

Article

Guaranteed Bounds on Information-Theoretic Measures of Univariate Mixtures Using Piecewise Log-Sum-Exp Inequalities

Frank Nielsen ^{1,2,*} and Ke Sun ¹¹ École Polytechnique, Palaiseau 91128, France; sunk.edu@gmail.com² Sony Computer Science Laboratories Inc., Paris 75005, France

* Correspondence: Frank.Nielsen@acm.org

Abstract: Information-theoretic measures such as the entropy, cross-entropy and the Kullback-Leibler divergence between two mixture models is a core primitive in many signal processing tasks. Since the Kullback-Leibler divergence of mixtures provably does not admit a closed-form formula, it is in practice either estimated using costly Monte-Carlo stochastic integration, approximated, or bounded using various techniques. We present a fast and generic method that builds algorithmically closed-form lower and upper bounds on the entropy, the cross-entropy and the Kullback-Leibler divergence of mixtures. We illustrate the versatile method by reporting on our experiments for approximating the Kullback-Leibler divergence between univariate exponential mixtures, Gaussian mixtures, Rayleigh mixtures, and Gamma mixtures.

Keywords: information geometry; mixture models; log-sum-exp bounds

1. Introduction

Mixture models are commonly used in signal processing. A typical scenario is to use mixture models [1–3] to *smoothly* model histograms. For example, Gaussian Mixture Models (GMMs) can be used to convert grey-valued images into binary images by building a GMM fitting the image intensity histogram and then choosing the threshold as the average of the Gaussian means [1] to binarize the image. Similarly, Rayleigh Mixture Models (RMMs) are often used in ultrasound imagery [2] to model histograms, and perform segmentation by classification. When using mixtures, a fundamental primitive is to define a proper *statistical distance* between them. The *Kullback-Leibler divergence* [4], also called *relative entropy*, is the most commonly used distance: Let $m(x) = \sum_{i=1}^k w_i p_i(x)$ and $m'(x) = \sum_{i=1}^{k'} w'_i p'_i(x)$ be two finite statistical density¹ mixtures of k and k' components, respectively. In statistics, the mixture components $p_i(x)$ are often parametric: $p_i(x) = p(x; \theta_i)$, where θ_i is a vector of parameters. For example, a mixture of Gaussians (MoG also used as a shortcut instead of GMM) has its component distributions parameterized by its mean μ_i and its covariance matrix Σ_i (so that the parameter vector is $\theta_i = (\mu_i, \Sigma_i)$). Let $\mathcal{X} = \{x \in \mathbb{R} : p(x; \theta) > 0\}$ denote the support of the component distributions, and denote by $H_{\times}(m, m') = -\int_{\mathcal{X}} m(x) \log m'(x) dx$ the *cross-entropy* [4] between two continuous mixtures of densities m and m' . Then the Kullback-Leibler (KL) divergence between m and m' is given by:

$$\text{KL}(m : m') = H_{\times}(m, m') - H(m) = \int_{\mathcal{X}} m(x) \log \frac{m(x)}{m'(x)} dx, \quad (1)$$

with $H(m) = H_{\times}(m, m) = -\int_{\mathcal{X}} m(x) \log m(x) dx$ denoting the *Shannon entropy* [4]. The notation “:” is used instead of the usual coma “,” notation to emphasize that the distance is *not* a metric

¹ The cumulative density function (CDF) of a mixture is like its density also a convex combinations of the component CDFs. But beware that a mixture is *not* a sum of random variables (RVs). Indeed, sums of RVs have convolutional densities.

distance since it is not symmetric ($\text{KL}(m : m') \neq \text{KL}(m' : m)$), and that it further does not satisfy the triangular inequality [4] of metric distances ($\text{KL}(m : m') + \text{KL}(m' : m'') \geq \text{KL}(m : m'')$). When the natural base of the logarithm is chosen, we get a differential entropy measure expressed in *nat* units. Alternatively, we can also use the base-2 logarithm ($\log_2 x = \frac{\log x}{\log 2}$) and get the entropy expressed in *bit* units. Although the KL divergence is available in closed-form for many distributions (in particular as equivalent Bregman divergences for exponential families [5]), it was proven that the Kullback-Leibler divergence between two (univariate) GMMs is *not analytic* [6] (the particular case of mixed-Gaussian of two components with same variance was analyzed in [7]). See appendix A for an analysis. Note that the differential entropy may be negative: For example, the differential entropy of a univariate Gaussian distribution is $\log(\sigma\sqrt{2\pi e})$, and is therefore negative when the standard variance $\sigma < \frac{1}{\sqrt{2\pi e}} \approx 0.242$. We consider continuous distributions with entropies well-defined (entropy may be undefined for singular distributions like Cantor's distribution).

Thus many approximation techniques have been designed to beat the computational-costly Monte-Carlo (MC) stochastic *estimation*: $\widehat{\text{KL}}_s(m : m') = \frac{1}{s} \sum_{i=1}^s \log \frac{m(x_i)}{m'(x_i)}$ with $x_1, \dots, x_s \sim m(x)$ (s independently and identically distributed (iid) samples x_1, \dots, x_s). The MC estimator is asymptotically consistent, $\lim_{s \rightarrow \infty} \widehat{\text{KL}}_s(m : m') = \text{KL}(m : m')$, so that the "true value" of the KL of mixtures is estimated in practice by taking a very large sampling (say, $s = 10^9$). However, we point out that the MC estimator is a stochastic approximation, and therefore *does not* guarantee deterministic bounds (confidence intervals may be used). Deterministic lower and upper bounds of the integral can be obtained by various numerical integration techniques using quadrature rules. We refer to [8–11] for the current state-of-the-art approximation techniques and bounds on the KL of GMMs. The latest work for computing the entropy of GMMs is [12]: It considers arbitrary finely tuned bounds of computing the entropy of *isotropic Gaussian* mixtures (a case encountered when dealing with KDEs, kernel density estimators). However, there is catch in the technique of [12]: It relies on solving for the unique roots of some log-sum-exp equations (See Theorem 1 of [12], pp. 3342) that do not admit a closed-form solution. Thus it is a hybrid method that contrasts with our combinatorial approach. Bounds of KL divergence between mixture models can be generalized to bounds of the likelihood function of mixture models [13], because log-likelihood is just the KL between the empirical distribution and the mixture model up to a constant shift.

In information geometry [14], a *mixture family* of linearly independent probability distributions $p_1(x), \dots, p_k(x)$ is defined by the convex combination of those non-parametric component distributions: $m(x; \eta) = \sum_{i=1}^k \eta_i p_i(x)$. A mixture family induces a dually flat space where the Kullback-Leibler divergence is equivalent to a Bregman divergence [5,14] defined on the η -parameters. However, in that case, the Bregman convex generator $F(\eta) = \int m(x; \eta) \log m(x; \eta) dx$ (the Shannon information) is *not* available in closed-form for mixtures. Except for the family of multinomial distribution that is both a mixture family (with closed-form $\text{KL}(m : m') = \sum_{i=1}^k m_i \log \frac{m_i}{m'_i}$, the discrete KL [4]) and an exponential family [14].

In this work, we present a simple and efficient method that builds algorithmically a closed-form formula that guarantees both deterministic lower and upper bounds on the KL divergence within an *additive factor* of $\log k + \log k'$. We then further refine our technique to get improved adaptive bounds. For univariate GMMs, we get the non-adaptive bounds in $O(k \log k + k' \log k')$ time, and the adaptive bounds in $O(k^2 + k'^2)$ time. To illustrate our generic technique, we demonstrate it based on Exponential Mixture Models (EMMs), Rayleigh mixtures, Gamma mixtures and GMMs. We extend our preliminary results on KL divergence [15] to other information theoretical measures such as the differential entropy and α -divergences.

The paper is organized as follows: Section 2 describes the algorithmic construction of the formula using piecewise log-sum-exp inequalities for the cross-entropy and the Kullback-Leibler divergence. Section 3 instantiates this algorithmic principle to the entropy and discusses several related work. Section 6 reports on experiments on several mixture families. Finally, Section 7 concludes this work

by discussing extensions to other statistical distances. Appendix A proves that the Kullback-Leibler divergence of mixture models is not analytic. Appendix B reports the closed-form formula for the KL divergence between scaled and truncated distributions of the same exponential family [16] (that includes Rayleigh, Gaussian and Gamma distributions among others).

2. A generic combinatorial bounding algorithm

Let us bound the cross-entropy $H_{\times}(m : m')$ by deterministic lower and upper bounds, $L_{\times}(m : m') \leq H_{\times}(m : m') \leq U_{\times}(m : m')$, so that the bounds on the Kullback-Leibler divergence $\text{KL}(m : m') = H_{\times}(m : m') - H_{\times}(m : m)$ follows as:

$$L_{\times}(m : m') - U_{\times}(m : m) \leq \text{KL}(m : m') \leq U_{\times}(m : m') - L_{\times}(m : m). \quad (2)$$

Since the cross-entropy of two mixtures $\sum_{i=1}^k w_i p_i(x)$ and $\sum_{j=1}^{k'} w'_j p'_j(x)$:

$$H_{\times}(m : m') = - \int_{\mathcal{X}} \left(\sum_{i=1}^k w_i p_i(x) \right) \log \left(\sum_{j=1}^{k'} w'_j p'_j(x) \right) dx \quad (3)$$

has a log-sum term of positive arguments, we shall use bounds on the log-sum-exp (lse) function [17,18]:

$$\text{lse} \left(\{x_i\}_{i=1}^l \right) = \log \left(\sum_{i=1}^l e^{x_i} \right).$$

We have the following inequalities:

$$\max \{x_i\}_{i=1}^l < \text{lse} \left(\{x_i\}_{i=1}^l \right) \leq \log l + \max \{x_i\}_{i=1}^l. \quad (4)$$

The left-hand-side (lhs) inequality holds because $\sum_{i=1}^l e^{x_i} > \max \{e^{x_i}\}_{i=1}^l = \exp \left(\max \{x_i\}_{i=1}^l \right)$ since $e^x > 0, \forall x \in \mathbb{R}$, and the right-hand-side (rhs) inequality follows from the fact that $\sum_{i=1}^l e^{x_i} \leq l \max \{e^{x_i}\}_{i=1}^l = l \exp(\max \{x_i\}_{i=1}^l)$. The lse function is convex (but not strictly convex) and enjoys the following translation identity property: $\text{lse} \left(\{x_i\}_{i=1}^l \right) = c + \text{lse} \left(\{x_i - c\}_{i=1}^l \right), \forall c \in \mathbb{R}$. Similarly, we can also lower bound the lse function by $\log l + \min \{x_i\}_{i=1}^l$. Note that we could write *equivalently* that for l positive numbers x_1, \dots, x_l , we have:

$$\max \left\{ \log \max \{x_i\}_{i=1}^l, \log l + \log \min \{x_i\}_{i=1}^l \right\} \leq \log \sum_{i=1}^l x_i \leq \log l + \log \max \{x_i\}_{i=1}^l. \quad (5)$$

Therefore a mixture model $\sum_{j=1}^{k'} w'_j p'_j(x)$ must satisfy

$$\begin{aligned} & \max \left\{ \max \{ \log w'_j p'_j(x) \}_{j=1}^{k'}, \log k' + \min \{ \log w'_j p'_j(x) \}_{j=1}^{k'} \right\} \\ & \leq \log \left(\sum_{j=1}^{k'} w'_j p'_j(x) \right) \leq \log k' + \max \{ \log w'_j + \log p'_j(x) \}_{j=1}^{k'}. \end{aligned} \quad (6)$$

Therefore we shall bound the integral term $\int_{\mathcal{X}} m(x) \log \left(\sum_{j=1}^{k'} w'_j p'_j(x) \right) dx$ using piecewise lse inequalities where the min/max are kept unchanged.

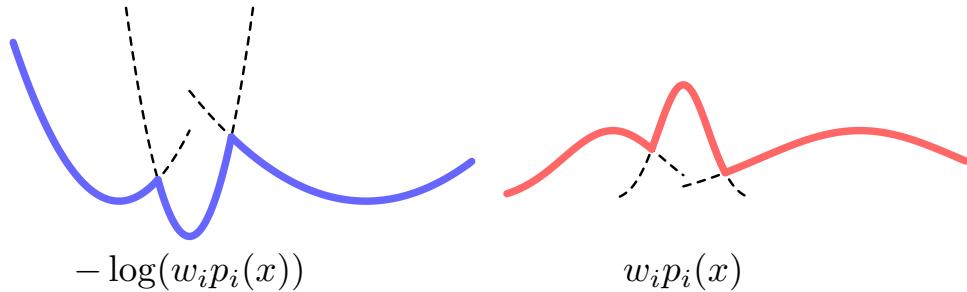


Figure 1. Lower envelope of parabolas corresponding to the upper envelope of weighted components of a Gaussian mixture (here, $k = 3$ components).

