Preprint
Article

Band Gap Tuning in 2D Layered Materials by Angular Rotation

Altmetrics

Downloads

1895

Views

1326

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

23 October 2016

Posted:

24 October 2016

You are already at the latest version

Alerts
Abstract
We present a series of computer-assisted high resolution transmission electron (HRTEM) simulations to determine Moiré patters by induced twisting effects between slabs at rotational angles of 3°, 5°, 8°, and 16°, for molybdenum disulfide, graphene, tungsten disulfide, and tungsten selenide layered materials. In order to investigate the electronic structure, a series of numerical simulations using DFT methods was completed using CASTEP with a generalized gradient approximation to determine both band structure and density of states on honeycomb like new superlattices. Our results indicate metallic transitions when rotation approaches 8° with respect to each other for most of the two-dimensional systems that were analyzed.
Keywords: 
Subject: Chemistry and Materials Science  -   Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated