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Abstract: Recent discovery of triangular boron Nanotubes makes it a competitor of carbon in many 
respects. Closed forms of M-polynomial of nanotubes produce closed forms of many degree-based 
topological indices which are numerical parameters of the structure and, in combination, 
determine properties of the concerned nanotubes.  In this report, we give M-polynomials of 
triangular boron nanotubes and recover many important topological degree-based indices of these 
nanotubes. We also plot surfaces associated to these nanotubes. 
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1. Introduction 

Nanoscience has become the flavor of the modern era because of its increasing applications and 
uses. Amongst the nanomaterials, nanocrystals, nanowires and nanotubes, constitute three major 
categories, the last two being one-dimensional. Since the discovery of the carbon nanotubes in 1991, 
interest in one-dimensional nanomaterials has grown remarkable and a phenomenal number of 
research articles have been published on nanotubes as well as on nanowires. 

The numerical tendencies of a certain property depend on the molecular structure which is, in 
fact, a graph where vertices represent atoms of nanomaterials and edges correspond to chemical 
bonds. Chemical graph theory is contributing a lion's share in predicting chemical properties of a 
nanomaterial without going into wet labs. Cheminformatics is another emerging field in which 
quantitative structure-activity (QSAR) and Structure-property (QSPR) relationships predict the 
biological activities and properties of nanomaterial see [2-5]. In these studies, some physio-chemical 
properties and topological indices are used to predict bioactivity of the chemical compounds see 
[13, 14, 15]. 

Boron nanotubes are coming increasingly interesting because of their remarkable properties, 
like: structural stability, work function, transport properties, and electronic structure [30]. Two 
structural classes of boron nanotubes are extremely important. First one is a nanotube derived from 
triangular sheet and the second one is derived from α −  sheet. Regardless of their structure and 
chiralities, both boron nanotubes are more conductive than carbon nanotubes. 
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Figure 1. Triangular Boron nanotube 

 

Figure 2. α -Boron nanotubes 

In terms of chemical graph theory and mathematical chemistry, we associate a graph with the 

molecular structure where vertices correspond to atoms and edges to bonds. Following the same 

lines, we represent a boron triangular nanotube, by a planar graph, [ ],tBNT m n  of order n ×  m, 

as the in figure 3 demonstrates. This kind of boron nanotube appeared in 2004 [31,32]. Clearly, there 

are 
3

2
nm

 a number of vertices and 
3 (3 2)

2
m n −

 edges in 2D graph model of triangular boron 

nanotubes. 
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Figure 3. 2D structure of triangular boron nanotube 

We refer the readers [27,28,29] for further study about nanomaterials. 

Several algebraic polynomials have useful applications in chemistry such as Hosoya 

Polynomial (also called Wiener polynomial) [25] that plays a vital role in determining 

distance-based topological indices.  Among Other algebraic polynomials, M-polynomial 

introduced recently in [26], plays the same role in determing many degree-based topological 

indices.   These indices are actually score functions that capture the overall structure of the 

compound and predict chemical properties such as strain energy, the heat of formation, and boiling 

points etc.  

The branch of chemistry which deals with the chemical structures with the help of 

mathematical tools is called mathematical chemistry. Chemical graph theory is that branch of 

mathematical chemistry which applies graph theory to mathematical modeling of chemical 

phenomena. In chemical graph theory, a molecular graph is a simple graph (having no loops and 

multiple edges) in which atoms and chemical bonds between them are represented by vertices and 

edges respectively. A graph ( , )G V E   with vertex set V(G) and edge set E(G) is connected if there 
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exist a connection between any pair of vertices in G. A network is simply a connected graph having 

no multiple edges and loops. The degree of a vertex is the number of vertices which are connected 

to that fixed vertex by the edges. In a chemical graph, the degree of any vertex is at most 4. The 

distance between two vertices u and v is denoted as ( , ) ( , )Gd u v d u v=  and is the length of 

shortest path between u and v in graph G. The number of vertices of G, adjacent to a given vertex v, 

is the “degree” of this vertex, and will be denoted by ( )vd G  or, if misunderstanding is not 

possible, simply by vd . The concept of degree is some what  closely related  to the concept of 

valence in chemistry. For details on basics of graph theory, any standard text such as [4] can be of 

great help. 

