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Abstract: As with many of the non-deterministic search algorithms, particularly those are 
analogous to complex biological systems, there are a number of inherent difficulties, and the Bees 
Algorithm (BA) is no exception. Basic versions and variations of the BA have their own drawbacks. 
Some of these drawbacks are a large number of parameters to be set, lack of methodology for 
parameter setting and computational complexity. This paper describes a Grouped version of the 
Bees Algorithm (GBA) addressing these issues. Unlike its conventional version, in this algorithm 
bees are grouped to search different sites with different neighbourhood sizes rather than just 
discovering two types of sites, namely elite and selected. Following a description of the GBA, the 
results gained for 12 benchmark functions are presented and compared with those of the basic BA, 
enhanced BA, standard BA and modified BA to demonstrate the efficacy of the proposed 
algorithm. Compared to the conventional implementations of the BA, the proposed version 
requires setting of fewer parameters, while producing the optimum solutions much faster. 

Keywords: bees algorithm; swarm intelligence; evolutionary optimization; grouped bees 
algorithm 

 

1. Introduction 

In recent years, we have considered many applications of population-based search algorithms 
in a diverse area of both theoretical and practical problems. Basically, these heuristic searches 
algorithms are exceedingly well suited for optimization problems by huge number of variables. Due 
to the nature of these multi variable problems, it is almost impossible to find a precise solution set for 
them within a polynomial bounded computation time. Therefore, swarm-based algorithms are 
preferred for finding the most optimal solution as much as possible within a sensible time. A 
number of most well-known stochastic optimization methods are (but are not limited to) Ant Colony 
Optimization (ACO)  [1], Artificial Bee Colony (ABC) algorithms [2], Genetic Algorithms (GA) [3], 
Particle Swarm Optimization (PSO) [4], Cuckoo Search (CS) algorithm [5] and the Bees Algorithm 
(BA) [6]. 

The ACO algorithm mimics real ants’ behaviour in seeking food. Real ants generally wander 
arbitrarily to find food, and once it was found, they return to their colony while making a trail by 
spreading pheromone. If other ants face such a path, they will follow and reinforce the track, or 
revise it in some cases. Some theoretical and practical application of ACO can be found in [7, 8]. 
Some improvements for the search mechanism of ACO using derivative free optimization methods 
can be found in [9]. 

The ABC is another global optimization algorithm which is derived from the behaviour of 
honey bees while searching for food. For the first time, ABC was proposed in [2] for solving 
numerical optimization problems. The ABC has a colony model including three different groups of 
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bees: employed, onlooker and scout. In the ABC, the employed bees are responsible to look for new 
food resources affluent of nutrient within the vicinity of the food resources that they have visited 
before [10]. Onlookers monitor the employed bees’ dancing and choose food resources based on the 
dances. Finally, the task of finding new food resources in a random manner is given to scout bees. 
The performance of ABC versus GA and PSO has been evaluated by testing them on a set of multi 
variable optimization problems in [11]. An example of the ABC application to increase throughput 
for wireless sensor networks is given in [12]. 

The GA and PSO are two other well-known optimization algorithms which are inspired from 
two different biological approaches. The former works according to the evolutionary idea of the 
natural selection and genetics; and the latter imitate the “social behaviour of bird flocking or fish 
schooling” [13]. The two techniques have been applied in a vast number of applications. As an 
example, the performance of ACO, PSO, and GA on the radio frequency magnetron sputtering 
process is compared in [14]. A recent variant of the GA known as “Quantum Genetic Algorithm” is 
reviewed in [15]. 

The CS, another meta-heuristic search algorithm, is introduced by Yang and Deb in 2009 [5]. 
This algorithm imitates the “obligate brood parasitic behaviour” of some cuckoos which put their 
eggs in nests of other birds [16]. A solution is represented by an egg which can be found by another 
host bird by a specific likelihood. The host bird can then follow two policies: to toss the egg out, or to 
drop the nest in order to construct a new nest. As such, the highest quality nest will be transferred 
through the generations to keep the best solutions over the process. A review on the CS algorithm 
and its application can be find in [17]. A conceptual comparison of the CS to ABC and PSO can be 
found in [18]. 

The BA is another optimization algorithm derived from the food seeking behaviour of honey 
bees in nature. A detailed description of BA can be found in section 4. A comprehensive survey and 
comparison of BA to ABC and PSO is presented in [19]. The basic BA and its other versions have 
been widely used in various problems including manufacturing cell formation [20], integer-valued 
optimizations for designing a gearbox [21], printed-circuit board (PCB) assembly configuration [22], 
[23], machine job scheduling [24], adjusting membership functions of a fuzzy control system [25], 
neural network training [26], data clustering [27], automated quiz creator system [28], and for 
channel estimation within a MC-CDMA (Multi-Carrier Code Division Multiple Access) 
communication system [29].  

In the literature, various versions of BA such as enhanced BA, standard BA and modified BA 
have been introduced after the introduction of the basic BA. Reference [30] gives a fairly detailed 
review of many different versions of BA. The enhanced BA has higher computational complexity 
because of its included fuzzy subsystem which selects potentially better sites or patches (i.e. 
solutions) for better exploration, albeit it is reducing the number of setting parameters. The standard 
BA has increased the accuracy and speed by applying two new procedures on the basic version. This 
improvement has led to higher complexity for standard BA. In the modified BA, a collection of new 
operators is added to the basic BA which results in performance improvement, and consequently, 
too much increasing of complexity compared to all the other versions. 

In this paper, a grouped version of the Bees Algorithm is introduced for multi-variable 
optimization problems. In this variation, bees are grouped into two or more search groups. In the 
first groups, more bees are recruited to search smaller but richer patches. In the last groups, more 
scout bees attempt to discover new patches within larger neighbourhoods. Well defined formulas 
are used to set the parameters of the algorithm. Therefore, the number of adjustable parameters that 
has to be set is reduced. The original behaviour of the Bees Algorithm is maintained without any 
additional system or any extra operators. The rest of this paper is organized as follows. In section 2, 
the benchmark functions for evaluating the proposed algorithm and the performance of the 
algorithm on each of them are discussed. General interpretation of results in perspective of other BA 
variants and future research directions are given in section 4. The proposed Grouped Bees 
Algorithm (GBA) is elaborated in section 4 where the core idea of the basic Bees Algorithm and its 
different modifications are also reviewed. At last, section 5 summarizes the paper. 
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2. Results 

In order to access the performance (i.e. speed and accuracy) of the proposed GBA, the algorithm 
was applied on 12 well-known function benchmarks. The results are then compared to those 
reported in [6], [31], [32].  

2.1. Benchmark set 

For each function, the interval of the input variables, the equation and the global optimum are 
shown in Table 1 as reported in [33], [34].The Martin & Gaddy and Hypersphere benchmarks are 
uni-modal functions which are quite straightforward for optimization tasks. The Branin function has 
three global optima with exact the same value. The minimum of the unimodal Rosenbrock function 
is at the lowest part of a long and narrow valley [19]. While the valley could be simply discovered 
within a few repetitions of the optimization algorithm, locating the exact global minimum is quite 
difficult. The Goldstein & Price function is also an easy benchmark for optimization with only two 
input parameters. The Schwefel function is quite misleading where the global minimum is in distant 
from the second best minimum [33]. As such, the optimization algorithms could easily fall into the 
trapped second best minimum. The multi-modal Shekel function has a complex search space. The 
Steps benchmark is formed of many flat plateaus and steep ridges. The Griewangk and Rastrigin 
functions are extremely multi-modal. Both functions include a cosine modulation creating numerous 
local minima. Yet the locations of the local minima throughout the search space are regularly spread 
[33]. 

Table 1. Benchmark Functions
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2.2. Speed evaluation 

As the first experiment, the proposed algorithm was tested for speed, and compared to the basic 
BA [6] and the enhanced BA on the benchmark functions from 1 to 7. The experiment conditions 
were set according to the experiments of Pham and his colleagues [19], [31]. Accordingly, the 
grouped Bees Algorithm was run 100 times, with different random initializations, for each of these 
functions. The error for the while-loop of the GBA was defined as the difference between the value 
of the global optimum and the fittest solution found by the GBA, so far. The optimization procedure 
then stopped when the error was less than the minimum of 0.001 and 0.1% of the global optimum. 
When the optimum value was zero, the procedure stopped if the solution was different from the 
optimum value by less than 0.001. From mathematical perspective, the stopping criteria were hence 
set to be: ݁ݎ݋ݎݎ = (ݔ)݂ − ݂∗ (2.1) 

݃݊݅݌݌݋ݐݏ ݊݋݅ݎ݁ݐ݅ݎܿ = ቐ݁ݎ݋ݎݎ ≤ 0.001 ; (ݔ)݂ = ݎ݋ݎݎ0݁ ≤ ݉݅݊ ൬0.001, 0.1100 ൰(ݔ)݂ ; (ݔ)݂ ≠ 0 (2.2) 

where f(x) is the value of the benchmark function f at the input point of x, and f* is the value of 
its global optimum. 

 
 
 
Table 2 presents the results of applying the basic BA and the enhanced BA to the same 

benchmark suite as reported in [6] and [31]. The table shows the average number of function 
evaluations performed by the GBA before it stops due to the same stopping criterion for all the 
algorithms. For each benchmark problem, the best result is emphasised in bold. By looking at the 
table, it is immediately clear that the GBA outperformed the basic method. However, to provide 
more comparable figures, Table 3 details the difference between the total numbers of fitness function 
calculations done by each algorithm compared to the GBA’s. This figure is expressed for each 
function as the percentage change in the mean numbers of evaluations by the GBA with respect to 
those by the other algorithms. As shown in Table 3, the GBA is nearly two times faster than the basic 
BA, whereas its performance is generally a little faster than the enhanced BA. The obvious difference 
between the enhanced BA and the GBA is the high computational costs of employing the enhanced 
BA, which heavily depends on its fuzzy subsystem in all the iterations. Therefore, the GBA is by far 
more computationally efficient than the enhanced BA. In addition, in Figure 1 the search strategy for 
finding the optimal point of GBA and the enhanced BA [31] are depicted. The dashed red line and 
dashed greenish-blue line are showing the GBA’s best point evolution track and the enhanced BA’s 
best point evolution track, respectively. As shown in this figure, GBA has a greedier policy to reach 
the best point in short pieces of time compared to the enhanced BA. In other words, in GBA, each bee 
tries to reach the best point within their neighbourhood in less iteration as possible, and it is not a 
matter to be trapped in a local optimum point. That is, a bee does not to be worried about local 
optima, as those bees belonging to the higher groups, with larger patch sizes, have enough chances 
of being located in the route toward the global optimum point. So, the GBA’s best solution has 
considerably less jump in search space than the enhanced BA. It is evident that the enhanced BA 
jumps much more over the search space. This is because of its strategy encountering local points i.e. 
site abandonment. Although, site abandonment could release the trapped bee from local optima, yet 
it leads to a generally slower process in finding the optimum. In the end, it can be stated 
that GBA exhibits more evolutionary intelligence than the enhanced BA in reaching the optimum 
point. The parameters used by the GBA for benchmark functions from 1 to 7 in this experiment can 
be found in Table 4. 
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Table 2. Mean number of evaluations of functions 1-7 for BA, EBA [31] and GBA. 

Function Mean number of Evaluations
 Basic BA Enhanced BA Grouped BA 
1. Martin & Gaddy 2D 526 124 114
2. Branin 3D 1657 184 216
3. Rosenbrock 4D 28529 33367 29601
4. Hypersphere 6D 7113 526 565
5a. Rosenbrock 2D 2306 1448 1026
5b. Rosenbrock 2D 631 689 580
5c. Rosenbrock 2D 868 830 679
6. Goldstein & Price 2D 999 212 273
7. Schwefel 6D Approx. 3E6 N/A Approx. 1E6 

 

Table 3. Differences in the average number of evaluations. 

Function Percentage Change in GBA w.r.t. 
 Basic BA Enhanced BA 
1. Martin & Gaddy 2D -78.33% -8.06%
2. Branin 3D -86.96% 17.39%
3. Rosenbrock 4D 3.76% -11.29%
4. Hypersphere 6D -92.06% 7.41%
5a. Rosenbrock 2D -55.51% -29.14%
5b. Rosenbrock 2D -8.08% -15.82%
5c. Rosenbrock 2D -21.77% -18.19%
6. Goldstein & Price 2D -72.67% 28.77%
Average -51.45% -3.62%

 