Using the log-sum-exp inequalities, we get

$$L_{\times}(m : m') = - \int_{\mathcal{X}} m(x) \max\{\log w'_j p'_j(x)\}_{j=1}^{k'} dx - \log k', \quad (7)$$

$$U_{\times}(m : m') = - \int_{\mathcal{X}} m(x) \max \left\{ \min\{\log w'_j p'_j(x)\}_{j=1}^{k'} + \log k', \max\{\log w'_j p'_j(x)\}_{j=1}^{k'} \right\} dx. \quad (8)$$

In order to calculate $L_{\times}(m : m')$ and $U_{\times}(m : m')$ efficiently using closed-form formula, let us compute the *upper and lower envelopes* of the k' real-valued functions $\mathcal{E}_U(x) = \max\{w'_j p'_j(x)\}_{j=1}^{k'}$ and $\mathcal{E}_L(x) = \min\{w'_j p'_j(x)\}_{j=1}^{k'}$ defined on the support \mathcal{X} . These envelopes can be computed exactly using techniques of computational geometry [19,20] provided that we can calculate the roots of the equation $w'_r p'_r(x) = w'_s p'_s(x)$, where $w'_r p'_r(x)$ and $w'_s p'_s(x)$ are a pair of weighted components. (Although this amounts to solve quadratic equations for Gaussian or Rayleigh distributions, the roots may not always be available in closed form, say for example for Weibull distributions.)

Let the envelopes be combinatorially described by ℓ *elementary interval pieces* defined on support intervals $I_r = (a_r, a_{r+1})$ partitioning the support $\mathcal{X} = \bigcup_{r=1}^{\ell} I_r$ (with $a_1 = \min \mathcal{X}$ and $a_{\ell+1} = \max \mathcal{X}$). Observe that on each interval I_r , the maximum of the functions $\{w'_j p'_j(x)\}_{j=1}^{k'}$ is given by $w'_{\delta(r)} p'_{\delta(r)}(x)$, where $\delta(r)$ indicates the weighted component dominating all the others, i.e., the arg max of $\{w'_j p'_j(x)\}_{j=1}^{k'}$ for any $x \in I_r$, and the minimum of $\{w'_j p'_j(x)\}_{j=1}^{k'}$ is given by $w'_{\epsilon(r)} p'_{\epsilon(r)}(x)$.

To fix ideas, when mixture components are univariate Gaussians, the upper envelope $\mathcal{E}_U(x)$ amounts to find equivalently the lower envelope of k' parabola (see Fig. 1) which has linear complexity, and can be computed in $O(k' \log k')$ -time [21], or in output-sensitive time $O(k' \log \ell)$ [22], where ℓ denotes the number of parabola segments of the envelope. When the Gaussian mixture components have all the same weight and variance (e.g., kernel density estimators), the upper envelope amounts to find a lower envelope of cones: $\min_j |x - \mu'_j|$ (a Voronoi diagram in arbitrary dimension).

To proceed once the envelope has been built, we need to calculate two types of *definite integrals* on those elementary intervals: (i) the *probability mass* in an interval $\int_a^b p(x) dx = \Phi(b) - \Phi(a)$ where Φ denotes the Cumulative Distribution Function (CDF), and (ii) the *partial cross-entropy* $-\int_a^b p(x) \log p'(x) dx$ [23]. Thus let us define these two quantities:

$$C_{i,j}(a, b) = - \int_a^b w_i p_i(x) \log(w'_j p'_j(x)) dx, \quad (9)$$

$$M_i(a, b) = - \int_a^b w_i p_i(x) dx. \quad (10)$$

Then we get the bounds as

$$\begin{aligned} L_{\times}(m : m') &= \sum_{r=1}^{\ell} \sum_{s=1}^k C_{s,\delta(r)}(a_r, a_{r+1}) - \log k', \\ U_{\times}(m : m') &= \sum_{r=1}^{\ell} \sum_{s=1}^k \min \left\{ C_{s,\delta(r)}(a_r, a_{r+1}), C_{s,\epsilon(r)}(a_r, a_{r+1}) - M_s(a_r, a_{r+1}) \log k' \right\}. \end{aligned} \quad (11)$$

The size of the lower/upper bound formula depends on the complexity of the upper envelope, and of the closed-form expressions of the integral terms $C_{i,j}(a, b)$ and $M_i(a, b)$. In general, when weighted component densities intersect in at most p points, the complexity is related to the Davenport-Schinzel sequences [24]. It is quasi-linear for bounded $p = O(1)$, see [24].

Note that in symbolic computing, the Risch semi-algorithm [25] solves the problem of computing indefinite integration in terms of elementary functions provided that there exists an oracle (hence the term semi-algorithm) for checking whether an expression is equivalent to zero or not (however it is unknown whether there exists an algorithm implementing the oracle or not).

We presented the technique by bounding the cross-entropy (and entropy) to deliver lower/upper bounds on the KL divergence. When only the KL divergence needs to be bounded, we rather consider the ratio term $\frac{m(x)}{m'(x)}$. This requires to partition the support \mathcal{X} into elementary intervals by overlaying the critical points of both the lower and upper envelopes of $m(x)$ and $m'(x)$. In a given elementary interval, since $\max(k \min_i \{w_i p_i(x)\}, \max_i \{w_i p_i(x)\}) \leq m(x) \leq k \max_i \{w_i p_i(x)\}$, we then consider the inequalities:

$$\frac{\max(k \min_i \{w_i p_i(x)\}, \max_i \{w_i p_i(x)\})}{k \max_j \{w'_j p'_j(x)\}} \leq \frac{m(x)}{m'(x)} \leq \frac{k \max_i \{w_i p_i(x)\}}{\max(k \min_j \{w'_j p'_j(x)\}, \max_j \{w'_j p'_j(x)\})}. \quad (12)$$

We now need to compute definite integrals of the form $\int_a^b w_1 p(x; \theta_1) \log \frac{w_2 p(x; \theta_2)}{w_3 p(x; \theta_3)} dx$ (see Appendix B for explicit formulas when considering scaled and truncated exponential families [16]). (Thus for exponential families, the ratio of densities remove the auxiliary carrier measure term.)

We call these bounds CELB and CEUB that stands for Combinatorial Envelope Lower and Upper Bounds, respectively.

2.1. Tighter adaptive bounds

We shall now consider *data-dependent* bounds improving over the additive $\log k + \log k'$ non-adaptive bounds. Let $t_i(x_1, \dots, x_k) = \log \left(\sum_{j=1}^k e^{x_j - x_i} \right)$. Then $\text{lse}(x_1, \dots, x_k) = x_i + t_i(x_1, \dots, x_k)$ for all $i \in [k]$. We denote by $x_{(1)}, \dots, x_{(k)}$ the sequence of numbers sorted in non-decreasing order.

Clearly, when $x_i = x_{(k)}$ is chosen as the maximum element, we have

$$\log \left(\sum_{j=1}^k e^{x_j - x_i} \right) = \log \left(1 + \sum_{j=1}^{k-1} e^{x_{(j)} - x_{(k)}} \right) \leq \log k$$

since $x_{(j)} - x_{(k)} \leq 0$ for all $j \in [k]$.

Also since $e^{x_j - x_i} = 1$ when $j = i$ and $e^{x_j - x_i} > 0$, we have necessarily $t_i(x_1, \dots, x_k) > 0$ for any $i \in [k]$. Since it is an identity for all $i \in [k]$, we minimize $t_i(x_1, \dots, x_k)$ by maximizing x_i , and therefore, we have $\text{lse}(x_1, \dots, x_k) = x_{(k)} + t_{(k)}(x_1, \dots, x_k)$ where the $t_{(k)}$ term yields the smallest residual.

When considering 1D GMMs, let us now bound $t_{(k)}(x_1, \dots, x_k)$ in a combinatorial range $I_r = (a_r, a_{r+1})$ of the lower envelope of parabolas. Let $\delta = \delta(r)$ denote the index of the dominating weighted component in this range. Then,

$$\forall x \in I_r, \forall i, \quad \exp \left(-\log \sigma_i - \frac{(x - \mu_i)^2}{2\sigma_i^2} + \log w_i \right) \leq \exp \left(-\log \sigma_\delta - \frac{(x - \mu_\delta)^2}{2\sigma_\delta^2} + \log w_\delta \right).$$

Thus we have:

$$\begin{aligned} \log m(x) &= \log \frac{w_\delta}{\sigma_\delta \sqrt{2\pi}} - \frac{(x - \mu_\delta)^2}{2\sigma_\delta^2} \\ &+ \log \left(1 + \sum_{i \neq m} \exp \left(-\frac{(x - \mu_i)^2}{2\sigma_i^2} + \log \frac{w_i}{\sigma_i} + \frac{(x - \mu_\delta)^2}{2\sigma_\delta^2} - \log \frac{w_\delta}{\sigma_\delta} \right) \right) \end{aligned}$$

Now consider the ratio term:

$$\rho_{i,m}(x) = \exp \left(-\frac{(x - \mu_i)^2}{2\sigma_i^2} + \log \frac{w_i \sigma_\delta}{w_\delta \sigma_i} + \frac{(x - \mu_\delta)^2}{2\sigma_\delta^2} \right).$$

It is maximized in $I_r = (a_r, a_{r+1})$ by maximizing equivalently the following quadratic equation:

$$l_{i,m}(x) = -\frac{(x - \mu_i)^2}{2\sigma_i^2} + \log \frac{w_i \sigma_\delta}{w_\delta \sigma_i} + \frac{(x - \mu_\delta)^2}{2\sigma_\delta^2}$$

Setting the derivative to zero ($l'_{i,m}(x) = 0$), we get the root (when $\sigma_i \neq \sigma_\delta$)

$$x_{i,\delta} = \frac{\frac{\mu_\delta}{\sigma_\delta^2} - \frac{\mu_i}{\sigma_i^2}}{\frac{1}{\sigma_\delta^2} - \frac{1}{\sigma_i^2}}.$$

If $x_{i,\delta} \in I_r$, the ratio $\rho_{i,\delta}(x)$ can be bounded in the slab I_r by considering the extreme values of the three element set $\{\rho_{i,\delta}(a_r), \rho_{i,\delta}(x_{i,\delta}), \rho_{i,\delta}(a_{r+1})\}$. Otherwise $\rho_{i,\delta}(x)$ is monotonic in I_r , its bounds in I_r is given by $\{\rho_{i,\delta}(a_r), \rho_{i,\delta}(a_{r+1})\}$. In any case, let $\rho_{i,\delta}^{\min}(r)$ and $\rho_{i,\delta}^{\max}(r)$ represent the resulting lower and upper bounds. Then t_δ is bounded in the range I_r by:

$$0 < \log \left(1 + \sum_{i \neq m} \rho_{i,\delta}^{\min}(r) \right) \leq t_\delta \leq \log \left(1 + \sum_{i \neq m} \rho_{i,\delta}^{\max}(r) \right) \leq \log k$$

In practice, we always get better bounds using the data-dependent technique at the expense of computing overall the $O(k^2)$ intersection points of the pairwise densities.

We call those bounds CEALB and CEAUB for Combinatorial Envelope Adaptive Lower Bound (CEALB) and Combinatorial Envelope Adaptive Upper Bound (CEAUB).

Let us illustrate one scenario where this adaptive technique yields very good approximations: For example, consider a GMM with all variance σ^2 tending to zero (a mixture of k Diracs). Then in a combinatorial slab I_r , we have $\rho_{i,\delta}^{\max}(r) \rightarrow 0$ for all $i \neq \delta$, and therefore we get tight bounds.

Notice that we could have also upper bounded $\int_{a_r}^{a_{r+1}} \log m(x) dx$ by $(a_{r+1} - a_r) \log m(a_r, a_{r+1})$ where $m(x, x')$ denotes the maximal value of the mixture density in the range (x, x') . The maximal value is either found at the slab extremities, or is a mode of the GMM: It then requires to find the modes of a GMM [26,27], for which no analytical solution is known in general.

2.2. Another derivation using the arithmetic-geometric mean inequality

Let us start by considering the inequality of arithmetic and geometric weighted means applied to the mixture component distributions:

$$m'(x) = \sum_{i=1}^{k'} w'_i p(x; \theta'_i) \geq \prod_{i=1}^{k'} p(x; \theta'_i)^{w'_i}$$

with equality iff. $\theta'_1 = \dots = \theta'_{k'}$.

To get a tractable formula with a positive remainder of the log-sum term $\log m'(x)$, we need to have the log argument greater or equal to 1, and thus we shall write the positive remainder:

$$R(x) = \log \left(\frac{m'(x)}{\prod_{i=1}^{k'} p(x; \theta'_i)^{w'_i}} \right) \geq 0.$$

Therefore, we can decompose the log-sum into a tractable part $\log \prod_{i=1}^{k'} p(x; \theta'_i)^{w'_i}$ and the remainder as:

$$\log m'(x) = \sum_{i=1}^{k'} w'_i \log p(x; \theta'_i) + \log \left(\frac{m'(x)}{\prod_{i=1}^{k'} p(x; \theta'_i)^{w'_i}} \right).$$

The first term can be computed accurately. For the second term, we have to notice that $\prod_{i=1}^{k'} p(x; \theta'_i)^{w'_i}$ can be computed exactly as long as $p(x; \theta)$ is an exponential family. We denote $p(x; \theta_0) = \prod_{i=1}^{k'} p(x; \theta'_i)^{w'_i}$. Then

$$R(x) = \log \left(\sum_{i=1}^{k'} \frac{p(x; \theta_i)}{p(x; \theta_0)} \right)$$

As the ratio $p(x; \theta_i)/p(x; \theta_0)$ can be bounded above and below using techniques in section 2.1, $R(x)$ can be correspondingly bounded. This derivation is not used in our experiments but provided here for future extensions. Essentially, the gap of the bounds is up to the difference between the geometric average and the arithmetic average. If the mixture components are similar, this difference is small, and the bounds have good quality in the sense of a small gap.