In this article, we calculated different degree-based topological indices of Boron nanotubes by 
using M-polynomial. Before this, we need to recall a few concepts from chemical graph theory. 
M-polynomial is recently introduced in [26]. Throughout this paper we fixed following notations: 

vd = the degree of a vertex ,v    

( ){ }     { },k vV v V G d k= ∈ =  

( ){ },     and },={ |i j u vE uv E G d j d i= ∈ =   

| |E  is no. of elements in the set ,E    

Min{ | V (G)},vd vδ = ∈  

Max{ | V (G)},vd vΔ = ∈  

( )ijm G  is no of edges of G  such that { } { }., ,v ud d i j=   

The M-polynomial of G is defined as: 

                     ( ) ( ) , ,
i j

i j
ijm G xM G x y y

δ ≤ ≤ ≤Δ

=  .  

This polynomial has been one of the key areas of interest in computational aspects of materials. 

From this M-polynomial, we can calculate many topological indices. The topological index of a 

molecule structure can be considered as a non-empirical numerical quantity which quantifies the 

molecular structure and its branching pattern in many ways. In this point of view, the topological 

index can be regarded as a score function which maps each molecular structure to a real number 

and is used as a descriptor of the molecule under testing [6, 7, 9, 10, 11]. Topological  indices 

predict  the variety of physico-chemical properties of the underlying structure like vapor pressure,  
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boiling point, the heat of evaporation, chromatographic retention times, heat of formation, and 

surface tension. 

Weiner, in 1947, approximated the boiling point of alkanes as 3( )W G Pα β γ+ +  where α , β  

and γ  are empirical constants, ( )W G  is the Weiner index and 3P  is the number of paths of 

length 3 in G [18]. Thus Weiner laid the foundation of Topological index which is also known as 

connectivity index.  A lot of chemical experiments require determining the chemical properties of 

emerging nanotubes and nanomaterials. Chemical based experiments reveal that out of more than 

140 topological indices no single index in strong enough to determine many physio-chemical 

properties, although, in combination, these topological indices can do this to some extent. The 

Wiener index is originally the first and most studied topological index and is ( , )i j
i j

d v v
<
 , for more 

details see [16].  Zagreb indices have been introduced by I. Gutman and N. Trinajstic [21]. 

First Zagreb index is ( ) 2
1

( )
(d )v

v V G

M G
∈

=    and the second Zagreb i ( )
(

2
)
d d ,u v

uv E G

M G
∈

= 

ndex[22, 23]. Second modified Zagreb index is defined by ( )
( )

2
1 .

uv E G u v

m G
d d

M
∈

=  General Randic 

index of G is defined as 
( )

( ) ,u v
uv E G

d d
α

∈
  where α is an arbitrary real number see [24]. Symmetric 

division index is defined by ( )
( )

min( , ) max( , ) .
max( , ) min(

 
, )

u v u v

uv E G u v u v

d d d d

d
SDD G

d d d∈

 
+ 

 
=   The harmonic 

index H(G) is another variant of Randic index  defined as 
( )

2( )
vu E G u v

H G
d d∈

=
+  [33-34]. The 

inverse sum topological index ISI  is defined as
( )

( ) u v

vu E G u v

d d
ISI G

d d∈

=
+ . Augmented Zagreb 

Index of G is defined as 
3

( )
( )