Table 4. The parameters used by GBA in the speed experiment 

Function n groups Ngh* 
1. Martin & Gaddy 2D 6 3 0.13 
2. Branin 3D 8 3 0.05 
3. Rosenbrock 4D 4 3 0.001 
4. Hypersphere 6D 4 3 0.035 
5a. Rosenbrock 2D 5 3 0.11 
5b. Rosenbrock 2D 6 3 0.08 
5c. Rosenbrock 2D 4 3 0.09 
6. Goldstein & Price 2D 9 3 0.006 
7. Schwefel 6D 500 3 0.2 
* The Ngh vector has the same scalar value in all dimensions. 
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Figure 1. Search Strategy of GBA and EBA [31] on Shekel Function. 

2.3. Accuracy evaluation 

As the second experiment, the proposed algorithm was tested for accuracy, and compared to 
the standard BA [19] and the modified BA [32] on the benchmark functions from 5c to 12. The 
standard BA is a better version of the basic BA which employs neighbourhood shrinking and site 
abandonment methods [19]. The stopping criteria in this experiment are defined differently form the 
first experiment. The experiment conditions were set according to the experiments in [32]. Hence, 
the grouped Bees Algorithm was run independently 20 times as was an experiment condition in [32]. 
By the end of each run, the fittest bee of the last iteration was considered to be the final solution. For 
each benchmark problem, the exact number of iterations was preset in such a way that the number 
of function evaluations was as close as possible to that of the standard Bees Algorithm or the 
modified BA in [32], whichever was smaller. Precisely speaking, equations (2.3) - (2.5) show how to 
calculate the exact number of iterations and function evaluations in the GBA.  

The number of evaluations in one iteration (λ) of GBA is defined as: 

ߣ = ෍ ݃(݅). ௚௥௢௨௣௦(݅)ܿ݁ݎ
௜ୀଵ + ݃௥௡ௗ (2.3) 

As a result, the number of iterations, ߞ, and the number of evaluations, ߦ, are obtained as: ߞ = ቔߜ ൗߣ ቕ (2.4) ߦ = .ߞ  (2.5) ߣ

where δ is the minimum number of evaluations in the standard BA and the modified BA. 
The number of iterations and function evaluations for the three mentioned algorithms are 

provided in Table 5. The table shows the differences in the number of function evaluations between 
GBA and the other two algorithms in percentages. The absolute distance from the fitness of the final 
solution to the global optimum is denoted as the absolute error as is in [32]. Alike to [32], for each 
algorithm, the average and the median of absolute error are given in Table 6.  These numbers are 
displayed in decimal to an accuracy of 4 decimal places. The least errors obtained for each 
benchmark function are emphasised in bold. If two algorithms performed similarly, their results are 
both displayed in bold. Table 7 shows the parameters used by the GBA for benchmark functions 
from 5c to 12 in the accuracy experiment. 

According to Table 6, each of the grouped BA, modified BA and standard BA has been 
successful in achieving the minimum error in, respectively, five, three and three functions out of 
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eight benchmarks. Considering both the mean and median errors, the grouped BA and the modified 
BA have performed almost equally in general. However, the standard BA has an equal or worse 
performance than the GBA in six benchmark functions out of eight. 

 

Table 5. No. of iterations and evaluations by Grouped BA, Standard BA and Modified BA 

Modified BA Standard BAGrouped BAFunction 
Diff.% Iter. Eval.Diff.%Iter.Eval.Iter.Eval.  
4.79% 50 5032.92%1949432480 5c. Rosenbrock 2D 
0.59% 100 1026 1.96% 40 1040 51 1020 6. Goldstein & Price 2D 
1.98% 200 2011 1.52% 77 2002 16 1972 7. Schwefel 6D 
3.85% 100 1026 5.26% 40 1040 19 988 8. Shekel Foxholes 2D 
5% 10 126 8.33% 5 130 8 120 9. Steps 5D 
1.38% 100 1026 2.77% 40 1040 11 1012 10. Rosenbrock 5D 
0.59% 100 1026 1.96% 40 1040 68 1020 11. Griewangk 10D 
1.08% 100 1026 2.46% 40 1040 35 1015 12. Rastrigin 20D 

 
 

Table 6. Mean and median of absolute error for Grouped BA, Standard BA and Modified BA 