In the following, we instantiate the proposed method for the prominent cases of exponential mixture models, Gaussian mixture models and Rayleigh mixture models often used to model intensity histograms in image [1] and ultra-sound [2] processing, respectively.

2.3. Case studies

2.3.1. The case of exponential mixture models

An exponential distribution has density $p(x; \lambda) = \lambda \exp(-\lambda x)$ defined on $\mathcal{X} = [0, \infty)$ for $\lambda > 0$. Its CDF is $\Phi(x; \lambda) = 1 - \exp(-\lambda x)$. Any two components $w_1 p(x; \lambda_1)$ and $w_2 p(x; \lambda_2)$ (with $\lambda_1 \neq \lambda_2$) have a unique intersection point

$$x^* = \frac{\log(w_2 \lambda_2) - \log(w_1 \lambda_1)}{\lambda_2 - \lambda_1} \quad (13)$$

if $x^* \geq 0$; otherwise they do not intersect. The basic quantities to evaluate the bounds are

$$C_{i,j}(a, b) = \log \left(\lambda'_j w'_j \right) M_i(a, b) + w_i \lambda'_j \left[\left(a + \frac{1}{\lambda_i} \right) e^{-\lambda_i a} - \left(b + \frac{1}{\lambda_i} \right) e^{-\lambda_i b} \right], \quad (14)$$

$$M_i(a, b) = -w_i \left(e^{-\lambda_i a} - e^{-\lambda_i b} \right). \quad (15)$$

2.3.2. The case of Rayleigh mixture models

A Rayleigh distribution has density $p(x; \sigma) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right)$, defined on $\mathcal{X} = [0, \infty)$ for $\sigma > 0$. Its CDF is $\Phi(x; \sigma) = 1 - \exp\left(-\frac{x^2}{2\sigma^2}\right)$. Any two components $w_1 p(x; \sigma_1)$ and $w_2 p(x; \sigma_2)$ (with $\sigma_1 \neq \sigma_2$) must intersect at $x_0 = 0$ and can have at most one other intersection point

$$x^* = \sqrt{\log \frac{w_1 \sigma_2^2}{w_2 \sigma_1^2} / \left(\frac{1}{2\sigma_1^2} - \frac{1}{2\sigma_2^2} \right)} \quad (16)$$

if the square root is well defined and $x^* > 0$. We have

$$C_{i,j}(a, b) = \log \frac{w'_j}{(\sigma'_j)^2} M_i(a, b) + \frac{w_i}{2(\sigma'_j)^2} \left[(a^2 + 2\sigma_i^2) e^{-\frac{a^2}{2\sigma_i^2}} - (b^2 + 2\sigma_i^2) e^{-\frac{b^2}{2\sigma_i^2}} \right] - w_i \int_a^b \frac{x}{\sigma_i^2} \exp\left(-\frac{x^2}{2\sigma_i^2}\right) \log x dx, \quad (17)$$

$$M_i(a, b) = -w_i \left(e^{-\frac{a^2}{2\sigma_i^2}} - e^{-\frac{b^2}{2\sigma_i^2}} \right). \quad (18)$$

The last term in Eq. (17) does not have a simple closed form (it requires the exponential integral Ei). One need a numerical integrator to compute it.

2.3.3. The case of Gaussian mixture models

The Gaussian density $p(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$ has support $\mathcal{X} = \mathbb{R}$ and parameters $\mu \in \mathbb{R}$ and $\sigma > 0$. Its CDF is $\Phi(x; \mu, \sigma) = \frac{1}{2} \left[1 + \text{erf}\left(\frac{x-\mu}{\sqrt{2}\sigma}\right) \right]$, where erf is the Gauss error function. The intersection point x^* of two components $w_1 p(x; \mu_1, \sigma_1)$ and $w_2 p(x; \mu_2, \sigma_2)$ can be obtained by solving the quadratic equation $\log(w_1 p(x^*; \mu_1, \sigma_1)) = \log(w_2 p(x^*; \mu_2, \sigma_2))$, which gives at most two solutions. As shown in Fig. (1), the upper envelope of Gaussian densities correspond to the lower envelope of parabolas. We have

$$C_{i,j}(a, b) = M_i(a, b) \left(\log w'_j - \log \sigma'_j - \frac{1}{2} \log(2\pi) - \frac{1}{2(\sigma'_j)^2} \left((\mu'_j - \mu_i)^2 + \sigma_i^2 \right) \right) + \frac{w_i \sigma_i}{2\sqrt{2\pi}(\sigma'_j)^2} \left[(a + \mu_i - 2\mu'_j) e^{-\frac{(a-\mu_i)^2}{2\sigma_i^2}} - (b + \mu_i - 2\mu'_j) e^{-\frac{(b-\mu_i)^2}{2\sigma_i^2}} \right], \quad (19)$$

$$M_i(a, b) = -\frac{w_i}{2} \left(\text{erf}\left(\frac{b-\mu_i}{\sqrt{2}\sigma_i}\right) - \text{erf}\left(\frac{a-\mu_i}{\sqrt{2}\sigma_i}\right) \right). \quad (20)$$

2.3.4. The case of gamma distributions

For simplicity, we only consider γ -distributions with fixed shape parameter $k > 0$ and varying scale $\lambda > 0$. The density is defined on $(0, \infty)$ as $p(x; k, \lambda) = \frac{x^{k-1} e^{-\frac{x}{\lambda}}}{\lambda^k \Gamma(k)}$, where $\Gamma(\cdot)$ is the gamma function. Its CDF is $\Phi(x; k, \lambda) = \gamma(k, x/\lambda)/\Gamma(k)$, where $\gamma(\cdot, \cdot)$ is the lower incomplete gamma function. Two weighted gamma densities $w_1 p(x; k, \lambda_1)$ and $w_2 p(x; k, \lambda_2)$ (with $\lambda_1 \neq \lambda_2$) intersect at a unique point

$$x^* = \frac{\log \frac{w_1}{\lambda_1^k} - \log \frac{w_2}{\lambda_2^k}}{\frac{1}{\lambda_1} - \frac{1}{\lambda_2}} \quad (21)$$

if $x^* > 0$; otherwise they do not intersect. From straightforward derivations,

$$C_{i,j}(a, b) = \log \frac{w'_j}{(\lambda'_j)^k \Gamma(k)} M_i(a, b) + w_i \int_a^b \frac{x^{k-1} e^{-\frac{x}{\lambda'_i}}}{\lambda_i^k \Gamma(k)} \left(\frac{x}{\lambda'_j} - (k-1) \log x \right) dx, \quad (22)$$

$$M_i(a, b) = -\frac{w_i}{\Gamma(k)} \left(\gamma \left(k, \frac{b}{\lambda_i} \right) - \gamma \left(k, \frac{a}{\lambda_i} \right) \right). \quad (23)$$

Again, the last term in Eq. (22) relies on numerical integration.

3. Upper-bounding the differential entropy of a mixture

First, consider a finite parametric mixture model $m(x) = \sum_{i=1}^k w_i p(x; \theta_i)$. Using the chain rule of the entropy, we end up with the well-known lemma:

Lemma 1. *The entropy of a mixture is upper bounded by the sum of the entropy of its marginal mixtures: $H(m) \leq \sum_{i=1}^k H(m_i)$, where m_i is the 1D marginal mixture with respect to variable x_i .*

Since the 1D marginals of a multivariate GMM are univariate GMMs, we thus get a loose upper bound. A generic sample-based probabilistic bound is reported for the entropies of distributions with given support [28]: The method considers the empirical cumulative distribution function from an iid finite sample set of size n to build probabilistic upper and lower piecewisely linear CDFs given a deviation probability threshold. It then builds algorithmically between those two bounds the maximum entropy distribution [28] with a so-called string-tightening algorithm.

Instead, proceed as follows: Consider finite mixtures of component distributions defined on the full support \mathbb{R}^d that have finite component means and variances (like exponential families). Then we shall use the fact that the maximum entropy distribution with prescribed mean and variance is a Gaussian distribution², and conclude the upper bound by plugging the mixture mean and variance in the differential entropy formula of the Gaussian distribution.

Wlog, consider GMMs in the form $m(x) = \sum_{i=1}^k w_i p(x; \mu_i, \Sigma_i)$ ($\Sigma_i = \sigma_i^2$ for univariate Gaussians). The mean $\bar{\mu}$ of the mixture is $\bar{\mu} = \sum_{i=1}^k w_i \mu_i$ and the variance is $\bar{\sigma}^2 = E[m^2] - E[m]^2$. Since $E[m^2] = \sum_{i=1}^k w_i \int x^2 p(x; \mu_i, \Sigma_i) dx$ and $\int x^2 p(x; \mu_i, \Sigma_i) dx = \mu_i^2 + \sigma_i^2$, we deduce that

$$\bar{\sigma}^2 = \sum_{i=1}^k w_i (\mu_i^2 + \sigma_i^2) - \left(\sum_{i=1}^k w_i \mu_i \right)^2 = \sum_{i=1}^k w_i \left[(\mu_i - \bar{\mu})^2 + \sigma_i^2 \right].$$

The entropy of a random variable with a prescribed variance $\bar{\sigma}^2$ is maximal for the Gaussian distribution with the same variance $\bar{\sigma}^2$, see [4]. Since the differential entropy of a Gaussian is $\log(\bar{\sigma} \sqrt{2\pi e})$, we deduce that the entropy of the GMM is upper bounded by

$$H(m) \leq \frac{1}{2} \log(2\pi e) + \frac{1}{2} \log \sum_{i=1}^k w_i \left[(\mu_i - \bar{\mu})^2 + \sigma_i^2 \right].$$

This upper bound generalizes to arbitrary dimension. We get the following lemma:

Lemma 2. *The entropy of a d -variate GMM $m(x) = \sum_{i=1}^k w_i p(x; \mu_i, \Sigma_i)$ is upper bounded by $\frac{d}{2} \log(2\pi e) + \frac{1}{2} \log \det \Sigma$, where $\Sigma = \sum_{i=1}^k w_i (\mu_i \mu_i^\top + \Sigma_i) - \left(\sum_{i=1}^k w_i \mu_i \right) \left(\sum_{i=1}^k w_i \mu_i^\top \right)$.*

In general, exponential families have finite moments of any order [16]: In particular, we have $E[t(X)] = \nabla F(\theta)$ and $V[t(X)] = \nabla^2 F(\theta)$. For the Gaussian distribution, we have the sufficient statistics

² In general, the maximum entropy with moment constraints yields as a solution an exponential family.

$t(x) = (x, x^2)$ so that $E[t(X)] = \nabla F(\theta)$ yields the mean and variance from the log-normalizer. It is easy to generalize lemma 2 to mixtures of exponential family distributions.

Note that this bound (called the Maximum Entropy Upper Bound in [12], MEUB) is tight when the GMM approximates a single Gaussian. It is fast to compute compared to the bound reported in [8] that uses Taylor's expansion of the log-sum of the mixture density.

A similar argument cannot be applied for a lower bound since a GMM with a given variance may have entropy tending to $-\infty$ as follows: Wlog., assume the 2-component mixture's mean is zero, and that the variance approximates 1 by taking $m(x) = \frac{1}{2}G(x; -1, \epsilon) + \frac{1}{2}G(x; 1, \epsilon)$ where G denotes the Gaussian density. Letting $\epsilon \rightarrow 0$, we get the entropy tending to $-\infty$.

We remark that our log-exp-sum inequality technique yields a log 2 additive approximation range for the case of a Gaussian mixture with two components. It thus generalizes the bounds reported in [7] to arbitrary variance mixed Gaussians.

Let $U(m : m')$ and $L(m : m')$ denotes the deterministic upper and lower bounds, and $\Delta(m : m') = U(m : m') - L(m : m') \geq 0$ denotes the bound gap where the true value of the KL divergence belongs to. In practice, we seek matching lower and upper bounds that minimize the bound gap.

Consider the lse inequality $\log k + \min_i x_i \leq \text{lse}(x_1, \dots, x_k) \leq \log k + \max_i x_i$. The gap of that ham-sandwich inequality is $\max_i x_i - \min_i x_i$ since the $\log k$ terms cancel out. This gap improves over the $\log k$ gap of $\max_i x_i < \text{lse}(x_1, \dots, x_k) \leq \log k + \max_i x_i$ when $\max_i x_i - \min_i x_i \leq \log k$.

For log-sum terms of mixtures, we have $x_i = \log p_i(x) + \log w_i$.

$$\max_i x_i - \min_i x_i = \log \frac{\exp(\max_i x_i)}{\exp(\min_i x_i)} = \log \frac{\max_i w_i p_i(x)}{\min_i w_i p_i(x)}$$

For the differential entropy, we thus have

$$-\sum_r \int_{I_r} m(x) \log \max_i w_i p_i(x) dx \leq H(m) \leq -\sum_r \int_{I_r} m(x) \log \min_i w_i p_i(x) dx$$

Therefore the gap is:

$$\Delta = \sum_r \int_{I_r} m(x) \log \frac{\max_i w_i p_i(x)}{\min_i w_i p_i(x)} dx = \sum_s \sum_r \int_{I_r} w_s p_s(x) \log \frac{\max_i w_i p_i(x)}{\min_i w_i p_i(x)} dx.$$

Thus to compute the gap error bound of the differential entropy, we need to integrate terms in the form

$$\int w_a p(x; \theta_a) \log \frac{w_b p_b(x)}{w_c p_c(x)} dx.$$

See appendix B for a closed-form formula when dealing with exponential family components.

