When k→ ∞, we have Ak → 1. Consider k0 ∈ N such that Ak0 > 0.9.
Then the radius of convergence r is such that:

1
r
≥ lim

k→∞

(
1

kk!
0.9 exp

(
k2

8

)) 1
k

= ∞.

Thus the convergence radius is r = 0, and therefore the KL divergence is not an analytic function
of the parameter w. The KL of mixtures is an example of a non-analytic smooth function. (Notice that
the absolute value is not analytic at 0.)

Appendix Closed-form formula for the Kullback-Leibler divergence between scaled and truncated
exponential families

When computing approximation bounds for the KL divergence between two mixtures m(x) and

m′(x), we end up with the task of computing
∫
D wa pa(x) log w′b p′b(x)

w′c p′c(x) dx where D ⊆ X is a subset of the
full support X . We report a generic formula for computing these formula when the mixture (scaled
and truncated) components belong to the same exponential family [16]. An exponential family has
canonical log-density written as l(x; θ) = log p(x; θ) = θ>t(x) − F(θ) + k(x), where t(x) denotes the
sufficient satistics, F(θ) the log-normalizer (also called cumulant function or partition function), and
k(x) an auxiliary carrier term.

Let KL(w1 p1 : w2 p2 : w3 p3) =
∫
X w1 p1(x) log w2 p2(x)

w3 p3(x)dx = H×(w1 p1 : w3 p3)− H×(w1 p1 : w2 p2).
Since it is a difference of two cross-entropies, we get for three distributions belonging to the same
exponential family [53] the following formula:

KL(w1 p1 : w2 p2 : w3 p3) = w1 log
w2

w3
+ w1(F(θ3)− F(θ2)− (θ3 − θ2)

>∇F(θ1)).

Furthermore, when the support is restricted, say to support range D ⊆ X , let mD(θ) =∫
D p(x; θ)dx denote the mass and ˜p(x; θ) = p(x;θ)

mD(θ)
the normalized distribution. Then we have:∫

D
w1 p1(x) log

w2 p2(x)
w3 p3(x)

dx = mD(θ1)(KL(w1 p̃1 : w2 p̃2 : w3 p̃3))− log
w2mD(θ3)

w3mD(θ2)
.

When FD(θ) = F(θ)− log mD(θ) is strictly convex and differentiable then ˜p(x; θ) is an exponential
family and the closed-form formula follows straightforwardly. Otherwise, we still get a closed-form but
need more derivations. For univariate distributions, we write D = (a, b) and mD(θ) =

∫ b
a p(x; θ)dx =

Pθ(b)− Pθ(a) where Pθ(a) =
∫ a p(x; θ)dx denotes the cumulative distribution function.
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The usual formula for truncated and scaled Kullback-Leibler divergence is:

KLD(wp(x; θ) : w′p(x; θ′)) = wmD(θ)
(

log
w
w′

+ BF(θ
′ : θ)

)
+ w(θ′ − θ)

>∇mD(θ), (47)

where BF(θ
′ : θ) is a Bregman divergence [54]:

BF(θ
′ : θ) = F(θ′)− F(θ)− (θ′ − θ)>∇F(θ).

This formula extends the classic formula [54] for full regular exponential families (by setting w =

w′ = 1 and mD(θ) = 1 with ∇mD(θ) = 0).
Similar formula are available for the cross-entropy and entropy of exponential families [53].
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