2
u v

vu E G u v

d d
AZI G

d d∈

 
=  + − 
  and it is useful for computing heat of 

formation of alkanes [33,34]. These indices can help to characterize the chemical and physical 
properties of molecules see [6-10, 18-22,24–26].  Most recently M. Munir et al. computed 
M-polynomials and related topological indices for Nanostar dendrimers [1] and Titania Nanotubes 
in [19]. Some degree-based topological indices are derived from M-polynomial l [5]. The following 
table-1 relates these derivations. 
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Table 1. Derivation of some degree-based topological indices from M-polynomial 

Topological Index  Derivation from ( ); ,M G x y  

First Zagreb ( )( ) 1( ) ; , |x y x yD D M G x y = =+  

Second Zagreb ( )( ) 1( ) ; , |x y x yD D M G x y = =  

Second Modified Zagreb  ( )( ) 1( ) ; , |x y x yS S M G x y = =  

General Randí܋			હ ∈ ℕ ( )( ) 1( ) ; , |x y x yD D M G x yα α
= =  

General Randí܋				હ ∈ ℕ ( )( ) 1( ) ; , |x y x yS S M G x yα α
= =  

Symmetric Division Index ( )( ) 1( ) ; , |x y x y x yD S S D M G x y = =+  

Harmonic Index 
12 S  J (M(G ; x,y))x x=  

Inverse sum Index  
1S  J D  D (M(G ; x,y))x x y x=  

Augmented Zagreb Index 3 3 3
2 1S  Q  J D D (M(G ; x , y))x x y x− =  

Where, D୶f = x ப(୤(୶,୷)ப୶ , D୷f = y ப(୤(୶,୷)ப୷ , S୶ = ׬ ୤(୲,୷)୲୶଴ dt, S୷ = ׬ ୤(୶,୲)୲୷଴ dt	J൫f(x, y)൯ = f(x, x), Q஑(f(x, y)) =x஑f(x, y)	 for non zero	α, ( ( , )) ( , )J f x y f x x= , for more details see[25a]. 

In the present article, we compute the closed forms of M-polynomials triangular boron 

nanotubes and represent them graphically using Maple. As consequences, we derive as many as 

nine different topological degree-based indices. We start by defining M-polynomial of a general 

graph, see [25]. Recently a lot of research is in progress to find closed forms of  certain topological 

indices. M-polynomial, introduced in 2015 [25], is an approach to obtain closed forms of many 

degree-based topological indices. 

RESULTS AND DISCUSSION 

In this section, we use symmetric structures of Boron triangular Nanotubes to determine closed 

parametric form of M-polynomials many topological indices for these tubes. 
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Theorem 1. Let [ ],tBNT m n is boron triangular Nanotubes.then

[ ]( ) ( )4 4 64 66, ?? 3 6 4 .9 2
2t

m
M BNT m n x y mx y mx y m n x y= + + −  

Proof. Let [ ],tBNT m n  be triangular boron nanotubes , where m is the number of columns and n 

is the number of rows. The graph has 
3

2
nm

 number of vertices and 
3 (3 2)

2
m n −

 edges. 

Following are the tables for edge partitions of [ ],tBNT m n nanotubes. 

Table 2.  Edge partition of edge set of [ ],tBNT m n  

( ),  u vd d  ( )4 ,  4  ( )4 ,  6  ( )6 ,  6  

Number of edges 3m  6m  (9 24)
2
m

n−  

There are two partitions, { } [ ]2 { , | 4},t vV v BNT m n d= =  and { } [ ]6 { , | 6}t vV v BNT m n d= = for 

the vertex set [ ]( ),tV BNT m n  from table 1. Now the edge set of [ ],tBNT m n can is written as 

{ } [ ]( ){ } { }4,4 4,4, | 4?? 3 ,t u vE e uv E BNT m n d d E m= = ∈ = = → =  

{ } [ ]( ){ } { }4,6 4,6, | 4,? 6 ,t u vE e uv E BNT m n d d E m= = ∈ = = → = and 

{ } [ ]( ){ } { } ( )6,6 6,6? | 6?? 9 24 .
2t u v

m
E e uv E BNT m n d d E n= = ∈ = = → = −  

Thus the M-polynomial of [ ],tBNT m n is equal to: 
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[ ]( ) [ ]( )

[ ]( ) [ ]( )
[ ]( )

4,

4
44 46

4 4 4 6

4 4 6

6
6

6 6
6

6

, ,牋, ,

,                                 

                                    

                                

,

,

  

t t

t

i j
ij

i j

t

u E

t

v

M BNT m n x y m BNT m n x y

m BNT m n x y m BNT m n x y

m BNT m n x y

≤

≤ ≤

≤

∈

=

= +

+

=



 



{ }

[ ]( )
{ }

[ ]( )

{ }

[ ]( )

{ } { } { }

4 4,6

6,6

4 4 6

6

4 6 6

4
44 46

6
66

2 4 6
4,4 4,6 6,6

4

                                     

                                  

                    

, ,

,

3              

uv E

uv E

t t

t

m BNT m n x y m BNT m n x y

m BNT m n x y

E x y E x y E x y

mx y

∈

∈

+

+

= + +

=

 



( )6 64 64 6 9 24
2

.m
mx y n x y+ + −

 

 

Figure 4.  Plot of M-polynomial of [ ],tBNT m n  

Above figure presents the Maple 13 plot of the M-polynomial of triangular Boron Nanotubes. 

Clearly, Values drastically decrease as 1Χ → ± , 2Y → ±  For the most part of [-1,1] × [-2,2], 

values remain stable.   
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Proposition 1. Let [ ],tBNT m n is the boron triangular nanotube, then 

1. [ ]( )1 , 6 (9 10),tM BNT m n m n= −  

2. 2 2
2 (7( [ , ] 1620 ),8 429 6tM BNT m n m n n= − +  

3. 
2

2
2 ( [ , ])

16
(9 1),m

t

m
M BNT m n n −=  

4. 2 2(729( ) ( 1620 86 ) ,4 )aR G m n n α= − +  

5. 
2

2( ) ( ) ,
16

(9 1)a

m
R G n α−=  

6. 
2

2( ) (162 1 .
4

)1280m
SDD G n n= +−  

Proof. Let ( ),f x y be the M-polynomial of [ ],tBNT m n . Then 

[ ]( ) ( )4 4 64 66, ? , 3 6 4 ,9 2
2t

m
f BNT m n x y mx y mx y n x y= + + −  

3 34 5 66( ( , )) {12 24 3 (9 24) ,}xD f x y x mx y mx y m n x y= + + −  

4 43 6 55( ( , )) {12 36 3 (9 24) ,}yD f x y y mx y mx y m n x y= + + −  

4 4 664 63 3( ( , )) (9 24)4 4 2 ,x
mS f x y mx y mx y n x y= + + −  

4 4 6 64 63( ( , )) (9 12) ,4 12y
mS f x y mx y mx y n x y= + + −

 

[ ]( )( ) 1, ? , | 9 (3 4),x x ytD f BNT m n x y m n= = = −  

[ ]( )( ) 1, ? , | 3 (9 8),y x ytD f BNT m n x y m n= = = −  

[ ]( )( ) 1, ? , | (3 1),4x x yt
mS f BNT m n x y n= = = +  
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[ ]( )( ) 1, ? , | (3 1),4y x yt
mS f BNT m n x y n= = = −  

1. [ ]( ) ( )( )1 1, ? ) ; , | 6 (9 10),t x y x yM BNT m n D D M G x y m n= == + = −  

2. 2 2
2 ( 1)( [ , ]) ( )( ( ; , )) (7| 16202 ,69 8 4)t x y x yM BNT m n D D M G x y m n n= == = − +  

3. [ ]( ) ( )( )
2

2
2 1, ( ) ; , |

1
( ),

6
9 1m

t x y x y

m
M BNT m n S S M G x y n= = −= =  

4. 2 2
( 1)( ) ( )( ( ; , )) | ( 1620 864))(729 ,a x y x yR G D D M G x y m n nα α α

= == = − +  

5. 
2

2
( 1) (9 1) ,( ( )( ( ; , )) | ( )

16a x y x y

m
R G S S M G x y nα α α

= = −= , 

6. 
2

2
( 1)( ) ( )( ( ; , )) | 180 )(16 1

4
.2 2x y x y x y

m
SDD G D S S D M G x y n n= == + = +−  

Proposition 2. Let [ , ]tBNT m n is boron triangular nanotube, then  

• [ ]( )? ? 15 1),20t
mH BNT m n n= −  

• ( [ , ] (135 1561 ),0t
mI BNT m n n= −  

• [ ] 1, (26244 176266)
125

( )tBNT m n mA n= + . 

Proof. Let ( ),f x y be M-polynomial of [ ],tBNT m n . Then 

[ ]( ) 4 4 4 6 6 6, ? , 3 6 (9 24) ,2t
mf BNT m n x y mx y mx y n x y= + + −  

[ ]( ) 8 10 12( , ? , ) 3 6 (9 24) ,2t
mJ f BNT m n x y mx mx n x= + + −  

[ ]( ) 8 210 13 3 1( , ? , ) (9 24)8 5 ,24x tf BNT m n x y mx mx m nS xJ = + + −  

[ ]( ) [ ]( ) 1, ? , 2 , ? , | (1 ,5 1)20x xt t
mH BNT m n x y S BNT m n xJ y n== = −  
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[ ]( ) 4 4 4 6 6 6( , ? , ) 12 36 3 (9 24) ,ty f BNT m n x y mx y mx y m nD x y= + + −  

[ ]( )( ) 4 4 4 6 6 6, ? , 48 144 18 (9 24) ,x y tD D f BNT m n x y mx y mx y m n x y= + + −  

[ ]( )( ) 8 10 12
1, ? , | 48 144 18 (9 24) ,x y t x yf BNT m n x y mx mJ mD x n xD = = = + + −  

[ ] [ ]( ) 1
, , ? , (135 156)0( ,1)t x x y xt

mBNT m n BNT m n x y nI S JD D
=

= −=
 

[ ]( )3 4 4 4 6 6 6( , ? , ) 192 1296 108 (9 24) ,y tD mx yf BNT m n x y mx y m n x y= + + −
 

[ ]( )3 3 4 4 4 6 6 612288 82944 23( , ? , ) 328 (9 24) ,x y tD D mx y mx y m nf BNT ym n x y x= + + −  

[ ]( )3 3 8 10 1212288 82944 23328 (9 24( , )? ,; )x y tJD D mx mx m nf BNT m n xx y = + + −  

[ ]( )3 3 6 8 10
2 12288 8294( 4 23328 (9 24, ? , ) ,)x y tQ JD D mx mx m nf BNT m n x xy− = + + −  

[ ] [ ]( )3 3 3
2

1, ( , ? , ) (26244 1762( ) 66).
125t x x y tBNT m n f BNT mA S Q JD D n x y m n− = +=  

CONCLUSIONS AND DISCUSSION  

In this article, we computed at first step, the closed form of M-polynomial for triangular boron 

nanotubes. Then we derive many degree-based topological indices for triangular Boron nanotubes. 

Topological indices thus calculated for these nanotubes can help us to understand the physical 

features, chemical reactivity, and biological activities. In this point of view, a topological index can 

be regarded as a score function which maps each molecular structure to a real number and is used 

as descriptors of the molecule under testing. These results can also play a vital part in the 

determination of the significance of triangular boron nanotubes in electronics and industry. We also 

want to remark that similar techniques can be used to determine M-polynomial and topological 

indices about α -boron nanotubes. A comparison of both types of boron Nanotubes can be given. 
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