4. Bounding α -divergences

The α -divergence [29–32] between $m(x) = \sum_{i=1}^k w_i p_i(x)$ and $m'(x) = \sum_{i=1}^{k'} w'_i p'_i(x)$ is defined as

$$D_\alpha(m : m') = \frac{1}{\alpha(1-\alpha)} \left(1 - \int_{\mathcal{X}} m(x)^\alpha m'(x)^{1-\alpha} dx \right), \quad (24)$$

which clearly satisfies $D_\alpha(m : m') = D_{1-\alpha}(m' : m)$. The α -divergence is a family of information divergences parametrized by $\alpha \in \mathbb{R} \setminus \{0, 1\}$. Let $\alpha \rightarrow 1$, we get the Kullback-Leibler (KL) divergence (see [33] for a proof):

$$\lim_{\alpha \rightarrow 1} D_\alpha(m : m') = \text{KL}(m : m') = \int_{\mathcal{X}} m(x) \log \frac{m(x)}{m'(x)} dx, \quad (25)$$

and $\alpha \rightarrow 0$ gives the reverse KL divergence:

$$\lim_{\alpha \rightarrow 0} D_\alpha(m : m') = \text{KL}(m' : m).$$

Other interesting values [30] includes $\alpha = 1/2$ (squared Hellinger distance), $\alpha = 2$ (Pearson Chi-square distance), $\alpha = -1$ (Neyman Chi-square distance), etc. Notably, the Hellinger distance is a valid distance metric which satisfies non-negativity, symmetry, and the triangle inequality. In general, $D_\alpha(m : m')$ only satisfies non-negativity so that $D_\alpha(m : m') \geq 0$ for any $m(x)$ and $m'(x)$. It is neither symmetric nor admitting the triangle inequality. Minimization of α -divergences allow one to choose a trade-off between mode-fitting and support fitting of the minimizer [34]. The minimizer of α -divergences including MLE as a special case has interesting connections with transcendental number theory [35].

To compute $D_\alpha(m : m')$ for given $m(x)$ and $m'(x)$ reduces to evaluate the Hellinger integral [36,37]

$$H_\alpha(m : m') = \int_{\mathcal{X}} m(x)^\alpha m'(x)^{1-\alpha} dx, \quad (26)$$

which in general does not have a closed form, as it was known that the α -divergence of mixture models is not analytic [6]. Moreover, $H_\alpha(m : m')$ may diverge making the α -divergence unbounded. Once $H_\alpha(m : m')$ can be solved, the Rényi and Tsallis divergences [33] and in general Sharma-Mittal divergences [38] can be easily computed. Therefore the results presented here directly extend to those divergences.

Similar to the case of KL divergence, the Monte-Carlo (MC) stochastic estimation of $H_\alpha(m : m')$ can be computed either as

$$\hat{H}_\alpha^n(m : m') = \frac{1}{n} \sum_{i=1}^n \left(\frac{m'(x_i)}{m(x_i)} \right)^{1-\alpha},$$

where $x_1, \dots, x_n \sim m(x)$ are iid samples, or as

$$\hat{H}_\alpha^n(m : m') = \frac{1}{n} \sum_{i=1}^n \left(\frac{m(x)}{m'(x)} \right)^\alpha,$$

where $x_1, \dots, x_n \sim m'(x)$ are iid. In either case, it is consistent so that $\lim_{n \rightarrow \infty} \hat{H}_\alpha^n(m : m') = H_\alpha(m : m')$. However, MC estimation requires a large sample and does not guarantee deterministic bounds. The techniques described in [39] work in practice for very close distributions, and do not apply between mixture models.

4.1. Basic Bounds

For a pair of given $m(x)$ and $m'(x)$, we only need to derive bounds of $H_\alpha(m : m')$ in eq. (26) so that $L_\alpha(m : m') \leq H_\alpha(m : m') \leq U_\alpha(m : m')$. Then $D_\alpha(m : m')$ can be bounded by a linear transformation of the range $[L_\alpha(m : m'), U_\alpha(m : m')]$. In the following we always assume w.l.o.g. $\alpha \geq 1/2$. Otherwise we can bound $D_\alpha(m : m')$ by considering equivalently the bounds of $D_{1-\alpha}(m' : m)$.

Recall that in each elementary slab I_r , we must have

$$\max \left\{ kw_{\epsilon(r)} p_{\epsilon(r)}(x), w_{\delta(r)} p_{\delta(r)}(x) \right\} \leq m(x) \leq kw_{\delta(r)} p_{\delta(r)}(x). \quad (27)$$

Notice that $kw_{\epsilon(r)} p_{\epsilon(r)}(x)$, $w_{\delta(r)} p_{\delta(r)}(x)$, and $kw_{\delta(r)} p_{\delta(r)}(x)$ are all single component distributions up to a scaling coefficient. The general thinking is to bound the multi-component mixture $m(x)$ by single component distributions in each elementary interval, so that the integral in eq. (26) can be computed in a piecewise manner.

For the convenience of notation, we rewrite eq. (27) as

$$c_{\nu(r)} p_{\nu(r)}(x) \leq m(x) \leq c_{\delta(r)} p_{\delta(r)}(x), \quad (28)$$

where

$$c_{\nu(r)} p_{\nu(r)}(x) := k w_{\epsilon(r)} p_{\epsilon(r)}(x) \quad \text{or} \quad w_{\delta(r)} p_{\delta(r)}(x), \quad (29)$$

$$c_{\delta(r)} p_{\delta(r)}(x) := k w_{\delta(r)} p_{\delta(r)}(x). \quad (30)$$

If $1/2 \leq \alpha < 1$, then both x^α and $x^{1-\alpha}$ are monotonically increasing on \mathbb{R}^+ . Therefore we have

$$A_{\nu(r),\nu'(r)}^\alpha(I_r) \leq \int_{I_r} m(x)^\alpha m'(x)^{1-\alpha} dx \leq A_{\delta(r),\delta'(r)}^\alpha(I_r), \quad (31)$$

where

$$A_{i,j}^\alpha(I) = \int_I (c_i p_i(x))^\alpha (c_j' p_j'(x))^{1-\alpha} dx, \quad (32)$$

and I denotes an interval $I = (a, b) \subset \mathbb{R}$. The other case $\alpha > 1$ is similar by noting that x^α and $x^{1-\alpha}$ are monotonically increasing and decreasing on \mathbb{R}^+ , respectively. In conclusion, we obtain the following bounds of $H_\alpha(m : m')$:

$$\text{If } 1/2 \leq \alpha < 1, \quad L_\alpha(m : m') = \sum_{r=1}^{\ell} A_{\nu(r),\nu'(r)}^\alpha(I_r), \quad U_\alpha(m : m') = \sum_{r=1}^{\ell} A_{\delta(r),\delta'(r)}^\alpha(I_r); \quad (33)$$

$$\text{if } \alpha > 1, \quad L_\alpha(m : m') = \sum_{r=1}^{\ell} A_{\nu(r),\delta'(r)}^\alpha(I_r), \quad U_\alpha(m : m') = \sum_{r=1}^{\ell} A_{\delta(r),\nu'(r)}^\alpha(I_r). \quad (34)$$

The remaining problem is to compute the definite integral $A_{i,j}^\alpha(I)$ in the above equations. Here we assume all mixture components are in the same exponential family so that $p_i(x) = p(x; \theta_i) = h(x) \exp(\theta_i^\top t(x) - F(\theta_i))$, where $h(x)$ is a base measure, $t(x)$ is a vector of sufficient statistics, and the function F is known as the cumulant generating function. Then it is straightforward from eq. (32) that

$$A_{i,j}^\alpha(I) = c_i^\alpha (c_j')^{1-\alpha} \int_I h(x) \exp \left(\left(\alpha \theta_i + (1-\alpha) \theta_j' \right)^\top t(x) - \alpha F(\theta_i) - (1-\alpha) F(\theta_j') \right) dx. \quad (35)$$

If $1/2 \leq \alpha < 1$, then $\bar{\theta} = \alpha \theta_i + (1-\alpha) \theta_j'$ belongs to the natural parameter space \mathcal{M}_θ . Therefore $A_{i,j}^\alpha(I)$ is bounded and can be computed from the cumulative distribution function (CDF) of $p(x; \bar{\theta})$ as $A_{i,j}^\alpha(I) = c_i^\alpha (c_j')^{1-\alpha} \exp(F(\bar{\theta}) - \alpha F(\theta_i) - (1-\alpha) F(\theta_j')) \int_I p(x; \bar{\theta}) dx$. The other case $\alpha > 1$ is more difficult: if $\bar{\theta} = \alpha \theta_i + (1-\alpha) \theta_j'$ still lie in \mathcal{M}_θ , $A_{i,j}^\alpha(I)$ can be computed in the same way. Otherwise we try to solve it by a numerical integrator. This is not ideal as the integral may diverge, or our approximation may be too loose to conclude. We point the reader to [40] and eqs.(61-69) in [33] for related analysis with more details. As computing $A_{i,j}^\alpha(I)$ only requires $O(1)$ time, the overall computational complexity (disregard envelope computation) is $O(\ell)$.

4.2. Adaptive Bounds

This section derives the shape-dependent bounds which improves the basic bounds in section 4.1. We can rewrite a mixture model $m(x)$ in a slab I_r as

$$m(x) = w_{\zeta(r)} p_{\zeta(r)}(x) \left(1 + \sum_{i \neq \zeta(r)} \frac{w_i p_i(x)}{w_{\zeta(r)} p_{\zeta(r)}(x)} \right), \quad (36)$$

where $w_{\zeta(r)}p_{\zeta(r)}(x)$ is a weighted component in $m(x)$ serving as a *reference*. We only discuss the case that the reference is chosen as the dominating component, i.e., $\zeta(r) = \delta(r)$. However it is worth to note that the proposed bounds does not depend on this particular choice. Therefore the ratio

$$\frac{w_i p_i(x)}{w_{\zeta(r)} p_{\zeta(r)}(x)} = \frac{w_i}{w_{\zeta(r)}} \exp \left(\left(\theta_i - \theta_{\zeta(r)} \right)^\top t(x) - F(\theta_i) + F(\theta_{\zeta(r)}) \right) \quad (37)$$

can be bounded in a sub-range of $[0, 1]$ by analysing the extreme values of $t(x)$ in the slab I_r . This can be done because $t(x)$ is usually a polynomial function with finite critical points which can be solved easily. Correspondingly the function $\left(1 + \sum_{i \neq \zeta(r)} \frac{w_i p_i(x)}{w_{\zeta(r)} p_{\zeta(r)}(x)} \right)$ in I_r can be bounded in a subrange of $[1, k]$, denoted as $[\omega_{\zeta(r)}(I_r), \Omega_{\zeta(r)}(I_r)]$. Hence

$$\omega_{\zeta(r)}(I_r) w_{\zeta(r)} p_{\zeta(r)}(x) \leq m(x) \leq \Omega_{\zeta(r)}(I_r) w_{\zeta(r)} p_{\zeta(r)}(x). \quad (38)$$

This forms better bounds of $m(x)$ than eq. (27) because each component in the slab I_r is analysed more accurately. Therefore, we refine the fundamental bounds of $m(x)$ by replacing the boxed eqs. (29) and (30) with

$$c_{\nu(r)} p_{\nu(r)}(x) := \omega_{\zeta(r)}(I_r) w_{\zeta(r)} p_{\zeta(r)}(x), \quad (39)$$

$$c_{\delta(r)} p_{\delta(r)}(x) := \Omega_{\zeta(r)}(I_r) w_{\zeta(r)} p_{\zeta(r)}(x). \quad (40)$$

Then, the improved bounds of H_α are given by eqs. (33) and (34) according to the replaced definition of $c_{\nu(r)} p_{\nu(r)}(x)$ and $c_{\delta(r)} p_{\delta(r)}(x)$.

To evaluate $\omega_{\zeta(r)}(I_r)$ and $\Omega_{\zeta(r)}(I_r)$ requires iterating through all components in each slab. Therefore the computational complexity is increased to $O(\ell(k + k'))$.