Modified BA Standard BAGrouped BAFunction 
Median Mean MedianMeanMedianMean  
0.0003 0.0014 0.00780.02240.00020.00195c. Rosenbrock 2D 
0.0000 0.0011 0.00000.00000.00000.00006. Goldstein & Price 2D 
73.4942 93.0656 572.2723 620.3443454.0311 453.2246 7. Schwefel 6D 
0.0000 0.1525 0.00950.02130.0000 0.2397 8. Shekel Foxholes 2D 
4.0000 3.8500 4.5000 4.2000 2.00002.15009. Steps 5D 
0.8540 1.3038 1.37281.20901.1019 1.3319 10. Rosenbrock 5D 
1.0718 1.0774 1.0887 1.0774 0.94830.929711. Griewangk 10D 
77.8710 83.7651 120.6735 116.269179.322083.651512. Rastrigin 20D 
       

3 3 5 Wins 
 

Table 7. The parameters used by GBA in the accuracy experiment 

Function n groups Ngh* 
5c. Rosenbrock 2D 4 3 0.2 
6. Goldstein & Price 2D 9 3 0.006 
7. Schwefel 6D 20 6 0.5 
8. Shekel Foxholes 2D 40 2 0.3 
9. Steps 5D 4 3 3 
10. Rosenbrock 5D 7 6 0.02 
11. Griewangk 10D 4 3 10 
12. Rastrigin 20D 15 3 0.025 
* The Ngh vector has the same scalar value in all dimensions 

3. Discussion 

To summarize the above-mentioned experiments, GBA not only is substantially faster than the 
basic version of BA, but also has a higher accuracy than the standard BA and a similar accuracy to 
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the complex modified BA. It is notable that the modified BA is not considered as one of the main 
implementations of the Bees Algorithm [30]. The modified BA may be considered as a hybrid kind of 
BA that employs various operators including mutation, crossover, interpolation and extrapolation; 
whereas the GBA is not introducing any new operator to the basic BA, and has significantly less 
conceptual and computational complexity compared to all the other variants built on top of the basic 
BA. 

To compare the performance of the Bees Algorithm family with those of other population-based 
algorithms, like GA, PSO or ACO, see [19], [31], [32]. Nevertheless, it is worth mentioning that, based 
on these studies, the Bees Algorithm family outperforms all the other population-based algorithms 
for these kinds of continuous optimization problems. 

 
A further extension of this work focuses on comparing and discussing the performance of GBA 

against the Genetics Algorithm and Simulated Annealing on optimizing discreet input space and 
combinatorial problems such as travelling salesman problem and component placement problem, 
initially discussed in [35]. 

 

4. Materials and Methods  

4.1 The Bees Algorithm  

The Bees Algorithm (BA), which imitates the natural food seeking behaviour of a swarm of 
honey bees, fits in the category of population-based optimization algorithms. Figure 2 shows the 
flowchart of the BA [36]. User needs to initialize a number of parameters before the algorithm begins 
the optimization process. These parameters are known as: the number of scout bees (n), number of 
selected sites out of n recently visited regions for neighbourhood search (m), number of elite sites out 
of m selected regions (e), number of recruited bees for the top e sites (nep), number of recruited bees 
for the remaining (m-e) selected regions (nsp), and finally, the initial size of each site (ngh) [6]. It is 
needful to state that a site (or patch) represents an area in the search domain that contains the visited 
spot and its vicinity. 

By initializing n scout bees in a random manner over the search space, the BA starts working in 
first step. In the next step, the recently visited patches by the scout bees have to be assessed based on 
the predefined fitness function. In step 3, the m superior patches are labelled as selected patches for 
vicinity search. In the next step, step 4, an initial dimension of ngh for the patches is determined. The 
basic form of BA decreases the size of patches gradually to help search for a more accurate solution 
while the algorithm iteration advances [6]. The two groups of recruited bees probe near the chosen 
patches in the neighbourhood of radius ngh in step 5; and in step 6, the algorithm picks the top bee 
from each patch as the new representative of the patch. The remaining bees, in step 7, are the 
random search bees of the swarm. They are assigned to look for any new potential solutions by 
randomly flying over the search domain. Next generation of the swarm will be formed by the 
random search bees of step 7 and the representative bees declared in step 6. A complete description 
of the basic BA can be found in [6], [37]. 
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Figure 2. Basic Bees Algorithm flowchart as reported in [36] 