4.3. Variance-reduced Bounds

This section further improves the proposed bounds based on variance reduction [41]. By assumption, $\alpha \geq 1/2$, then $m(x)^\alpha m'(x)^{1-\alpha}$ is more similar to $m(x)$ rather than $m'(x)$. The ratio $m(x)^\alpha m'(x)^{1-\alpha}/m(x)$ is likely to have a small variance when x varies inside a slab I_r . We will therefore bound this ratio term in

$$\int_{I_r} m(x)^\alpha m'(x)^{1-\alpha} dx = \int_{I_r} m(x) \left(\frac{m(x)^\alpha m'(x)^{1-\alpha}}{m(x)} \right) dx = \sum_{i=1}^k \int_{I_r} w_i p_i(x) \left(\frac{m'(x)}{m(x)} \right)^{1-\alpha} dx. \quad (41)$$

No matter $\alpha < 1$ or $\alpha > 1$, the function $x^{1-\alpha}$ must be monotonic on \mathbb{R}^+ , and we must have that, in each slab I_r , $(m'(x)/m(x))^{1-\alpha}$ ranges between these two functions:

$$\left(\frac{c'_{\nu'(r)} p'_{\nu'(r)}(x)}{c_{\delta(r)} p_{\delta(r)}(x)} \right)^{1-\alpha} \quad \text{and} \quad \left(\frac{c'_{\delta'(r)} p'_{\delta'(r)}(x)}{c_{\nu(r)} p_{\nu(r)}(x)} \right)^{1-\alpha}, \quad (42)$$

where $c_{\nu(r)} p_{\nu(r)}(x)$, $c_{\delta(r)} p_{\delta(r)}(x)$, $c'_{\nu'(r)} p'_{\nu'(r)}(x)$ and $c'_{\delta'(r)} p'_{\delta'(r)}(x)$ is defined as in eqs. (39) and (40). Similar to the definition of $A_{i,j}^\alpha(I)$ in eq. (32), we define

$$B_{i,j,l}^\alpha(I) = \int_I w_i p_i(x) \left(\frac{c'_l p'_l(x)}{c_j p_j(x)} \right)^{1-\alpha} dx. \quad (43)$$

Therefore we have,

$$L_\alpha(m : m') = \min \mathcal{S}, \quad U_\alpha(m : m') = \max \mathcal{S},$$

$$\mathcal{S} = \left\{ \sum_{r=1}^{\ell} \sum_{i=1}^k B_{i,\delta(r),\nu'(r)}^\alpha(I_r), \sum_{r=1}^{\ell} \sum_{i=1}^k B_{i,\nu(r),\delta'(r)}^\alpha(I_r) \right\}. \quad (44)$$

The remaining problem is to evaluate $B_{i,j,l}^\alpha(I)$ in eq. (43). Similar to section 4.1, assuming the components are in the same exponential family with respect to the natural parameters θ , we get similar to section 4.2 that

$$B_{i,j,l}^\alpha(I) = w_i \frac{w_l^{1-\alpha}}{w_j^{1-\alpha}} \exp \left(F(\bar{\theta}) - F(\theta_i) - (1-\alpha)F(\theta'_l) + (1-\alpha)F(\theta_j) \right) \int_I p(x; \bar{\theta}) dx, \quad (45)$$

if $\bar{\theta} = \theta_i + (1-\alpha)\theta'_l - (1-\alpha)\theta_j$ is in the natural parameter space; otherwise $B_{i,j,l}^\alpha(I)$ can be numerically integrated by its definition in eq. (43). The computational complexity is the same as the bounds in section 4.2, i.e., $O(\ell(k+k'))$.

We have introduced three pairs of deterministic lower and upper bounds that enclose the true value of α -divergence between univariate mixture models. Thus the gap between the upper and lower bounds provide the additive approximation factor of the bounds. We conclude by emphasizing that the presented methodology can be easily generalized to other divergence [33,38] relying on Hellinger-type integrals $H_{\alpha,\beta}(p : q) = \int p(x)^\alpha q(x)^\beta dx$ like the γ -divergence [42] as well as entropy measures [43].

5. Lower bounds on the f -divergence between distributions

The f -divergence between two distributions $m(x)$ and $m'(x)$ (not necessarily mixtures) is defined for a *convex generator* f by:

$$D_f(m : m') = \int m(x) f \left(\frac{m'(x)}{m(x)} \right) dx.$$

If $f(x) = -\log x$, then $D_f(m : m') = \text{KL}(m : m')$.

Let us partition the support $\mathcal{X} = \bigcup_{r=1}^{\ell} I_r$ arbitrarily into elementary ranges, which do not necessarily correspond to the envelopes. Denote by M_I the probability mass of a mixture $m(x)$ in the range I : $M_I = \int_I m(x) dx$. Then

$$D_f(m : m') = \sum_{r=1}^{\ell} M_{I_r} \int_{I_r} \frac{m(x)}{M_{I_r}} f \left(\frac{m'(x)}{m(x)} \right) dx.$$

Note that in range I_r , $\frac{m(x)}{M_{I_r}}$ is a unit weight distribution. Thus by Jensen inequalities $f(E[X]) \leq E[f(X)]$, we can bound the integrals as

$$D_f(m : m') \geq \sum_{r=1}^{\ell} M_{I_r} f \left(\int_{I_r} \frac{m(x)}{M_{I_r}} \frac{m'(x)}{m(x)} \right) = \sum_{r=1}^{\ell} M_{I_r} f \left(\frac{M'_{I_r}}{M_{I_r}} \right). \quad (46)$$

Notice that the RHS of eq. (46) is the f -divergence between $(M_{I_1}, \dots, M_{I_\ell})$ and $(M'_{I_1}, \dots, M'_{I_\ell})$, denoted by $D_f^T(m : m')$. When $\ell = 1$, $I_1 = \mathcal{X}$, the above eq. (46) turns out to be the usual Gibb's inequality: $D_f(m : m') \geq f(1)$, and Csiszár generator is chosen so that $f(1) = 0$.

For a fixed (coarse-grained) countable partition of the partition, we recover the well-known information monotonicity [44] of the f -divergences:

$$D_f(m : m') \geq D_f^T(m : m') \geq 0.$$

In practice, we get closed-form lower bounds when $M_I = \int_{a_i}^{b_i} m(x)dx = \Phi(b_i) - \Phi(a_i)$ is available in closed-form formula, where $\Phi(\cdot)$ denote the Cumulative Distribution Function. In particular, if $m(x)$ is a mixture model, then its CDF can be computed by linearly combining the CDFs of its components.

To wrap up, we have proved that coarse-graining by making a finite partition of the range yields a lower bound on the f -divergence by virtue of the information monotonicity property of f -divergences. Therefore, instead of doing Monte-Carlo stochastic integration:

$$\hat{D}_f(m : m') = \frac{1}{s} \sum_{i=1}^s f\left(\frac{m'(x_i)}{m(x_i)}\right),$$

with $x_1, \dots, x_s \sim_{\text{iid}} m(x)$, it is better to sort those s samples and consider the coarse-grained partition:

$$\mathcal{I} = (-\infty, x_{(1)}] \cup \left(\uplus_{i=1}^{s-1} (x_{(i)}, x_{(i+1)}]\right) \cup (x_{(s)}, \infty)$$

to get a guaranteed lower bound on the f -divergence. We will call this bound CGQLB for coarse graining quantization lower bound.

Given a budget of s splitting points on the range \mathcal{X} , it would be interesting to find techniques to find the best s points that maximize $I_f^{\mathcal{I}}(m : m')$. This is ongoing research.

6. Experiments

We perform an empirical study to verify our theoretical bounds. We simulate four pairs of mixture models $\{(EMM_1, EMM_2), (RMM_1, RMM_2), (GMM_1, GMM_2), (GaMM_1, GaMM_2)\}$ as the test subjects. The component type is implied by the model name. The components of each mixture model are given as follows.

1. EMM₁'s components, in the form (λ_i, w_i) , are given by $(0.1, 1/3)$, $(0.5, 1/3)$, $(1, 1/3)$; EMM₂'s components are $(2, 0.2)$, $(10, 0.4)$, $(20, 0.4)$.
2. RMM₁'s components, in the form (σ_i, w_i) , are given by $(0.5, 1/3)$, $(2, 1/3)$, $(10, 1/3)$; RMM₂ consists of $(5, 0.25)$, $(60, 0.25)$, $(100, 0.5)$.
3. GMM₁'s components, in the form (μ_i, σ_i, w_i) , are $(-5, 1, 0.05)$, $(-2, 0.5, 0.1)$, $(5, 0.3, 0.2)$, $(10, 0.5, 0.2)$, $(15, 0.4, 0.05)$, $(25, 0.5, 0.3)$, $(30, 2, 0.1)$; GMM₂ consists of $(-16, 0.5, 0.1)$, $(-12, 0.2, 0.1)$, $(-8, 0.5, 0.1)$, $(-4, 0.2, 0.1)$, $(0, 0.5, 0.2)$, $(4, 0.2, 0.1)$, $(8, 0.5, 0.1)$, $(12, 0.2, 0.1)$, $(16, 0.5, 0.1)$.
4. GaMM₁'s components, in the form (k_i, λ_i, w_i) , are $(2, 0.5, 1/3)$, $(2, 2, 1/3)$, $(2, 4, 1/3)$; GaMM₂ consists of $(2, 5, 1/3)$, $(2, 8, 1/3)$, $(2, 10, 1/3)$.

We compare the proposed bounds with Monte-Carlo estimation with different sample sizes in the range $\{10^2, 10^3, 10^4, 10^5\}$. For each sample size configuration, we report the 0.95 confidence interval by Monte-Carlo estimation using the corresponding number of samples. Fig. (3)(a-d) shows the input signals as well as the estimation results, where the proposed bounds CELB, CEUB, CEALB, CEAUB, CGQLB are presented as horizontal lines, and the Monte-Carlo estimations over different sample sizes are presented as error bars. We can loosely consider the average Monte-Carlo output with the largest sample size (10^5) as the underlying truth, which is clearly inside our bounds. This serves as an empirical justification on the correctness of the bounds.

A key observation is that the bounds can be *very tight*, especially when the underlying KL divergence has a large magnitude, e.g. $KL(RMM_2 : RMM_1)$. This is because the gap between the lower and upper bounds is always guaranteed to be within $\log k + \log k'$. Because KL is unbounded measure [4], in the general case two mixture models may have a large KL. Then our approximation gap is relatively very small. On the other hand, we also observed that the bounds in certain cases, e.g. $KL(EMM_2 : EMM_1)$, are not as tight as the other cases. When the underlying KL is small, the bound is not as informative as the general case.

Table 1. The estimated D_α and its bounds. The 95% confidence interval is shown for MC.

α	MC(10^2)	MC(10^3)	MC(10^4)	Basic		Adaptive		VR		
				L	U	L	U	L	U	
GMM ₁ & GMM ₂	0	15.96 ± 3.9	12.30 ± 1.0	13.63 ± 0.3	11.75	15.89	12.96	14.63		
	0.01	13.36 ± 2.9	10.63 ± 0.8	11.66 ± 0.3	-700.50	11.73	-77.33	11.73	11.40	12.27
	0.5	3.57 ± 0.3	3.47 ± 0.1	3.47 ± 0.07	-0.60	3.42	3.01	3.42	3.17	3.51
	0.99	40.04 ± 7.7	37.22 ± 2.3	38.58 ± 0.8	-333.90	39.04	5.36	38.98	38.28	38.96
	1	104.01 ± 28	84.96 ± 7.2	92.57 ± 2.5	91.44	95.59	92.76	94.41		
GMM ₃ & GMM ₄	0	0.71 ± 0.2	0.63 ± 0.07	0.62 ± 0.02	0.00	1.76	0.00	1.16		
	0.01	0.71 ± 0.2	0.63 ± 0.07	0.62 ± 0.02	-179.13	7.63	-38.74	4.96	0.29	1.00
	0.5	0.82 ± 0.3	0.57 ± 0.1	0.62 ± 0.04	-5.23	0.93	-0.71	0.85	-0.18	1.19
	0.99	0.79 ± 0.3	0.76 ± 0.1	0.80 ± 0.03	-165.72	12.10	-59.76	9.11	0.37	1.28
	1	0.80 ± 0.3	0.77 ± 0.1	0.81 ± 0.03	0.00	1.82	0.31	1.40		

Comparatively, there is a significant improvement of the data-dependent bounds (CEALB and CEAUB) over the combinatorial bounds (CELB and CEUB). In all investigated cases, the adaptive bounds can roughly shrink the gap by half of its original size at the cost of additional computation.

Note that, the bounds are accurate and must contain the true value. Monte-Carlo estimation gives no guarantee on where the true value is. For example, in estimating $\text{KL}(\text{GMM}_1 : \text{GMM}_2)$, Monte-Carlo estimation based on 10^4 samples can go beyond our bounds! It therefore suffers from a larger estimation error.

CGQLB as a simple-to-implement technique shows surprising good performance in several cases, e.g., $\text{KL}(\text{RMM}_1, \text{RMM}_2)$. Although it requires a large number of samples, we can observe that increasing sample size has limited effect on improving this bound. Therefore, in practice, one may intersect the range defined by CEALB and CEAUB with the range defined by CGQLB with a small sample size (e.g., 100) to get better bounds.

We simulates a set of Gaussian mixture models besides the above GMM_1 and GMM_2 . Fig. 4 shows the GMM densities as well as their differential entropy. A detailed explanation of the components of each GMM model is omitted for brevity.

The key observation is that CEUB (CEAUB) is *very tight* in most of the investigated cases. This is because that the upper envelope that is used to compute CEUB (CEAUB) gives a very good estimation of the input signal.

Notice that MEUB only gives an upper bound of the differential entropy as discussed in section 3. In general the proposed bounds are tighter than MEUB. However, this is not the case when the mixture components are merged together and approximate one single Gaussian (and therefore its entropy can be well approximated by the Gaussian entropy), as shown in the last line of Fig. 4.

For α -divergence, the bounds introduced in sections 4.1 to 4.3 are denoted as “Basic”, “Adaptive” and “VR”, respectively. Figure 2 visualizes these GMMs and plots the estimations of their α -divergences against α . The red lines mean the upper envelope. The dashed vertical lines mean the elementary intervals. The components of GMM_1 and GMM_2 are more separated than GMM_3 and GMM_4 . Therefore these two pairs present different cases. For a clear presentation, only VR (which is expected to be better than Basic and Adaptive) is shown. We can see that, visually in the big scale, VR tightly surrounds the true value.

For a more quantitative comparison, table 1 shows the estimated α -divergence by MC, Basic, Adaptive, and VR. As D_α is defined on $\mathbb{R} \setminus \{0, 1\}$, the KL bounds CE(A)LB and CE(A)UB are presented for $\alpha = 0$ or 1. Overall, we have the following order of gap size: Basic > Adaptive > VR, and VR is recommended in general for bounding α -divergences. There are certain cases that the upper VR bound is looser than Adaptive. In practice one can compute the intersection of these bounds as well as the trivial bound $D_\alpha(m : m') \geq 0$ to get the best estimation.

Note the similarity between KL in eq. (25) and the expression in eq. (41). We give without a formal analysis that: CEAL(U)B is equivalent to VR at the limit $\alpha \rightarrow 0$ or $\alpha \rightarrow 1$. Experimentally as we slowly set $\alpha \rightarrow 1$, we can see that VR is consistent with CEAL(U)B.

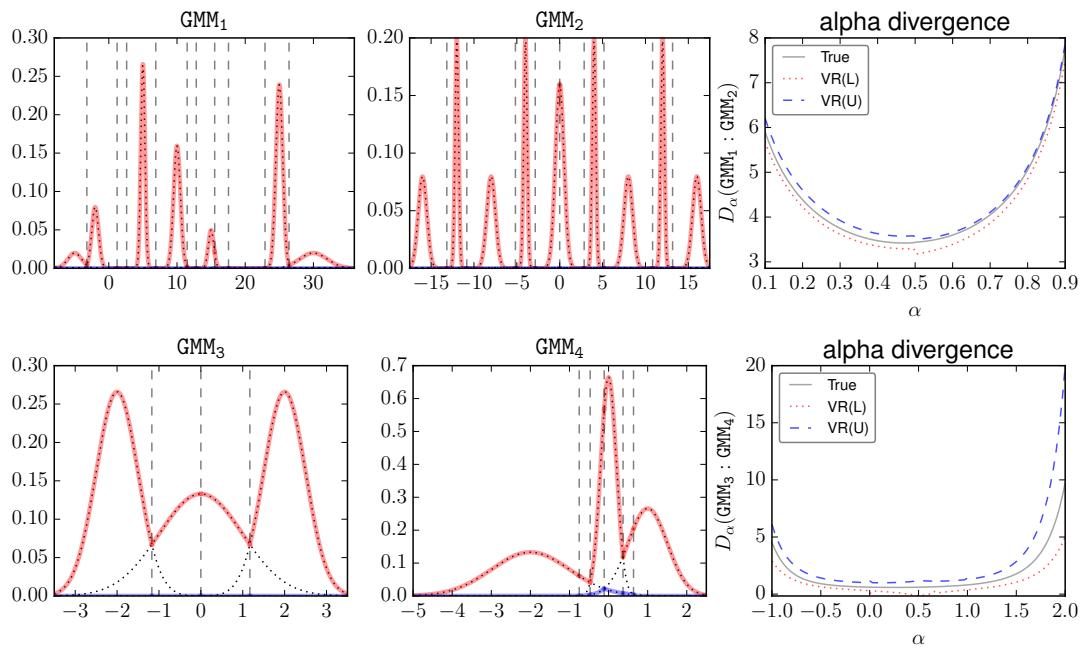
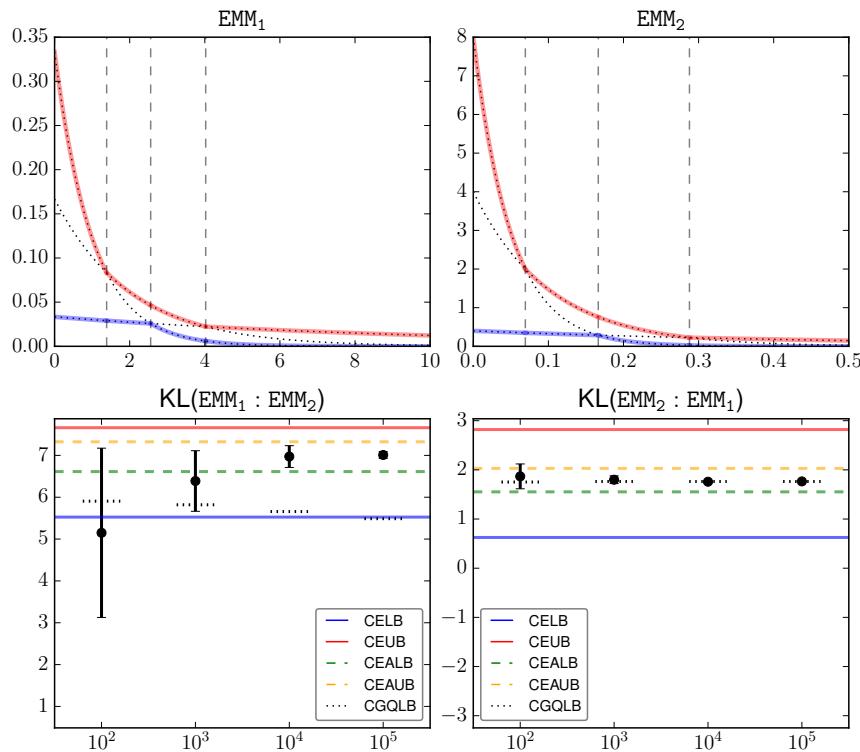
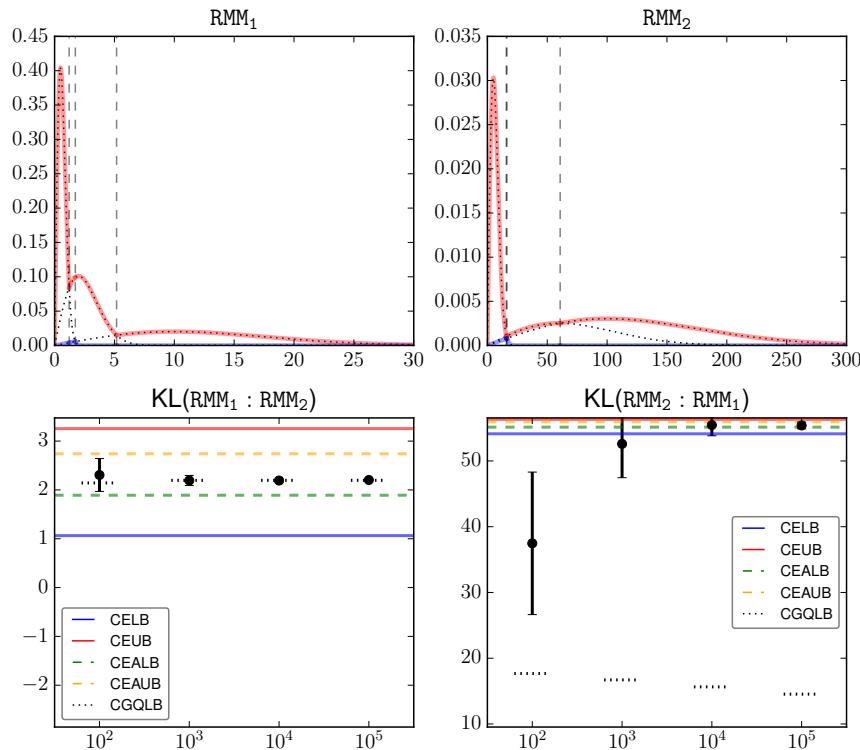


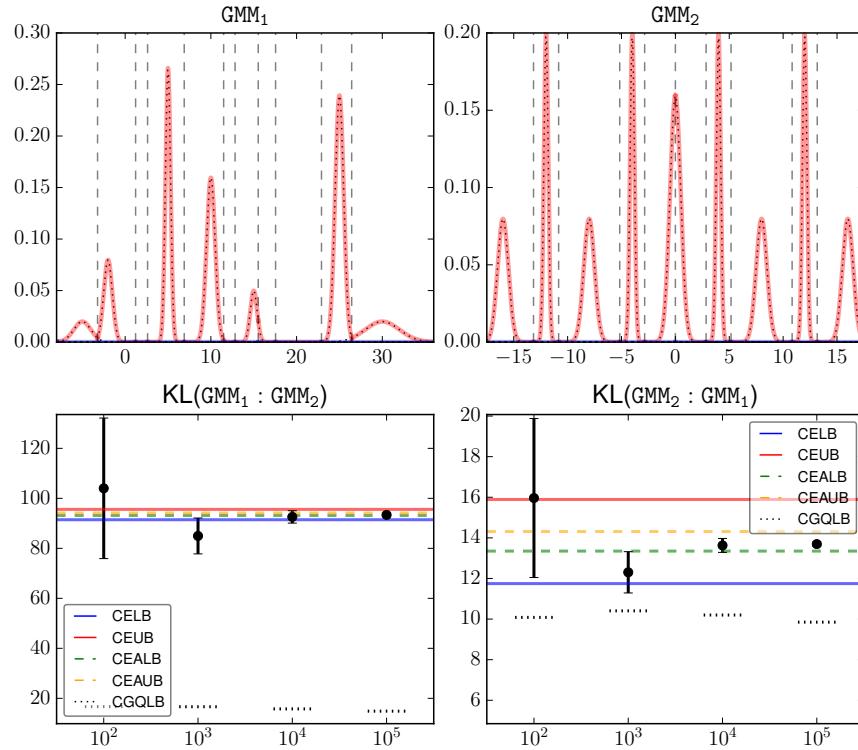
Figure 2. Two Pairs of Gaussian Mixture Models and their α -divergences against different values of α . The “true” value of D_α is estimated by MC using 10^4 random samples. VR(L) and VR(U) denote the variation reduced lower and upper bounds. The range of α is selected for each pair for a clear visualization.



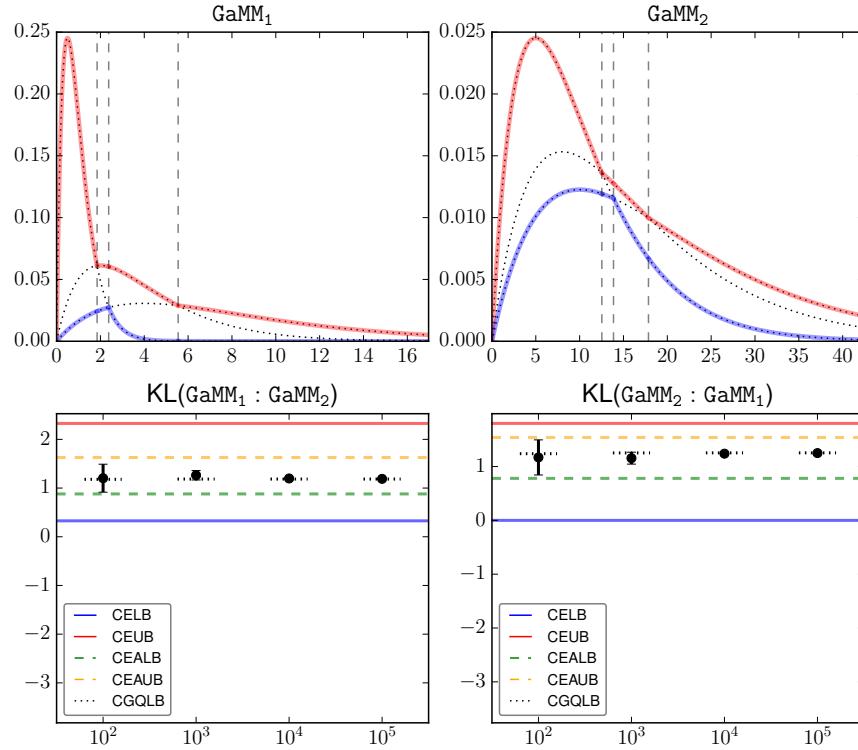
(a) KL divergence between two exponential mixture models



(b) KL divergence between two Rayleigh mixture models



(c) KL divergence between two Gaussian mixture models



(d) KL divergence between two Gamma mixture models

Figure 3. Lower and upper bounds on the KL divergence between mixture models. The y-axis means KL divergence. Solid/dashed lines represent the combinatorial/adaptive bounds, respectively. The error-bars show the 0.95 confidence interval of the estimated KL by Monte-Carlo estimation using the corresponding sample size (x-axis). The narrow dotted bars show the CGQLB estimation wrt the sample size.