4.1.1 Previous modifications to the Bees Algorithm 

The large number of parameters which should be set is a downside of the basic Bees Algorithm. 
Although some variations of the Bees Algorithm attempt to solve this issue, it is reached at the 
expense of higher computational complexity. In [31] an enhanced version of the BA, employing two 
features of a fuzzy greedy system for selection of patches and a hierarchical abandonment method, is 
described. The abandonment method was first introduced by Ghanbarzadeh [38]. When the 
algorithm is stuck in a local optimum, this method triggers by removing the trapped site from the 
list of potential sites [38]. A hierarchical version of abandonment executes the same instruction on all 
sites with a lower rank than the trapped site [31]. The hierarchical version is utilized in the enhanced 
BA. A list of sorted candidate solutions based on their fitness determines the rank for each site. The 
Takagi-Sugeno fuzzy selection system decides the number of selected sites and the number of 
recruited bees for each site based on a greedy policy [31]. This fuzzy inference process needs to be 
executed in every iteration which may not be a favorable approach in an iterative algorithm. 

Setting two parameters, the “number of scout bees” and the “maximum number of recruited 
bees for each site” are required in the enhanced BA [31]. The two parameters can have same values, 
and the initial size of the sites’ neighbourhood (nh) is set to be a fraction of the size of the whole 
search domain. Figure 3 illustrates the pseudo-code of the Enhanced BA (EBA) [31]. 

For improving the search accuracy and computation performance, two other procedures are 
introduced [39], [40]. In the first approach, the search begins within the initial neighbourhood size of 
sites (nh) of basic BA. It counties using the initial neighborhood size as long as the recruited bees are 
discovering better solutions in the neighbourhood. If the recruited bees fail to make any progress, 
the size of the patch will become smaller. This procedure is called the “neighbourhood shrinking” 
method [39]. In [19], the heuristic formula for updating the size of neighbourhood for each input 
variable is stated as follows: ݊ℎ(0) = ݔܽܯ  (4.1) ݊݅ܯ−
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݊ℎ(ݐ + 1) = 0.8 ൈ ݊ℎ(ݐ) (4.2) 

where Max and Min indicate the maximum and minimum of the input vector respectively. 
 

 
Figure 3. Pseudo code of Enhanced Bees Algorithm (EBA) taken from [31]  

If shrinking the patch size does not result in any progress, the second procedure is applied. 
After a given number of loops, the patch is assumed to be trapped within a local minimum (or peak), 
and no further improvement would occur [19]. Therefore, the patch exploration is stopped and a 
new random patch is generated for hunting. This process is known as “abandon sites without new 
information” [40] or “site abandonment” [19], [40]. 

The basic version of PSO depends on the swarm's best known position, and this feature leads 
the algorithm to be potentially trapped in a local peak. This is an untimely convergence which can be 
eluded by including variable size neighbourhood search and random search into the basic PSO 
algorithm to escape from stagnant states and reach global optimum [41]. In the same current 
position and local best position case, a PSO particle would only escape from this point if the previous 
speed and inertia weight of the particle have been non-zero. However, if previous velocities of the 
particles are around zero, all of them will stop searching when they reach this local peak, and this 
can lead to an immature convergence of the algorithm. This premature convergence problem of 
basic PSO is solved by proposing a hybrid version of PSO-BA [41]. 

A different formulation for the Bees Algorithm is introduced by including new search operators 
and a new selection procedure which augment the survival probability of newly formed individuals. 
This improvement enhances random search process of the Bees Algorithm using following 
operators: mutation, creep, crossover, interpolation and extrapolation [42]. Every bee or solution has 
a chance for improvement by evolving a few times using the mentioned operators, and generation 
by generation the best bee is kept. At each step, a new movement will only be accepted if any 
improvement is obtained, otherwise its current point will be retained. The number of iterations of 
the main loop is an inverse function of the fitness rank of the solution. This improved version 
strongly preserves the best bees. In addition, it keeps creating fresh bees and fostering them. 
Therefore, the large set of “best bees” would be resumed to search again if they need to be [42]. 