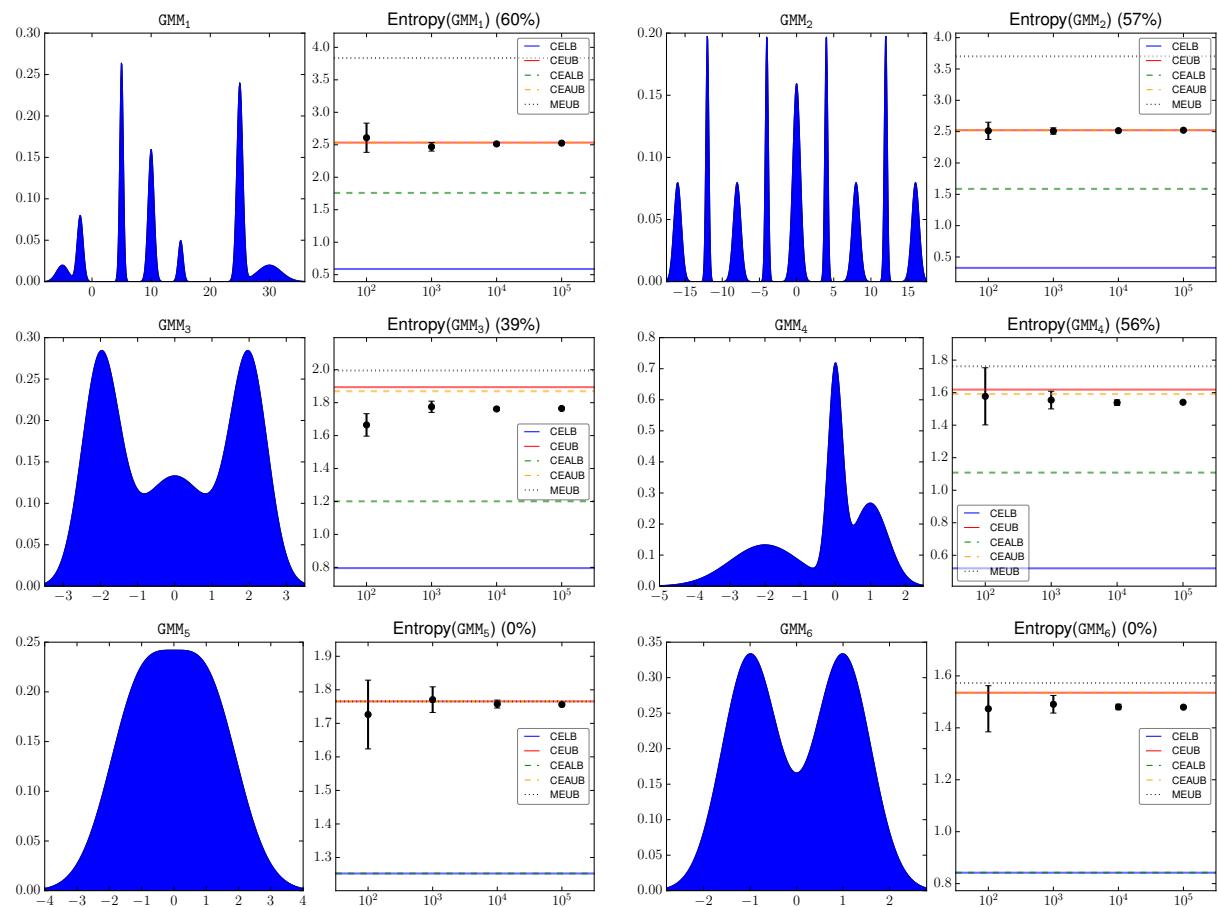


Figure 4. Lower and upper bounds on the differential entropy of Gaussian mixture models. On the left of each subfigure is the simulated GMM signal. On the right of each subfigure is the estimation of its differential entropy. Note that the bounds collapse in several cases.

7. Concluding remarks and perspectives

We have presented a fast versatile method to compute bounds on the Kullback-Leibler divergence between mixtures by building algorithmically formula. We reported on our experiments for various mixture models in the exponential family. For univariate GMMs, we get a guaranteed bound of the KL divergence of two mixtures m and m' with k and k' components within an *additive* approximation factor of $\log k + \log k'$ in $O((k + k') \log(k + k'))$ -time. Therefore the larger the KL divergence the better the bound when considering a multiplicative $(1 + \alpha)$ -approximation factor since $\alpha = \frac{\log k + \log k'}{\text{KL}(m:m')}$. The adaptive bounds is guaranteed to yield better bounds at the expense of computing potentially $O(k^2 + (k')^2)$ intersection points of pairwise weighted components.

Our technique also yields bound for the Jeffreys divergence (the symmetrized KL divergence: $J(m, m') = \text{KL}(m : m') + \text{KL}(m' : m)$) and the Jensen-Shannon divergence [45] (JS):

$$\text{JS}(m, m') = \frac{1}{2} \left(\text{KL} \left(m : \frac{m + m'}{2} \right) + \text{KL} \left(m' : \frac{m + m'}{2} \right) \right),$$

since $\frac{m+m'}{2}$ is a mixture model with $k + k'$ components. One advantage of this statistical distance is that it is symmetric, always bounded by $\log 2$, and its square root yields a metric distance [46]. The log-sum-exp inequalities may also used to compute some Rényi divergences [47]:

$$R_\alpha(m, p) = \frac{1}{\alpha - 1} \log \left(\int m(x)^\alpha p(x)^{1-\alpha} \right) dx,$$

when α is an integer, $m(x)$ a mixture and $p(x)$ a single (component) distribution. Getting fast guaranteed tight bounds on statistical distances between mixtures opens many avenues. For example, we may consider building hierarchical mixture models by merging iteratively two mixture components so that those pair of components is chosen so that the KL distance between the full mixture and the simplified mixture is minimized.

In order to be useful, our technique is unfortunately limited to univariate mixtures: Indeed, in higher dimensions, we can still compute the maximization diagram of weighted components (an additively weighted Bregman Voronoi diagram [48,49] for components belonging to the same exponential family). However, it becomes more complex to compute in the elementary Voronoi cells V , the functions $C_{i,j}(V)$ and $M_i(V)$ (in 1D, the Voronoi cells are segments). We may obtain hybrid algorithms by approximating or estimating these functions. In 2D, it is thus possible to obtain lower and upper bounds on the Mutual Information [50] (MI) when the joint distribution $m(x, y)$ is a 2D mixture of Gaussians:

$$I(M; M') = \int m(x, y) \log \frac{m(x, y)}{m(x)m'(y)} dx dy.$$

Indeed, the marginal distributions $m(x)$ and $m'(y)$ are univariate Gaussian mixtures.

A Python code implementing those computational-geometric methods for reproducible research is available online at:

<https://www.lix.polytechnique.fr/~nielsen/KLGMM/>

Let us now conclude this work by noticing that the Kullback-Leibler between two smooth mixtures can be approximated by a Bregman divergence [5]. We loosely derive this observation using two different approaches:

- First, continuous mixture distributions have smooth densities that can be arbitrarily closely approximated using a *single distribution* (potentially multi-modal) belonging to the Polynomial Exponential Families [51,52] (PEFs). A polynomial exponential family of order D has log-likelihood $l(x; \theta) \propto \sum_{i=1}^D \theta_i x^i$: Therefore, a PEF is an exponential family with

polynomial sufficient statistics $t(x) = (x, x^2, \dots, x^D)$. However, the log-normalizer $F_D(\theta) = \log \int \exp(\theta^\top t(x)) dx$ of a D -order PEF is not available in closed-form: It is computationally intractable. Nevertheless, the KL between two mixtures $m(x)$ and $m'(x)$ can be *theoretically* approximated closely by a Bregman divergence between the two corresponding PEFs: $\text{KL}(m(x) : m'(x)) \simeq \text{KL}(p(x; \theta) : p(x; \theta')) = B_{F_D}(\theta' : \theta)$, where θ and θ' are the natural parameters of the PEF family $\{p(x; \theta)\}$ approximating $m(x)$ and $m'(x)$, respectively (i.e., $m(x) \simeq p(x; \theta)$ and $m'(x) \simeq p(x; \theta')$). Notice that the Bregman divergence of PEFs has necessarily finite value but the KL of two smooth mixtures can potentially diverge (infinite value).

- Second, consider two finite mixtures $m(x) = \sum_{i=1}^k w_i p_i(x)$ and $m'(x) = \sum_{j=1}^{k'} w'_j p'_j(x)$ of k and k' components (possibly with heterogeneous components $p_i(x)$'s and $p'_j(x)$'s), respectively. In information geometry, a mixture family is the set of convex combination of fixed³ component densities. Let us consider the mixture families $\{g(x; (w, w'))\}$ generated by the $D = k + k'$ fixed components $p_1(x), \dots, p_k(x), p'_1(x), \dots, p'_{k'}(x)$:

$$\left\{ g(x; (w, w')) = \sum_{i=1}^k w_i p_i(x) + \sum_{j=1}^{k'} w'_j p'_j(x) : \sum_{i=1}^k w_i + \sum_{j=1}^{k'} w'_j = 1 \right\}$$

We can approximate arbitrarily finely (with respect to total variation) mixture $m(x)$ for any $\epsilon > 0$ by $g(x; \alpha) \simeq (1 - \epsilon)m(x) + \epsilon m'(x)$ with $\alpha = ((1 - \epsilon)w, \epsilon w')$ (so that $\sum_{i=1}^{k+k'} \alpha_i = 1$) and $m'(x) \simeq g(x; \alpha') = \epsilon m(x) + (1 - \epsilon)m'(x)$ with $\alpha' = (\epsilon w, (1 - \epsilon)w')$ (and $\sum_{i=1}^{k+k'} \alpha'_i = 1$). Therefore $\text{KL}(m(x) : m'(x)) \simeq \text{KL}(g(x; \alpha) : g(x; \alpha')) = B_{F^*}(\alpha : \alpha')$, where $F^*(\alpha) = \int g(x; \alpha) \log g(x; \alpha) dx$ is the Shannon information (negative Shannon entropy) for the composite mixture family. Again, the Bregman divergence $B_{F^*}(\alpha : \alpha')$ is necessarily finite but $\text{KL}(m(x) : m'(x))$ between mixtures may be potentially infinite when the KL integral diverges. Interestingly, this Shannon information can be arbitrarily closely approximated when considering isotropic Gaussians [12]. Notice that the convex conjugate $F(\theta)$ of the continuous Shannon neg-entropy $F^*(\eta)$ is the log-sum-exp function on the inverse soft map.

Appendix The Kullback-Leibler divergence of mixture models is not analytic [6]

Ideally, we aim at getting a finite length closed-form formula to compute the KL divergence of mixture models. But this is provably mathematically intractable because of the log-sum term in the integral, as we shall prove below. Analytic expressions encompass closed-form formula and include special functions (e.g., Gamma function) but do not allow to use limits nor integrals. An analytic function $f(x)$ is a C^∞ function (infinitely differentiable) such that at any point x_0 its k -order Taylor series $T_k(x) = \sum_{i=0}^k \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$ converges to $f(x)$: $\lim_{k \rightarrow \infty} T_k(x) = f(x)$ for x belonging to a neighborhood $N_r(x_0) = \{x : |x - x_0| \leq r\}$ of x_0 where r is called the radius of convergence. The analytic property of a function is equivalent to the condition that for each $k \in \mathbb{N}$, there exists a constant c such that $\left| \frac{d^k f}{dx^k}(x) \right| \leq c^{k+1} k!$.

To prove that the KL of mixtures is not analytic (hence does not admit a closed-form formula), we shall adapt the proof reported in [6] (in Japanese⁴). We shall prove that $\text{KL}(p : q)$ is not analytic for univariate mixtures of densities $p(x) = G(x; 0, 1)$ and $q(x; w) = (1 - w)G(x; 0, 1) + wG(x; 1, 1)$ for $w \in (0, 1)$, where $G(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ is the density of a univariate Gaussian of mean μ

³ Thus in statistics, a mixture is understood as a convex combination of parametric components while in information geometry a mixture family is the set of convex combination of fixed components.

⁴ We thank Professor Aoyagi for sending us his paper [6].

and standard deviation σ . Let $D(w) = \text{KL}(p(x) : q(x; w))$ denote the divergence between these two mixtures (p has a single component and q has two components).

We have $\log \frac{p(x)}{q(x; w)} = -\log(1 + w(e^{x-\frac{1}{2}} - 1))$, and

$$\frac{d^k D}{dw^k} = \frac{(-1)^k}{k} \int p(x)(e^{x-\frac{1}{2}} - 1) dx.$$

Let x_0 be the root of the equation $e^{x-\frac{1}{2}} - 1 = e^{\frac{x}{2}}$ so that for $x \geq x_0$, we have $e^{x-\frac{1}{2}} - 1 \geq e^{\frac{x}{2}}$. It follows that:

$$\left| \frac{d^k D}{dw^k} \right| \geq \frac{1}{k} \int_{x_0}^{\infty} p(x) e^{\frac{kx}{2}} dx = \frac{1}{k} e^{\frac{k^2}{8}} A_k$$

with $A_k = \int_{x_0}^{\infty} \frac{1}{\sqrt{2\pi}} \exp(-\frac{x-\frac{k}{2}}{2}) dx$. When $k \rightarrow \infty$, we have $A_k \rightarrow 1$. Consider $k_0 \in \mathbb{N}$ such that $A_{k_0} > 0.9$. Then the radius of convergence r is such that:

$$\frac{1}{r} \geq \lim_{k \rightarrow \infty} \left(\frac{1}{kk!} 0.9 \exp\left(\frac{k^2}{8}\right) \right)^{\frac{1}{k}} = \infty.$$

Thus the convergence radius is $r = 0$, and therefore the KL divergence is not an analytic function of the parameter w . The KL of mixtures is an example of a non-analytic smooth function. (Notice that the absolute value is not analytic at 0.)