More recently, a modified version of the Bees Algorithm is introduced in [28], which is mostly 
alike to the improved Bees Algorithm in [42], and in contrast to the basic BA, it requires more 
parameters to be set. As such, a statistical method is offered to line up the extra parameters. In the 
Modified BA (MBA), new young solutions are preserved for a predetermined number of iterations 
from competition with more evolved bees. The overall performance of the MBA is evaluated by 
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testing it on nine function benchmarks and comparing the results with that of other algorithms 
including standard BA, PSO, GA and so forth [32]. To the best of authors’ knowledge, MBA has been 
the strongest version of the Bees Algorithm for single-objective problems to date, yet at the expense 
of adding many complex operators.  

Apart from the basic neighbourhood search method, two more methods are introduced in [43] 
to cope with multi-objective problems, where the “pareto” curve is formed by “all the 
non-dominated bees in each iteration”. During a simple neighbourhood hunt, a recruited bee is 
dispatched to a selected site and its fitness is calculated; and then, its fitness is compared against the 
scout bee in the site. The old solution is replaced by the new one only if it could reach a fitter point in 
search space, otherwise it is not. Based on the first approach, all the recruited bees, the number of 
which is nsp + nep, are sent to the selected site at the same time rather than one bee at a time. Then, 
the non-dominant bees are selected among the all recruited bees considering their quality. Finally, 
the new scout bee will be selected for the site randomly, provided that there are at least two 
non-dominated bees. This approach is called “Random selection neighbourhood search”, and the 
second approach is named “Weighted sum neighbourhood search,” which is similar to the random 
one. In spite of that, where the algorithm is deciding to choose the new scout bee by chance, a linear 
combination of the objective functions decides which “non-dominated bee” should replace the old 
scout in the site [44]. 

4.2 The proposed Grouped Bees Algorithm 

The proposed Grouped Bees Algorithm (GBA) uses the basic Bees Algorithm as a core. The 
main difference between the basic BA and the grouped BA is the number of different patch types to 
be explored. This number in the basic BA is two where there are always two types of selected 
patches, being either elite or good; whereas this number is essentially variable in GBA. In addition, 
this algorithm, unlike the basic BA, does not waste any patch and searches all of them. In GBA, bees 
are grouped to search all the patches with different neighbourhood sizes. As such, it is no longer 
required to set the values of m, e, nep and nsp as the equivalent parameters for each group are 
determined based on mathematical relations by the algorithm. The GBA has three parameters to be 
set as: (1) the number of scout bees (n) which corresponds to the total number of patches (or sites) to 
be explored; (2) the number of strategical searching groups (groups) (3) the patch radiuses for the first 
group, containing top-rated scout bees, (Ngh). These parameters and some other important notations 
of GBA are summarized in Table 8. 

The algorithm follows three general intuitive rules as follows: (1) while a scout bee is becoming 
closer to the global optimum, a more precise and detailed exploration is needed; so the search 
neighbourhood size becomes smaller (for the groups with smaller indices) and vice versa; (2) Based 
on the nature of honey bees [45], [46], better flower patches, which generally corresponds to  groups 
with smaller indices, should be visited by more recruited bees; (3) The larger neighbourhood size 
(radius), the more scout bees are needed to cover the whole area. 

Similar to the BA mathematical notations [19], the input domain of all possible solutions is 
considered to be U = {X ∈ ℝ m; Min < X < Max}. So, assuming a fitness function is defined as f(X): U → 
R, each potential solution (bee) is formulated as an m-dimensional vector of input variables X = 
{x1,...,xj,...,xm} where xj is between minj and maxj, corresponding to the decision variable number j. The 
search neighbourhood for the whole set of bees belonging to the same group of i is defined as an 
m-dimensional ball with the radius vector of Ngh(i) = {ngh(i)1,... ngh(i)j,...,ngh(i)m} which is centered on 
the scout bees in the group i. In fact, each (recruited) bee will search on its own neighbourhood 
(patch), but the neighbourhood size is the same for all bees belonging to the same group. Now, 
considering the first rule, it is suggested each radius of ngh(i)j should have the following relation 
with the group number, i: ݊݃ℎ(݅)௝ = ௝ܽ. ݅ଶ + ௝ܾ (4.3) 

subject to: 
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ቐܰ݃ℎ = ܰ݃ℎ(1) = ൛݊݃ℎ(1)ଵ, . . , ݊݃ℎ(1)௝, . . , ݊݃ℎ(1)௠ൟ݊݃ℎ(݃ݏ݌ݑ݋ݎ)௝ = ௝ݔܽ݉ − ݉݅ ௝݊2  (4.4) 

which yields: 