Appendix Closed-form formula for the Kullback-Leibler divergence between scaled and truncated exponential families

When computing approximation bounds for the KL divergence between two mixtures $m(x)$ and $m'(x)$, we end up with the task of computing $\int_{\mathcal{D}} w_a p_a(x) \log \frac{w'_b p'_b(x)}{w'_c p'_c(x)} dx$ where $\mathcal{D} \subseteq \mathcal{X}$ is a subset of the full support \mathcal{X} . We report a generic formula for computing these formula when the mixture (scaled and truncated) components belong to the same exponential family [16]. An exponential family has canonical log-density written as $l(x; \theta) = \log p(x; \theta) = \theta^\top t(x) - F(\theta) + k(x)$, where $t(x)$ denotes the sufficient statistics, $F(\theta)$ the log-normalizer (also called cumulant function or partition function), and $k(x)$ an auxiliary carrier term.

Let $\text{KL}(w_1 p_1 : w_2 p_2 : w_3 p_3) = \int_{\mathcal{X}} w_1 p_1(x) \log \frac{w_2 p_2(x)}{w_3 p_3(x)} dx = H_{\mathcal{X}}(w_1 p_1 : w_3 p_3) - H_{\mathcal{X}}(w_1 p_1 : w_2 p_2)$. Since it is a difference of two cross-entropies, we get for three distributions belonging to the same exponential family [53] the following formula:

$$\text{KL}(w_1 p_1 : w_2 p_2 : w_3 p_3) = w_1 \log \frac{w_2}{w_3} + w_1 (F(\theta_3) - F(\theta_2) - (\theta_3 - \theta_2)^\top \nabla F(\theta_1)).$$

Furthermore, when the support is restricted, say to support range $\mathcal{D} \subseteq \mathcal{X}$, let $m_{\mathcal{D}}(\theta) = \int_{\mathcal{D}} p(x; \theta) dx$ denote the mass and $p(\tilde{x}; \theta) = \frac{p(x; \theta)}{m_{\mathcal{D}}(\theta)}$ the normalized distribution. Then we have:

$$\int_{\mathcal{D}} w_1 p_1(x) \log \frac{w_2 p_2(x)}{w_3 p_3(x)} dx = m_{\mathcal{D}}(\theta_1) (\text{KL}(w_1 \tilde{p}_1 : w_2 \tilde{p}_2 : w_3 \tilde{p}_3)) - \log \frac{w_2 m_{\mathcal{D}}(\theta_3)}{w_3 m_{\mathcal{D}}(\theta_2)}.$$

When $F_{\mathcal{D}}(\theta) = F(\theta) - \log m_{\mathcal{D}}(\theta)$ is strictly convex and differentiable then $p(\tilde{x}; \theta)$ is an exponential family and the closed-form formula follows straightforwardly. Otherwise, we still get a closed-form but need more derivations. For univariate distributions, we write $\mathcal{D} = (a, b)$ and $m_{\mathcal{D}}(\theta) = \int_a^b p(x; \theta) dx = P_{\theta}(b) - P_{\theta}(a)$ where $P_{\theta}(a) = \int_a^b p(x; \theta) dx$ denotes the cumulative distribution function.

The usual formula for truncated and scaled Kullback-Leibler divergence is:

$$\text{KL}_{\mathcal{D}}(wp(x; \theta) : w'p(x; \theta')) = w m_{\mathcal{D}}(\theta) \left(\log \frac{w}{w'} + B_F(\theta' : \theta) \right) + w(\theta' - \theta)^\top \nabla m_{\mathcal{D}}(\theta), \quad (47)$$

where $B_F(\theta' : \theta)$ is a Bregman divergence [54]:

$$B_F(\theta' : \theta) = F(\theta') - F(\theta) - (\theta' - \theta)^\top \nabla F(\theta).$$

This formula extends the classic formula [54] for full regular exponential families (by setting $w = w' = 1$ and $m_{\mathcal{D}}(\theta) = 1$ with $\nabla m_{\mathcal{D}}(\theta) = 0$).

Similar formula are available for the cross-entropy and entropy of exponential families [53].

Bibliography

1. Huang, Z.K.; Chau, K.W. A new image thresholding method based on Gaussian mixture model. *Applied Mathematics and Computation* **2008**, *205*, 899–907.
2. Seabra, J.; Ciompi, F.; Pujol, O.; Mauri, J.; Radeva, P.; Sanches, J. Rayleigh mixture model for plaque characterization in intravascular ultrasound. *Biomedical Engineering, IEEE Transactions on* **2011**, *58*, 1314–1324.
3. Julier, S.J.; Bailey, T.; Uhlmann, J.K. Using Exponential Mixture Models for Suboptimal Distributed Data Fusion. *Nonlinear Statistical Signal Processing Workshop, 2006 IEEE*. IEEE, 2006, pp. 160–163.
4. Cover, T.M.; Thomas, J.A. *Elements of information theory*; John Wiley & Sons, 2012.
5. Banerjee, A.; Merugu, S.; Dhillon, I.S.; Ghosh, J. Clustering with Bregman divergences. *The Journal of Machine Learning Research* **2005**, *6*, 1705–1749.
6. Watanabe, S.; Yamazaki, K.; Aoyagi, M. Kullback information of normal mixture is not an analytic function. *Technical report of IEICE (in Japanese)* **2004**, pp. 41–46.
7. Michalowicz, J.V.; Nichols, J.M.; Bucholtz, F. Calculation of differential entropy for a mixed Gaussian distribution. *Entropy* **2008**, *10*, 200–206.
8. Huber, M.F.; Bailey, T.; Durrant-Whyte, H.; Hanebeck, U.D. On entropy approximation for Gaussian mixture random vectors. *Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008. IEEE International Conference on*. IEEE, 2008, pp. 181–188.
9. Yamada, M.; Sugiyama, M. Direct importance estimation with Gaussian mixture models. *IEICE transactions on information and systems* **2009**, *92*, 2159–2162.
10. Durrieu, J.L.; Thiran, J.P.; Kelly, F. Lower and upper bounds for approximation of the Kullback-Leibler divergence between Gaussian Mixture Models. *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. Ieee, 2012, pp. 4833–4836.
11. Schwander, O.; Marchand-Maillet, S.; Nielsen, F. Comix: Joint estimation and lightspeed comparison of mixture models. *2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai, China, March 20–25, 2016*, 2016, pp. 2449–2453.
12. Moshksar, K.; Khandani, A.K. Arbitrarily Tight Bounds on Differential Entropy of Gaussian Mixtures. *IEEE Transactions on Information Theory* **2016**, *62*, 3340–3354.
13. Mezuman, E.; Weiss, Y. A Tight Convex Upper Bound on the Likelihood of a Finite Mixture. *CoRR* **2016**, *abs/1608.05275*.
14. Amari, S.i. *Information Geometry and Its Applications*; Vol. 194, Springer, 2016.
15. Nielsen, F.; Sun, K. Guaranteed Bounds on the Kullback–Leibler Divergence of Univariate Mixtures. *IEEE Signal Processing Letters* **2016**, *23*, 1543–1546.
16. Nielsen, F.; Garcia, V. Statistical exponential families: A digest with flash cards. *arXiv preprint arXiv:0911.4863* **2009**.
17. Calafiore, G.C.; El Ghaoui, L. *Optimization models*; Cambridge university press, 2014.
18. Shen, C.; Li, H. On the dual formulation of boosting algorithms. *Pattern Analysis and Machine Intelligence, IEEE Transactions on* **2010**, *32*, 2216–2231.
19. De Berg, M.; Van Kreveld, M.; Overmars, M.; Schwarzkopf, O.C. *Computational geometry*; Springer, 2000.

20. Setter, O.; Sharir, M.; Halperin, D. *Constructing two-dimensional Voronoi diagrams via divide-and-conquer of envelopes in space*; Springer, 2010.
21. Devillers, O.; Golin, M.J. Incremental algorithms for finding the convex hulls of circles and the lower envelopes of parabolas. *Information Processing Letters* **1995**, *56*, 157–164.
22. Nielsen, F.; Yvinec, M. An output-sensitive convex hull algorithm for planar objects. *International Journal of Computational Geometry & Applications* **1998**, *8*, 39–65.
23. Nielsen, F.; Nock, R. Entropies and cross-entropies of exponential families. 17th IEEE International Conference on Image Processing (ICIP). IEEE, 2010, pp. 3621–3624.
24. Sharir, M.; Agarwal, P.K. *Davenport-Schinzel sequences and their geometric applications*; Cambridge University Press, 1995.
25. Bronstein, M. *Symbolic integration. I. , Transcendental functions*; Algorithms and computation in mathematics, Springer: Berlin, 2005.
26. Carreira-Perpinan, M.A. Mode-finding for mixtures of Gaussian distributions. *IEEE Transactions on Pattern Analysis and Machine Intelligence* **2000**, *22*, 1318–1323.
27. Aprausheva, N.N.; Sorokin, S.V. Exact equation of the boundary of unimodal and bimodal domains of a two-component Gaussian mixture. *Pattern Recognition and Image Analysis* **2013**, *23*, 341–347.
28. Learned-Miller, E.; DeStefano, J. A probabilistic upper bound on differential entropy. *IEEE Transactions on Information Theory* **2008**, *54*, 5223–5230.
29. Amari, S.i. α -Divergence Is Unique, Belonging to Both f -Divergence and Bregman Divergence Classes. *IEEE Transactions on Information Theory* **2009**, *55*, 4925–4931.
30. Cichocki, A.; Amari, S.i. Families of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities. *Entropy* **2010**, *12*, 1532–1568.
31. Póczos, B.; Schneider, J. On the Estimation of α -Divergences. International Conference on Artificial Intelligence and Statistics (AISTATS); JMLR: W&CP 15, 2011, pp. 609–617.
32. Amari, S.i. *Information Geometry and Its Applications*; Vol. 194, *Applied Mathematical Sciences*, Springer, 2016.
33. Nielsen, F.; Nock, R. On Rényi and Tsallis entropies and divergences for exponential families. *CoRR* **2011**, *abs/1105.3259*.
34. Minka, T. Divergence measures and message passing. Technical Report MSR-TR-2005-173, Microsoft Research, 2005.
35. Améndola, C.; Drton, M.; Sturmfels, B. Maximum Likelihood Estimates for Gaussian Mixtures Are Transcendental. *arXiv* **2015**, *1508.06958 [math.ST]*.
36. Hellinger, E. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. *Journal für die reine und angewandte Mathematik* **1909**, *136*, 210–271.
37. van Erven, T.; Harremos, P. Rényi divergence and Kullback-Leibler divergence. *IEEE Transactions on Information Theory* **2014**, *60*, 3797–3820.
38. Nielsen, F.; Nock, R. A closed-form expression for the Sharma-Mittal entropy of exponential families. *Journal of Physics A: Mathematical and Theoretical* **2012**, *45*.
39. Nielsen, F.; Nock, R. On the Chi Square and Higher-Order Chi Distances for Approximating f -Divergences. *IEEE Signal Processing Letters* **2014**, *21*, 10–13.
40. Nielsen, F.; Boltz, S. The Burbea-Rao and Bhattacharyya centroids. *IEEE Transactions on Information Theory* **2011**, *57*, 5455–5466.
41. Jarosz, W. Efficient Monte Carlo Methods for Light Transport in Scattering Media. PhD thesis, UC San Diego, 2008.
42. Fujisawa, H.; Eguchi, S. Robust parameter estimation with a small bias against heavy contamination. *Journal of Multivariate Analysis* **2008**, *99*, 2053–2081.
43. Havrda, J.; Charvát, F. Quantification method of classification processes. Concept of structural α -entropy. *Kybernetika* **1967**, *3*, 30–35.
44. Liang, X. A Note on Divergences. *Neural Computation* **2016**, *28*, 2045–2062.
45. Lin, J. Divergence measures based on the Shannon entropy. *Information Theory, IEEE Transactions on* **1991**, *37*, 145–151.

46. Endres, D.M.; Schindelin, J.E. A new metric for probability distributions. *Information Theory, IEEE Transactions on* **2003**, *49*, 1858–1860.
47. Nielsen, F.; Nock, R. On Rényi and Tsallis entropies and divergences for exponential families. *arXiv preprint arXiv:1105.3259* **2011**.
48. Nielsen, F.; Boissonnat, J.D.; Nock, R. On bregman Voronoi diagrams. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 2007, pp. 746–755.
49. Boissonnat, J.D.; Nielsen, F.; Nock, R. Bregman Voronoi diagrams. *Discrete & Computational Geometry* **2010**, *44*, 281–307.
50. Foster, D.V.; Grassberger, P. Lower bounds on mutual information. *Physical Review E* **2011**, *83*, 010101.
51. Cobb, L.; Koppstein, P.; Chen, N.H. Estimation and moment recursion relations for multimodal distributions of the exponential family. *Journal of the American Statistical Association* **1983**, *78*, 124–130.
52. Nielsen, F.; Nock, R. Patch matching with polynomial exponential families and projective divergences. 9th International Conference Similarity Search and Applications (SISAP), 2016.
53. Nielsen, F.; Nock, R. Entropies and cross-entropies of exponential families. IEEE International Conference on Image Processing. IEEE, 2010, pp. 3621–3624.
54. Banerjee, A.; Merugu, S.; Dhillon, I.S.; Ghosh, J. Clustering with Bregman divergences. *Journal of machine learning research* **2005**, *6*, 1705–1749.

© 2016 by the authors; licensee *Preprints*, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (<http://creativecommons.org/licenses/by/4.0/>).