۔ە
ۓ ௝ܽ = ൬݉ܽݔ௝ − ݉݅ ௝݊2 ൰ − ݊݃ℎ(1)௝݃ݏ݌ݑ݋ݎଶ − 1௝ܾ = ݊݃ℎ(1)௝ − ௝ܽ

 (4.5) 

A simple equation for the number of recruited bees in each group, which is in line with the 
second rule, is decided to be: ܿ݁ݎ(݅) = ݏ݌ݑ݋ݎ݃) + 1 − ݅)ଶ1 ≤ ݅ ≤ ݏ݌ݑ݋ݎ݃  (4.6) 

Table 8. The Nomenclature of Grouped Bees Algorithm (GBA) 

  Definition 

n Total number of scout bees * 
groups Total number of groups, excluding the random group * 

i Group number (index) starting from 1 

j Decision input variable index from 1 to m 

g(i) Number of scout bees (i.e. patches) in the i-th group 

grnd Number of scout bees for the random group, who are searching randomly 

rec(i) Number of recruited bees for patches in i-th group 

Ngh Radius vector of the neighbourhood for bees in the first group * 

Ngh(i) Radius vector of the neighbourhood for the i-th group 

ngh(i)j Radius for the j-th decision variable for bees in the i-the group 
* To be set by user, whereas other parameters are automatically calculated. 

 
Given the third rule, it is proposed that the number of scout bees in each group, g(i), should be 

proportional to the group index square, i2, while the total number of all the scout bees who search 
either randomly or strategically should be equal to n.  To that aim, the area under the graph of k.x2 
over the interval [1, groups+1] should sum up to n. So, the problem is to find a coefficient, k, which 
makes the definite integral of the function of f(x) = k.x2 with respect to x from 1 to groups+1 equal to n, 
i.e., to find k so as to: 

න ݇. ݔଶ݀ݔ = ݊௚௥௢௨௣௦ାଵ
ଵ  (4.7) 

which results: ݇ = ݏ݌ݑ݋ݎ݃)3݊ + 1)ଷ − 1 (4.8) 

Given the above, the algorithm determines the number of scout bees in each group as: ൜݃(݅) = .݇ہ ݅ଶ݂݅ۂ	݃(݅) = 0 ℎ݁݊ݐ ݃(݅) = 1 (4.9) 

where k is given in equation (4.8), and the number of scout bees for the random group, that seek 
randomly, is given by: 
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݃௥௡ௗ = ൭݊ − ෍ ݃(݅)௚௥௢௨௣௦
௜ୀଵ ൱ା (4.10) 

where x+ = max(x, 0); to recapitulate, Figure 4 illustrates the pseudo code of the Grouped Bees 
Algorithm. 

 

 
Figure 4. Pseudo code of the Grouped Bees Algorithm (GBA) 

5. Conclusions  

In this study, the basic version of the Bees Algorithm has been restructured to improve its 
performance while decreasing the number of setting parameters. The proposed version is denoted as 
the Grouped Bees Algorithm (i.e. GBA). In contrast to the basic Bees Algorithm, in GBA the bees are 
grouped to search different patches with various neighbourhood sizes. The group with the lowest 
index contains the fittest scout bees. This group has also the highest number of recruited bees. As the 
index of a group increases, the quality of the patches is reduced, and more scout bees are required to 
discover alternative potential solutions. There is also a random search group with at least one scout 
bee to preserve the stochastic nature of the algorithm.  

The efficiency of the algorithm is assessed with two criteria: converging speed and accuracy. 
The algorithm is applied on 12 function benchmarks. The net result indicates that the proposed 
variant is two times faster than the conventional Bees Algorithm, while almost as accurate as the 
more complex modified BA. Other desirable characteristics of the algorithm can be summarized as 
follows: (1) The grouped BA (GBA) has a well-defined methodology to set parameters, which leads 
to a fewer number of tunable parameters; (2) The algorithm entails the least computational load; (3) 
It is based only on the conventional operators of the Bees Algorithm. 
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